Reconstructing the Diets of Fossil Primates

  • Peter Ungar
Part of the Advances in Primatology book series (AIPR)


Feeding adaptations are of great interest to primatologists whether they study living or fossil species. Diet both underlies many of the behavioral and ecological differences that separate extant taxa, and plays an important role in defining ecological niche, with all its implications for the ecology and evolution of extinct forms. While we can directly observe most living primates to see what they eat, deductions about the diets of fossils must be based on indirect evidence. Most recent work in this domain has employed the comparative method. Researchers attempt to relate anatomical evidence to diet in living primates to form a baseline for the inference of feeding behaviors from the remains of fossil forms. The idea is simple enough. We observe the manifestation of some feature in a fossil, and look for a corresponding condition in living primates. If every time we observe that trait in living primates it functions in a given way, we assume it functioned that way for the fossil form.


Tooth Wear Cheek Tooth Early Hominid Tooth Size Wear Facet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello, L., and Dean, M. C. 1990.An Introduction to Human Evolutionary Anatomy. Academic Press: LondonGoogle Scholar
  2. Aiello, L. C., and Wheeler, P. 1995. The expensive tissue hypothesis. Curr. Anthropol. 36: 199–221.Google Scholar
  3. Ambrose, S. H. 1993. Isotopic analysis of paleodiets: methodological and interpretive consider-ations. In: M.I. Sandford (ed.), Investigations of Ancient Human Tissue. Chemical Analyses in Anthropology pp. 59–130. Gordon and Breach Scientific, Langhorne, PA.Google Scholar
  4. Ambrose, S. H., and DeNiro, M. J. 1986. The isotopic ecology of East African mammals. Oecologia 69: 395–406.Google Scholar
  5. Anapol, F., and Lee, S. 1994. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94: 239–262. Google Scholar
  6. Anthony, M. R. L., and Kay, R. F. 1993. Tooth form and diet in Ateline and Alouattine primates: Reflections on the comparative method. Am. J. Sc i. 293-A: 356–382.Google Scholar
  7. Avis, V. 1962. Brachiation: The crucial issue for man’s ancestry. Southwest J. Anthropol. 18: 119–148.Google Scholar
  8. Beecher, R. M. 1977. Function and fusion at the mandibular symphysis. Am. J. Phys. Anthropol. 47: 325–336.Google Scholar
  9. BeecherR. M.1979. Functional significance of the mandibular symphysis. J. Morphol. 159: 117–130. Google Scholar
  10. Beecher, R. M. 1983. Evolution of the mandibular symphysis in Notharctinae (Adapidae, Primates). Int. J. Primatol. 4: 99–112.Google Scholar
  11. Boaz, N. T., and Howell, F. C. 1977. A gracile hominid cranium from upper member G of the Shungura Formation, Ethiopia. Am. J. Phys. Anthropol. 46: 93–108.Google Scholar
  12. Boyde, A., and Fortelius, M. 1991. New confocal LM method for studying local relative microrelief with special references to wear studies. Scanning. 13: 429–430.Google Scholar
  13. Brace, C. L. 1975. Comment on: Did La Ferrassie use his teeth as a tool? by J. A. Wallace. Curr. Anthropol. 16: 396–397. Google Scholar
  14. Brown, B. 1997. Miocene hominoid mandibles: Functional and phylogenetic perspectives. In: D. R. Begun, C. V. Ward, and M. D. Rose (ed.) Function Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptations pp. 153–171. Plenum Press, New York.Google Scholar
  15. Burnell, C. L., Teaford, M. F., and Glander, K. E. 1994. Dental microwear differs by capture sitein live-caught Alouatta from Costa Rica. Am. J. Phys. Anthropol. Suppl.18: 62.Google Scholar
  16. Burton, J. H., and Wright, L. E. 1995. Nonlinearity in the relationship between bone Sr/Ca and diet: Paleodietary implications. Am. J. Phys. Anthropol. 96: 273–282.Google Scholar
  17. Butler, P. M. 1952. The milk molars of perissodactyla with remarks on molar occlusion. Proc. Zool. Soc. London. 121: 777–817.Google Scholar
  18. Butler, P. M. 1973. Molar wear facets of early Tertiary North American primates. In: M. R.Zingeser (ed.) Craniofacial Biology of Primates pp. 1–27. S. Karger Press, Basel.Google Scholar
  19. Butler, P. M. and Mills, J. R. E. 1959. A contribution to the odontology of Oreopithecus. Bull. Br.Mus. Nat. Hist. Geol. 4: 1–26.Google Scholar
  20. Clutton-Brock, T. H., and Harvey, P. H. 1980. Primates, brains and ecology. J. Zool. 190: 309–323Google Scholar
  21. Conroy, C. G. 1972. Problems with the interpretation of Ramapithecus with special reference to anterior tooth reduction. Am. J. Phys. Anthropol. 37: 41–48.Google Scholar
  22. Corruccini, R. S., and Henderson, A. M. 1978. Multivariate dental allometry in primates. Am. J. Phys. Anthropol. 49: 517–532.Google Scholar
  23. Covert, H. H., and Kay, R. F. 1981. Dental microwear and diet: Implications for determining the feeding behavior of extinct primates, with a comment on the dietary pattern of Sivapithecus. Am. J. Phys. Anthropol. 55: 331–336.Google Scholar
  24. Crompton, A. W., and Sita-Lumsden, A. G. 1970. Functional significance of Therian molar pattern. Nature. 227: 197–199.Google Scholar
  25. Daegling, D. J., and Grine, F. E. 1991. Compact bone distribution and biomechanics of early hominid mandibles. Am. J. Phys. Anthropol. 86: 321–339.Google Scholar
  26. Daegling, D. J., and Grine, F. E. 1994. Bamboo feeding, dental microwear, and diet of the Pleistocene ape Gigantopithecus blacki. S. Afr. J. Sci. 90: 527–532.Google Scholar
  27. Dean, M. C., Jones, M. E., and Pilley, J. R. 1992. The natural history of tooth wear, continuouseruption and periodontal disease in wild shot great apes. J. Hum. Evol. 22: 23–39.Google Scholar
  28. Demes, B., and Creel, N. 1988. Bite force and cranial morphology of fossil hominids. J. Hum. Evol. 17: 657–676.Google Scholar
  29. DeNiro, M. J., and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45: 341–351.Google Scholar
  30. Dumont, E. R. 1995. Enamel thickness and dietary adaptation among extant primates and chiropterans. J. Mammal. 76: 1127–1136.Google Scholar
  31. Dunbar, R. I. M. 1976. Australopithecine diet based on a baboon analogy. J. Hum. Evol. 5: 161–167.Google Scholar
  32. Eaglen, R. H. 1984. Incisor size and diet revisited: the view from a platyrrhine perspective. Am. J. Phys. Anthropol. 69: 262–275.Google Scholar
  33. Eaglen, R. H. 1986. Morphometrics of the anterior dentition in strepsirhine primates. Am. J. Phys. Anthropol. 71: 185–202.Google Scholar
  34. Fleagle, J. G. 1978. Locomotion, posture and habitat use of two sympatric leaf-monkeys in West Malaysia. In: D. J. Chivers, and J. Herbert (eds.) Recent Advances in Primatology pp. 331–336. Academic Press, New York.Google Scholar
  35. Fleagle, J. G. 1980. Locomotion and posture. In: D. J. Chivers (ed.) Malayan Forest Primates: Ten Years’ Study in Tropical Rainforest pp. 105–117. Plenum Press, New York.Google Scholar
  36. Fleagle, J. G. 1984. Primate locomotion and diet. In: D. J. Chivers, B. A. Wood, and A. Bilsborough (eds.) Food Acquisition and Processing in Primates pp. 105–117. Plenum Press, New York.Google Scholar
  37. Fleagle, J. G. 1988. Primate Adaptation and Evolution. Academic Press, New York.Google Scholar
  38. Fleagle, J. G., and Mittermeier, R. A. 1980. Locomotor behavior, body size and comparative ecology of seven Surinam monkeys. Am. J. Phys. Anthropol. 52: 301–322.Google Scholar
  39. Fleagle, J. G., R. F. Kay, and M. R. L. Anthony, 1996. Fossil New World monkeys. In: R. F. Kay, R. H. Madden, R. L. Cifelli, and J. J. Flynn (eds.) Vertebrate Paleontology in the Neotropics pp. 473–495. Smithsonian Institution, Washington D.G.Google Scholar
  40. Frayer, D. W., and Russell, M. D. 1987. Artifical grooves on the Krapina Neandertal teeth. Am. J. Phys. Anthropol. 74: 393–405.Google Scholar
  41. Goldstein, S., Post, D., and Melnick, D. 1978. An analysis of cercopithecoid odontometrics. Am. J. Phys. Anthropol. 49: 517–532.Google Scholar
  42. Gordon, K. D. 1982. A study of microwear on chimpanzee molars: Implications of dental microwear analysis. Am. J. Phys. Anthropol. 59: 195–215.Google Scholar
  43. Gordon, K. D. 1984. Hominoid dental microwear: complications in the use of microwear analysis to detect diet. J. Dent. Res. 63: 1043–1046.Google Scholar
  44. Gould, S. J. 1971. Geometric similarity in allometric growth: A contribution to the problem of scaling in the evolution of size. Am. Nat. 105: 113–136.Google Scholar
  45. Greaves, W. S. 1988. A functional consequence of an ossified mandibular symphysis. Am. J. Phys. Anthropol. 77: 53–56.Google Scholar
  46. Greaves, W. S. 1993. Reply to Drs. Ravosa and Hylander. Am. J. Phys. Anthropol. 90: 513–514.Google Scholar
  47. Gregory, W. K. 1922. The Origin and Evolution of Human Dentition. Williams and Wilkins: Baltimore.Google Scholar
  48. Grine, F. E. 1981. Trophic differences between ‘gracile’ and ‘robust’ australopithecines: A scanning electron microscope analysis of occlusal events. S. Afr. J. Sci. 77: 203–230.Google Scholar
  49. Grine, F. E. 1984. Deciduous molar microwear of South African australopithecines. In: D. J. Chivers, B. A. Wood, and A. Bilsborough (eds.) Food Acquisition and Processing in Primates pp. 525–534. Plenum Press, New York.Google Scholar
  50. Grine, F. E. 1986. Dental evidence for dietary differences in Australopithecus and Paranthropus. J. Hum. Evol. 15: 783–822.Google Scholar
  51. Grine, F. E. 1987. Quantitative analysis of occlusal microwear in Australopithecus and Paranthropus. Scan. Microsc. 1: 647–656.Google Scholar
  52. Grine, F. E., and Kay, R. F. 1987. Early hominid diets from quantitative image analysis of dental microwear. Nature. 333: 765–768.Google Scholar
  53. Groves, C. P. 1970. Gigantopithecus and the mountain gorilla. Nature 226: 973–974.Google Scholar
  54. Groves, C. P., and Napier, J. R. 1968. Dental dimensions and diet in australopithecines. Proc. VIII Int. Cong. Anthropol. Ethnogr. Sci. 3: 273–276.Google Scholar
  55. Harding, R. S. O. 1981. An order of omnivores: nonhuman primate diets in the wild. In: R. S. O. Harding, and G. Teleki (eds.) Omnivorous Primates: Gathering and Hunting in Human Evolution pp. 191–214. Columbia University Press, New York.Google Scholar
  56. Harrison, T. 1982. Small-bodied Apes from the Miocene of East Africa Ph.D. Dissertation, University College, London.Google Scholar
  57. Harrison, T. 1993. Cladistic concepts and the species problem in hominoid evolution. In: W. H. Kimbel, and L. B. Martin (eds.) Species Species Concepts and Primate Evolution pp. 345–371. Plenum Press, New York.Google Scholar
  58. Harvey, P. H., Clutton-Brock, T. M., and Mace, G. M. 1980. Brain size and ecology in small mammals and primates. Proc. Natl. Acad. Sci. USA 77:4387–4389.Google Scholar
  59. Hiiemae, K. M. and Kay, R. F. 1972. Trends in the evolution of primate mastication. Nature. 240:486–487.Google Scholar
  60. Hylander, W. L. 1975. Incisor size and diet in anthropoids with special reference to Cercopithecoidea. Science 189: 1095–1098.Google Scholar
  61. Hylander, W. L. 1979a. The functional significance of primate mandibular form. J. Morphol. 160: 223–240.Google Scholar
  62. Hylander, W. L. 1979b. Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis of the mandible. J. Morphol. 159: 253–296.Google Scholar
  63. Hylander, W. L. 1981. Patterns of stress and strain in the macaque mandible. In: D. S. Carlson (ed.) Craniofacial Biology. Monograph No. 10 Craniofacial Growth Series pp. 1–37. University of Michigan Press, Ann Arbor.Google Scholar
  64. Hylander, W. L. 1984. Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. Am. J. Phys. Anthropol 64: 1–46.Google Scholar
  65. Hylander, W. L. 1985. Mandibular function and biomechanical stress and scaling. Am. Zool. 25: 315–330.Google Scholar
  66. Hylander, W. L. 1988. Implications of in vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In: F. E. Grine (ed.), Evolutionary History of the “Robust” Australopithecines, pp. 55–58. Aldine de Gruyter, New York.Google Scholar
  67. Hylander, W. L., and Johnson, K. R. 1994. Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am. J. Phys. Anthropol 94: 523–547.Google Scholar
  68. Janis, C. 1984. Prediction of primate diets form molar wear patterns. In: D. J. Chivers, B. A. Wood, and A. Bilsborough (eds.) Food Acquisition and Processing in Primates pp. 331–340. Plenum Press, New York.Google Scholar
  69. Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of thier dentitions, with special reference to limiting factors. Biol. Rev. 63: 197–230.Google Scholar
  70. Jolly, C. J. 1970a. The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man 5: 1–26.Google Scholar
  71. Jolly, C. J. 1970b. Hadropithecus: A lemurid small-object feeder. Man 5: 619–626.Google Scholar
  72. Jungers, W. L. 1988. New estimates of body size in australopithecines. In: F. E. Grine (ed.) Evolutionary History of the “Robust” Australopithecines pp. 115–125. Aldine de Gruyter, New York.Google Scholar
  73. Kay, R. F. 1973. Mastication Molar Tooth Structure and Diet in Primates Ph.D. Dissertation, Yale University.Google Scholar
  74. Kay, R. F. 1975. Allometry in early hominids. Science 189: 63.Google Scholar
  75. Kay, R. F 1977a. The evolution of molar occlusion in the Cercopithecidae and early catarrhines. Am. J. Phys. Anthropol. 46: 327–352.Google Scholar
  76. Kay, R. F. 1977b. Diets of early Miocene African hominoids. Nature. 268: 628–630.Google Scholar
  77. Kay, R. F. 1978. Molar structure and diet in extant Cercopithecidae. In: P. M. Butler, and K. A.Joysey (eds.) Development Function and Evolution of Teeth pp. 309–339. Academic Press,NewYork.Google Scholar
  78. Kay, R. F. 1981. The nut-crackers: A new theory of the adaptations of the Ramapithecinae. Am. J. Phys. Anthropol. 55: 141–151.Google Scholar
  79. Kay, R. F. 1984. On the use of anatomical features to infer foraging behavior in extinct primates. In: P. S. Rodman, and J. G. H. Cant (eds.) Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians Monkeys and Apes pp. 21–53. Columbia University, New York.Google Scholar
  80. Kay, R. F. 1985. Dental evidence for the diet of Australopithecus. Annu. Rev. Anthropol. 14: 315–341.Google Scholar
  81. Kay, R. F. 1987. Analysis of primate dental microwear using image processing techniques. Scan. Microsc. 1:657–662. Google Scholar
  82. Kay, R. F., and Cartmill, M. 1977. Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Pleisadapoidea, ?Primates), with a description of a new genus and species. J. Hum. Evol. 6: 19–53.Google Scholar
  83. Kay, R. F., and Covert, H. H. 1983. True grit: A microwear experiment. Am. J. Phys. Anthropol. 91: 33–38.Google Scholar
  84. Kay, R. F. and Covert, H. H. 1984. Anatomy and behavior of extinct primates. In: D. J. Chivers,B. A. Wood, and A. Bilsborough (eds.) Food Acquistion and Processing in Primates pp. 467–508. Plenum Press, New YorkGoogle Scholar
  85. Kay, R. F., and Hiiemae, K. M. 1974. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol 40:227–256.Google Scholar
  86. Kay, R. F., and Hylander, W. L. 1978. The dental structure of mammalian folivores with specialreference to primates and Phalangeroidea (Marsupialia). In: G. G. Montgomery (ed.) The Ecology of Arboreal Folivores, pp. 173–191. Smithsonian Institution, Washington DC.Google Scholar
  87. Kay, R. F., and Sheine, W. S. 1979. On the relationship between chitin particle size anddigestibility in the primate Galago senegalensis. Am. J. Phys. Anthropol. 50: 301–308.Google Scholar
  88. Kay, R. F., and Simons, E. L. 1980. The ecology of Oligocene African Anthropoidea. Int. J.Primatol. 1: 21–37Google Scholar
  89. Kay, R. F., and Ungar, P. S. 1997. Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In: D. R. Begun,C. Ward, and M. Rose (eds.) Function Phylogeny and Fossils: Miocene Hominoids and Great Ape and Human Origins pp. 131–151. Plenum Press, New York.Google Scholar
  90. Kelley, J. 1986. Paleobiology of Miocene Hominoids. Ph.D. Dissertation, Yale University.Google Scholar
  91. Kilgore, L. 1989. Dental pathologies in ten free-ranging chimpanzees from Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 80: 219–227.Google Scholar
  92. Kinzey, W. G. 1974. Ceboid models for the evolution of hominoid dentition. J. Hum. Evol. 3: 193–203.Google Scholar
  93. Kinzey, W. G. 1978. Feeding behavior and molar features in two species of titi monkey. In: D. J. Chivers, and J. Herbert (eds.) Recent Advances in Primatology Volume 1 Behavior pp. 373–385. Academic Press: London.Google Scholar
  94. Kleiber, M. 1961. The Fire of Life. John Wiley Sc Sons: New York.Google Scholar
  95. Koenigswald, W. von., Rensberger, J. M., and Pfretzschner, H. U. 1987. Changes in tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature. 328: 150–152.Google Scholar
  96. Lalueza, C., Pèrez-Pèrez, A., and Turbon, D. 1993. Microscopic study of the Banyoles mandible(Girona, Spain): Diet, cultural activity and toothpick use. J. Hum. Evol. 24: 281–300.Google Scholar
  97. Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1994. Diet of Australopithecus robustus atSwartkrans from stable carbon isotopic analysis. J. Hum. Evol. 27: 361–372.Google Scholar
  98. Lucas, P. W. 1980. Adaptation and Form of the Mammalian Dentition with Special Reference to the Evolution of Man. Ph.D. Dissertation, University College, London.Google Scholar
  99. Lucas, P. W., Lowrey, T. K., Pereira, B. P., Sarafis, V., and Kuhn, W. 1991. The ecology of Mezzettia leptopoda (Hk. f. et Thorns.) Oliv. (Annonaceae) as viewed from a mechanical perspective. Funct. Ecol. 5: 545–553.Google Scholar
  100. Lucas, P. W., and Luke, D. A. 1984. Chewing it over: Basic principles of food breakdown. In: D. J. Chivers, B. A. Wood, and A. Bilsborough (eds.) Food Acquisition and Processing in Primates pp. 283–301. Plenum Press, New York.Google Scholar
  101. Lucas, P. W., and Teaford, M. F. 1994. Functional morphology of colobine teeth. In: A. G. Davies, and J. F. Oates (eds.) Colobine Monkeys: Their Ecology Behaviour and Evolution pp. 173–203. Cambridge University Press, Cambridge.Google Scholar
  102. Lucas, P. W., and Teaford, M. F. 1995. Significance of silica in leaves eaten by long-tailed macaques (Macaca fascicularis). Folia Primatol. 64: 30–36.Google Scholar
  103. Lucas, P. W., Peters, C. R., and Arrandale, S. R. 1994. Seed-breaking forces exerted by orangutans with their teeth in captivity and a new technique for estimating forces produced in the wild. Am. J. Phys. Anthropol. 94: 365–378.Google Scholar
  104. Maas, M. C. 1988. The Relationship of Enamel Microstructure and Microwear. Ph.D. Dissertation, State University of New York at Stony Brook.Google Scholar
  105. Maas, M. C. 1991. Enamel structure and microwear: An experimental study of the response of enamel to shearing forces. Am. J. Phys. Anthropol. 85: 31–50.Google Scholar
  106. Maas, M. C. 1993. Enamel microstructure and molar wear in the greater galago Otolemur crassicaudatus (Mammalia, Primates). Am. J. Phys. Anthropol. 92: 217–233.Google Scholar
  107. Maas, M. C. 1994. A scanning electron-microscopic study of in vitro abrasion of mammalian tooth enamel under compressive loads. Arch. Oral Biol. 39: 1–11.Google Scholar
  108. Maas, M. C., and O’Leary, M. 1996. Evolution of molar enamel microstructure in North American Notharctidae (primates). J. Hum. Evol. 31: 293–310.Google Scholar
  109. Maas, M. C., and Simons, E. L. 1995. Enamel microstructure of early anthropoids from the Fayum of Africa. Am. J. Phys. Anthropol. Suppl. 20: 138.Google Scholar
  110. Mace, G. M., Harvey P.H.and Clutton-Brock, T. H. 1981. Brain size and ecology in small mammals. J. Zool. 193: 333–354.Google Scholar
  111. Martin H. 1923. L’Homme fossile de la Quina. Libraire Octave Doin: Paris.Google Scholar
  112. Martin, R. D. 1984. Body size, brain size, and feeding strategy. In: D. J. Chivers, B. A. Wood, and A. Bilsborough (eds.), Food Acquisition and Processing in Primates, pp. 73–103. Plenum Press, New York.Google Scholar
  113. McHenry, H. M. 1988. New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” australopithecines. In: F. E. Grine (ed.) Evolutionary History of the “Robust” Australopithecines pp. 133–148. Aldine de Gruyter, New York.Google Scholar
  114. McHenry, H. M. 1992. How big were the early hominids. Evol. Anthropol. 1: 15–20.Google Scholar
  115. Meikle, W. E. 1977. Molar wear stages in Theropithecus gelada. Kroeber Anthropol. Soc. Papers 50: 21–25.Google Scholar
  116. Meldrum, D. J., and Kay, R. F. 1997. Nucicruptor rubicae a new pitheciin seed predator from the Miocene of Colombia. Am. J. Phys. Anthropol. 102: 407–428.Google Scholar
  117. Mills, J. R. E. 1955. Ideal dental occlusion in primates. Dent. Practitioner 6: 47–51.Google Scholar
  118. Mills, J. R. E. 1963. Occlusion and malocclusion in the teeth of Primates. In: D. Brothwell (ed.) Dental Anthropology pp. 29–53. Oxford University Press, Oxford.Google Scholar
  119. Mills, J. R. E. 1967. A comparison of lateral jaw movement in some mammals from wear facets on the teeth. Arch. Oral Biol. 12: 645–661.Google Scholar
  120. Napier, J. 1967. Evolutionary aspects of primate locomotion. Am. J. Phys. Anthropol. 27: 333–342.Google Scholar
  121. Nelson, D. G. A., DeNiro, M. J., Schoeninger, M. J., and DePaola, D. J. 1986. Effects of diagenesison strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta. 50: 1941–1949.Google Scholar
  122. Pastor, R. F., Teaford, M. F., and Glander, K. E. 1995. Methods for collecting and analyzingairborne abrasive particles from neotropical forests. Am. J. Phys. Anthropol. Suppl. 20: 168.Google Scholar
  123. Peters, C. R. 1982. Electron-optical microscopic study of incipient dental microdamage fromexperimental seed and bone crushing. Am. J. Phys. Anthropol. 57: 283–301.Google Scholar
  124. Pfretzschner, H. U. 1986. Structural reinforcement and crack propagation in enamel. In: D. E.Russell, J. P. Santoro, and D. Sigogneau-Russell (eds.) Teeth Revisited: Proceedings of the VIIthInternational Symposium on Dental Morphology. Mem. Mus. Nat. Hist. Nat. (Ser C) 53: 133–143.Google Scholar
  125. Pilbeam, D., and Gould, S. J. 1974. Size and scaling in human evolution. Science. 186: 892–901.Google Scholar
  126. Pilbeam, D., and Gould, S. J. 1975. Allometry and early hominids. Science 189: 63–64.Google Scholar
  127. Puech, P. F. 1979. The diet of early man: Evidence from abrasion of teeth and tools. Curr.Anthropol. 20: 590–592.Google Scholar
  128. Puech, P. F. 1984. Acidic food choice in Homo habilis at Olduvai. Curr. Anthropol. 25: 349–350.Google Scholar
  129. Puech, P. F. 1986. Australopithecus afarensis Garusi 1, diversifie et spècialisation des premiersHominides d’après les caractères maxillo-dentaires. C. R. Acad. Sci. Paris, Ser. II 303: 1819–1824.Google Scholar
  130. Puech, P. F., and Albertini, H. 1984. Dental microwear and mechanisms in early hominids from Laetoli and Hadar. Am. J. Phys. Anthropol. 65: 87–91.Google Scholar
  131. Puech, P. F., Prone, A., Roth, H., and Cianfarani, F. 1985. Reproduction experimentale de processus d’usure des surfaces dentaires des Hominides fossils: Consequences morphoscopiques et exoscopics avec application a l’Hominide I de Garusi. C. R. Acad. Sci. Paris Ser. II. 301: 59–64.Google Scholar
  132. Puech, P. F., Cianfarani, F., and Albertini, H. 1986. Dental microwear features as an indicator forplant food in early hominids: A preliminary study of enamel. Hum. Evol. 1: 507–515.Google Scholar
  133. Rafferty, K., and Teaford, M. F. 1992. Diet and dental microwear in Malagasy subfossil lemurs. Am. J. Phys. Anthropol. Suppl 14: 134.Google Scholar
  134. Ravosa, M. J. 1991. Structural allometry of the mandibular corpus and symphysis in prosimian primates. J. Hum. Evol. 23: 197–217.Google Scholar
  135. Ravosa, M. J. 1996. Mandibular form and function in North American and European Adapidae and Omomyidae. J. Morph. 229: 171–190.Google Scholar
  136. Ravosa, M. J. 1999. Anthropoid origins and the modern symphysis. Folia Primatol. 70: 65–78Google Scholar
  137. Ravosa, M. J., and Hylander, W. L. 1993. Functional significance of an ossified mandibular symphysis: A reply. Am. J. Phys. Anthropol. 90: 509–512.Google Scholar
  138. Ravosa, M. J., and Hylander, W. L. 1994. Function and fusion of the mandibular symphysis in primates: Stiffness or strength? In: J. G. Fleagle, and R. F. Kay (eds.) Anthropoid Origins pp. 447–468. Plenum Press, New York.Google Scholar
  139. Ravosa, M. J., and Simons, W. L. 1994. Mandibular growth and function in Archaeolemur. Am. J. Phys. Anthropol. 95: 63–76.Google Scholar
  140. Rensberger, J. M. 1973. An occlusion model for mastication and dental wear in herbivorous mammals. J.Paleontol. 47: 512–528.Google Scholar
  141. Rensberger, J. M. 1978. Scanning electron microscopy of wear and occlusal events in some small herbivores. In: P. M. Butler, and K. A. Joysey (eds.) Development Function and Evolution of Teeth pp. 415–438. Academic Press: New York.Google Scholar
  142. Richard, A. F., Goldstein, S.H.and Dewar, R. E. 1981. Primates as weeds: The implications for macaque evolution. Am. J. Phys. Anthropol. 54: 267.Google Scholar
  143. Robinson, J. T. 1954. Prehominid dentition and hominid evolution. Evolutio 8: 324–334.Google Scholar
  144. Robinson, J. T. 1963. Adaptive radiation in the australopithecines and the origin of man. In: F.C. Howell, and F. Bourliere (eds.) African Ecology and Human Evolution pp. 385–416. Aldinede Gruyter, Chicago.Google Scholar
  145. Rose, J. C., and Ungar, P. S. 1998. Gross dental wear and dental microwear in historical perspective. In: K. W. Alt, F. W. Rosing, and M. Teschler-Nicola (eds.) Dental Anthropology: Fundamentals Limits Prospects pp. 349–386. Stuttgart: Gustav-Fischert.Google Scholar
  146. Rosenberger, A. L. 1986. Platyrrhines, catarrhines and the anthropoid transition. In: B. A. Wood, L. Martin, and P. Andrews (eds.) Major Topics in Primate and Human Evolution pp. 66–88. Cambridge University Press, Cambridge.Google Scholar
  147. Rosenberger, A. 1992. Evolution of feeding niches in New World monkeys. Am. J. Phys. Anthropol. 88: 525–562.Google Scholar
  148. Rosenberger, A. J., and Kinzey, W. G. 1976. Functional patterns of molar occlusion in platyrrhine primates. Am. J. Phys. Anthropol. 45: 281–297.Google Scholar
  149. Rosenberger, A. L., and Strasser, E. 1985. Toothcomb origins: Support for the grooming hypothesis. Primates. 26: 73–84.Google Scholar
  150. Ryan, A. S. 1980. Anterior Dental Microwear in Hominoid Evolution: Comparisons with Human and Nonhuman Primates. Ph.D. Dissertation, University of Michigan.Google Scholar
  151. Ryan, A. S., and Johanson, D. C. 1989. Anterior dental microwear in Australopithecus afarensis. J. Hum. Evol. 18: 235–268.Google Scholar
  152. Schoeninger, M. J., and DeNiro, M. J. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct the diets of animals. Nature 292: 333–335.Google Scholar
  153. Schoeninger, M. J., and DeNiro, M. J. 1984. Nitrogen and carbon isotopic composition of bonecollagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48: 625–639.Google Scholar
  154. Schoeninger, M. J., Iwaniec, U. T., and Glander, K. E. 1997. Stable isotope ratios indicate diet andhabitat use in New World monkeys. Am. J. Phys. Anthropol. 103: 69–84.Google Scholar
  155. Sealy, J., and Sillen, A. 1988. Sr and Sr/Ca in marine and terrestrial foodwebs in the southwestern Cape, South Africa. J. Archaeol. Sci. 15: 425–438.Google Scholar
  156. Seligsohn, D., and Szalay, F. S. 1978. Relationship between natural selection and dental morphology: Tooth function and diet in Lepilemur and Hapalemur. In: P. M. Butler, and K. A. Joysey (eds.), Development, Function and Evolution of Teeth, pp. 289–307. Academic Press, London.Google Scholar
  157. Sheine, W. S. 1979. The Effect of Variations in Molar Morphology on Masticatory Effectiveness and Digestion of Cellulose in Prosimian Primates. Ph.D. Dissertation, Duke University.Google Scholar
  158. Sheine, W. S., and Kay, R. F. 1977. An analysis of chewed food particle size and its relation tomolar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47: 15–20.Google Scholar
  159. Siffre, A. 1923. L’alimentation des hominds mousteriens et l’usure de leurs dents. Rev. Anthropol. 33: 291–293.Google Scholar
  160. Sillen, A. 1992. Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. J. Hum. Evol. 23: 495–516.Google Scholar
  161. Sillen, A. and Kavanagh, M. 1991. Stronium and paleodietary research: A review. Yearb. Phys. Anthropol. 25: 67–90.Google Scholar
  162. Sillen, A., and Lee-Thorp, J. A. 1994. Trace element and isotopic aspects of predator-preyrelationships in terrestrial food-webs. Palaeogeog. Palaeoclimatol. Palaeoecol. 107: 243–255.Google Scholar
  163. Sillen, A., Hall, G., and Armstrong, R. 1995. Strontium calcium ratios (Sr/Ca) and strontiumisotope ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. J. Hum.Evol. 28: 277–285.Google Scholar
  164. Simons, E. L. 1976. The nature of the transition in the dental mechanism from pongids to hominids. J. Hum. Evol. 5: 511–528.Google Scholar
  165. Simons, E. L., and Ettel, P. C. 1980. Gigantopithecus the largest primate. Dent. Abstr. 15: 266–267.Google Scholar
  166. Simons, E. L., and Pilbeam, D. 1972. Hominoid paleoprimatology. In: R. Tuttle (ed.) TheFunctional and Evolutionary Biology of Primates pp. 36–62. Aldine-Atherion, New York.Google Scholar
  167. Simpson, G. G. 1933. Paleobiology of Jurassic mammals. Paleobiology 5: 127–158.Google Scholar
  168. Smith, R. J., and Pilbeam, D. R. 1980. Evolution of the orangutan. Nature. 284: 447–448.Google Scholar
  169. Spears, I. R., and Crompton, R. H. 1996. The mechanical significance of the occlusal geometry of great ape molars in food breakdown. J. Hum. Evol. 31: 517–535.Google Scholar
  170. Stern, J. T., and Oxnard, C. E. 1973. Primate locomotion: Some links with evolution and morphology. Folia Primatol. 4: 1–93.Google Scholar
  171. Strait, S. G. 1991. Dietary Reconstruction in Small-Bodied Fossil Primates. Ph.D. Dissertation, State University of New York at Stony Brook.Google Scholar
  172. Strait, S. G. 1993a. Differences in occlusal morphology and molar size in frugivores and faunivores. J. Hum. Evol. 25: 471–482.Google Scholar
  173. Strait, S. G. 1993. Molar morphology and food texture among small-bodied insectivorous mammals. J. Mammal. 74: 391–402.Google Scholar
  174. Strait, S. G. 1993c. Molar microwear in extant small-bodied faunivorous mammals: An analysis of feature density and pit frequency. Am. J. Phys. Anthropol. 92: 63–79.Google Scholar
  175. Strait, S. G. 1997. Tooth use and the physical properties of foods. Evol. Anthropol. 5: 199–211.Google Scholar
  176. Strait, S. G., and Overdorff, D. J. 1994. A preliminary examination of molar microwear in strepsirrhine primates. Am. J. Phys. Anthropol. Suppl. 18: 190.Google Scholar
  177. Strait, S. G. and Overdorff, D. J. 1996. Physical properties of fruits eaten by Malagasy primates. Am. J. Phys. Anthropol. Suppl.22: 224.Google Scholar
  178. Sussman, R. W. 1978. Foraging patterns of nonhuman primates and the nature of food preferences in man. Fed. Proc. 37: 55–60.Google Scholar
  179. Sussman, R. W. 1987. Morpho-physiologicalanalysis of diets: species-specific dietary patterns in primates and human dietary adaptations. In: W. G. Kinzey (ed.) The Evolution of Human Behavior: Primate Models pp. 157–179. SUNY Press, Albany.Google Scholar
  180. Swindler, D. 1976. Dentition of Living Primates. Academic Press: New York.Google Scholar
  181. Teaford, M. F. 1982. Differences in molar wear gradient between juvenile macaques and langurs. Am. J. Phys. Anthropol. 57: 323–330.Google Scholar
  182. Teaford, M. F. 1985. Molar microwear and diet in the genus Cebus. Am. J. Phys. Anthropol. 66: 363–370.Google Scholar
  183. Teaford, M. F. 1986. Dental microwear and diet in two species of Colobus. In: J. Else, and P. Lee (eds.), Proceedings of the Tenth Annual International Primatological Conference. Volume II: Primate Ecology and Conservation, pp. 63–66. Cambridge University Press: Cambridge.Google Scholar
  184. Teaford, M. F. 1988. A review of dental microwear and diet in modern animals. Scan. Microsc. 2: 1149–1166.Google Scholar
  185. Teaford, M. F. 1993. Dental microwear and diet in extant and extinct Theropithecus: Preliminary analyses. In: N. G. Jablonski (ed.), Theropithecus: The Life and Death of a Primate Genus, pp. 331–349. Cambridge University Press, Cambridge.Google Scholar
  186. Teaford, M. F., and Glander, K. E. 1991. Dental microwear in live, wild-trapped Alouatta palliata from Costa Rica. Am. J. Phys. Anthropol. 85: 313–319.Google Scholar
  187. Teaford, M. F., and Leakey, M. G. 1992. Dental microwear and diet in Plio-Pleistocene cercopithecoids from Kenya. Am. J. Phys. Anthropol. Suppl.14: 160Google Scholar
  188. Teaford, M. F., and Oyen, O. J. 1989a. Differences in rate of molar wear between monkeys raised on different diets. J.Dent. Res. 68: 513–1518.Google Scholar
  189. Teaford, M. F. and Oyen, O. J. 1989b. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anthropol. 80: 447–460.Google Scholar
  190. Teaford, M. F., and Oyen, O. J. 1989c. Live primates and dental replication: New problems and new techniques. Am. J. Phys. Anthropol. 80: 73–81.Google Scholar
  191. Teaford, M. F., and Robinson, J. G. 1989. Seasonal or ecological zone differences in diet and molar microwear in Cebus nigrivittatus. Am. J. Phys. Anthropol. 80: 391–401.Google Scholar
  192. Teaford, M. F., and Runestad, J. A. 1992. Dental microwear and diet in Venezuelan primates. Am. J. Phys. Anthropol. 88: 347–364.Google Scholar
  193. Teaford, M. F., and Walker, A. C. 1984. Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. Am. J. Phys. Anthropol. 64: 191–200.Google Scholar
  194. Teaford, M. F., Pastor, R. F., Glander, K. E., and Ungar, P. S. 1994. Dental microwear and diet: Costa Rican Alouatta revisited. Am. J. Phys. Anthropol. Suppl 18: 194.Google Scholar
  195. Teaford, M. F., Maas, M. C., and Simons, E. L. 1996. Dental microwear and microstructure in Early Oligocene primates from the Fayum, Egypt: Implications for diet. Am. J. Phys. Anthropol. 101: 527–543.Google Scholar
  196. Ungar, P. S. 1990. Incisor microwear and feeding behavior in Alouatta seniculus and Cebus olivaceus. Am. J. Primatol. 20: 43–50.Google Scholar
  197. Ungar P. S. 1992. Incisor Microwear and Feeding Behavior of Four Sumatran Anthropoids. Ph.D. Dissertation, State University of New York at Stony Brook.Google Scholar
  198. Ungar, P. S. 1994a. Incisor microwear of Sumatran anthropoid primates. Am. J. Phys. Anthropol. 94: 339–363.Google Scholar
  199. Ungar, P. S. 1994b. Patterns of ingestive behavior and anterior tooth use differences in sympatric anthropoid primates. Am. J. Phys. Anthropol. 95: 197–219.Google Scholar
  200. Ungar, P. S. 1995a. Fruit preferences of four sympatric primate species at Ketambe, northern Sumatra, Indonesia. Int. J. Primatol. 16: 221–245.Google Scholar
  201. Ungar, P. S. 1995b. A semiautomated image analysis procedure for the quantification of dental microwear II. Scanning 17: 57–59.Google Scholar
  202. Ungar, P. S. 1996a. Relationship of incisor size to diet and anterior tooth use in sympatric Sumatran Anthropoids. Am. J. Primatol. 38: 145–156.Google Scholar
  203. Ungar, P. S. 1996b. Dental microwear of European Miocene catarrhines: Evidence for diets and tooth use. J.Hum. Evol. 31: 335–366.Google Scholar
  204. Ungar, P. S., and Grine, F. E. 1991. Incisor size and wear in Australopithecus africanus and Paranthropus robustus. J. Hum. Evol. 20: 313–340.Google Scholar
  205. Ungar, P. S., and Kay, R. F. 1995. The dietary adaptations of European Miocene catarrhines. Proc. Natl. Acad. Sci. USA. 92: 5479–5481.Google Scholar
  206. Ungar, P. S., and Teaford, M. F. 1996. A preliminary examination of non-occlusal dental microwear in anthropoids: Implications for the study of fossil primates. Am. J. Phys. Anthropol. 100: 101–113.Google Scholar
  207. Ungar, P. S., Simons, J.-C., and Cooper, J. W. 1991. A semiautomated image analysis procedure for the quantification of dental microwear. Scanning 13: 31–36.Google Scholar
  208. Ungar, P. S., Teaford, M. F., Glander, K. E., and Pastor, R. F. 1995. Dust accumulation in thecanopy: A potential cause of dental microwear in primates. Am. J. Phys. Anthropol. 97: 93–99.Google Scholar
  209. Ungar, P. S., Kay, R. F., Teaford, M. F., and Walker, A. 1996. Dental evidence for diets of Mioceneapes. Am. J. Phys. Anthropol. Suppl.22: 232–233.Google Scholar
  210. Walker, A. 1980. Functional anatomy and taphonomy. In: A. K. Behrensmeyer, and A. P. Hill(eds.) Fossils in the Making pp. 182–196. University of Chicago Press, Chicago.Google Scholar
  211. Walker, A. 1981. Diet and teeth: Dietary hypothesis and human evolution. Philos. Trans. R. Soc.London Ser. B 292: 57–64.Google Scholar
  212. Walker, A. C., Hoeck, H. N., and Perez, L. 1978. Microwear of mammalian teeth as an indicator of diet. Science. 201: 808–810.Google Scholar
  213. Walker, A., Teaford, M. F., and Ungar, P. S. 1994. Enamel microwear differences between speciesof Proconsul from the early Miocene of Kenya. Am. J. Phys. Anthropol. Suppl 18: 202–203.Google Scholar
  214. Walker, P. L. 1973. Great Ape Feeding Behavior and Incisor Morphology. Ph.D. Dissertation, University of Chicago.Google Scholar
  215. Walker, P. L. 1976. Wear striations on the incisors of cercopithecoid monkeys as an index of diet and habitat preference. Am. J. Phys. Anthropol. 45: 299–308.Google Scholar
  216. Walker, P. L., and Murray, P. 1975. An assessment of masticatory efficiency in a series ofanthropoid primates with special reference to Colobinae and Cercopithecinae. In: R. Tuttle(ed.) Primate Functional Morphology and Evolution pp. 135–150.Mouton, The Hague.Google Scholar
  217. Wallace, J. A. 1974. Approximal grooving of teeth. Am. J. Phys. Anthropol. 40: 285–290.Google Scholar
  218. Weidenreich, F. 1937. The dentition of Sinanthropus pekinensis. Paleo. Sin. 101: 1–180.Google Scholar
  219. Williams,B.A., and Covert, H. H. 1994. New early Eocene anaptomorphine primate(Omomyidae) from the Washakie Basin, Wyoming, with comments on the phylogeny and paleobiology of anaptomorphines. Am. J. Phys. Anthropol. 93: 323–340.Google Scholar
  220. Wood, B. A. 1981. Tooth size and shape and their relevance to studies of hominid evolution. Philos. Trans. R. Soc. London Ser. B 292: 65–76.Google Scholar
  221. Wood, B. A., and Abbott, S. A. 1983. Analysis of the dental morphology of Plio-Pleistocene hominids. I. Mandibular molars-crown area measurements and morphological traits. J. Anat. 136: 197–219.Google Scholar
  222. Yamashita, N. 1996. Seasonal and site specificity of mechanical dietary patterns in two Malagasy lemur families (Lemuridae and Indriidae). Int. J. Primatol. 17: 355–387.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Peter Ungar
    • 1
  1. 1.Department of AnthropologyUniversity of ArkansasFayettevilleUSA

Personalised recommendations