Skip to main content

A Novel Method to Solve Familiar Differential Equations and its Applications

  • Chapter
Frontiers of Fundamental Physics 4

Abstract

Text books on mathematical methods [1] and non-relativistic quantum mechanics [2] routinely take recourse to the method of series solution for solving linear differential equations encountered in various physical problems. The tediousness of the above procedure has often led to the search for alternate methods; the elegant raising and lowering operator approach for solving the harmonic oscillator problem serves as a classic example of these attempts. The other algebraic approach is group theoretical in nature and takes advantage of the symmetries of the problem at hand [2, 3]. The text book example of the Coulomb problem, where the angular momentum and the Rungé-Lenz vectors combine to yield a complete algebraic description of the Hilbert space, demonstrates the efficacy of this procedure. Most of these methods fail to generalize to many-variable interacting systems, a field lately attracting considerable attention because of its relevance to many areas of physics [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Morse and H. Feschbach, “Methods of Theoretical Physics”, Vol 1, McGraw-Hill, New-York, 1953.

    MATH  Google Scholar 

  2. L. Schiff, “Quantum Mechanics”, McGraw-Hill, New-York, 1968

    Google Scholar 

  3. L. Schiff,L. D. Landau and E. Lifshitz, “Quantum Mechanics”, Pergamon, New-York, 1977.

    Google Scholar 

  4. Y. Alhassid, F. GĂĽrsey and F. Iachello, Phys. Rev. Lett., 50, 873, 1983

    MathSciNet  ADS  Google Scholar 

  5. Y. Alhassid, F. GĂĽrsey and F. Iachello, Ann. Phys., 148, 346, 1983

    ADS  MATH  Google Scholar 

  6. Y. Alhassid, F. GĂĽrsey ,F. Iachello,A. O. Barut, A. Inomata and R. Wilson, Ann. Phys., 148, 346, 1983

    Google Scholar 

  7. Y. Alhassid, F. GĂĽrsey ,F. Iachello,A. O. Barut, A. Inomata and R. Wilson, Ann. Phys., 20, 4083, 1987

    Google Scholar 

  8. Y. Alhassid, F. GĂĽrsey ,F. Iachello,A. Gangopadhyaya, Jeffrey V. Mallow and U. Sukhatme, Phys. Rev, A 58, 4287, 1998

    ADS  Google Scholar 

  9. Y. Alhassid, F. GĂĽrsey ,F. Iachello,S. Chaturvedi, R. Dutt, A. Gangopadhyaya, P.K. Panigrahi, C. Rasinariu and U. Sukhatme, Phys. Lett., A 248, 2, 1998.

    Google Scholar 

  10. B. D. Simons, P. A. Lee and B. L. Altshuler, Phys. Rev. Lett., 70, 4122, 1993

    ADS  Google Scholar 

  11. B. D. Simons, P. A. Lee and B. L. Altshuler, Phys. Rev. Lett.,72, 64, 1994 and references therein.

    ADS  Google Scholar 

  12. N. Gurappa and P. K. Panigrahi, Phys. Rev,B 59, R2490, 1999 and references therein.

    ADS  Google Scholar 

  13. N. Gurappa and P.K. Panigrahi, hep-th/9908127.

    Google Scholar 

  14. N. Gurappa, P. K. Panigrahi and T. Shreecharan, manuscript under prepara- tion.

    Google Scholar 

  15. I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series and Products”, Academic Press Inc., 1965.

    Google Scholar 

  16. I. G. Macdonald, “Symmetric Functions and Hall Polynomials”, 2nd edition, Oxford: Clarendon press, 1995.

    MATH  Google Scholar 

  17. F. M. Fernández, E. A. Castro, “Algebraic Methods in Quantum Chemistry and Physics”, CRC, Boca Raton, 1996;

    MATH  Google Scholar 

  18. F. M. Fernández, E. A. Castro,N. Gurappa, A. Khare and P. K. Panigrahi, Phys. Lett,A 224, 467, 1998.

    Google Scholar 

  19. E. Schrödinger, Proc. Roy. Irish. Acad,46A, 9, 1940

    Google Scholar 

  20. E. Schrödinger, Proc. Roy. Irish. Acad,46A, 183, 1941

    Google Scholar 

  21. E. Schrödinger,L. Infeld and T.E. Hull, Rev. Mod. Phys.,23, 21, 1951.

    ADS  Google Scholar 

  22. F. Calogero, J. Math. Phys,12, 419, 1971

    MathSciNet  ADS  Google Scholar 

  23. F. Calogero,B. Sutherland, ibid.,12, 246, 1971

    Google Scholar 

  24. F. Calogero|B. Sutherland, ibid.,12, 251, 1971.

    Google Scholar 

  25. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep.,71, 313, 1981

    MathSciNet  ADS  Google Scholar 

  26. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep.94, 6, 1983.

    MathSciNet  Google Scholar 

  27. B. Sutherland and B. S. Shastry, Phys. Rev. Lett.,71, 5, 1993.

    MathSciNet  ADS  MATH  Google Scholar 

  28. N. Gurappa and P. K. Panigrahi, Phys. Rev,B 62, 1943, 2000.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gurappa, N., Panigrahi, P.K., Shreecharan, T., Ranjani, S.S. (2001). A Novel Method to Solve Familiar Differential Equations and its Applications. In: Sidharth, B.G., Altaisky, M.V. (eds) Frontiers of Fundamental Physics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1339-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1339-1_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5505-2

  • Online ISBN: 978-1-4615-1339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics