Advertisement

Mg2+-Dependent Atpase Activity in Cardiac Myofibrils from The Insulin-Resistant JCR:La-Cp Rat

  • Tarun Misra
  • James C. Russell
  • Tod A. Clark
  • Grant N. Pierce
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 498)

Abstract

There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+ - dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.

Keywords

ATPase Activity Diabetic Cardiomyopathy Myofibrillar Protein Subcellular Organelle Myosin ATPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barany, M., ATPase activity of myosin correlated with speed of muscle shortening, J.Gen.Physiol., 50, 197, 1967.PubMedCrossRefGoogle Scholar
  2. 2.
    Belcastro A.N., J.S. Gilchrist, and J.A. Scrubb, G. Arthur. Calcium-supported calpain degradation rates for cardiac myofibrils in diabetes. Mol Cell Biochem 135:51–60, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Cross, H.R., L.H. Opie, G.K. Radda, and K. Clarke. Is high glycogen content beneficial or detrimental to the ischemic heart? Circ.Res. 78:482–491,1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Czubryt, M.P., B. Ramjiawan, J.S.C. Gilchrist and G.N. Pierce. The presence and partitioning of calcium binding proteins in hepatic and cardiac nuclei. J Mol Cell Cardiol 28: 455–465, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Dhalla N.S., G.N. Pierce, I.R. Inns and R.E. Beamish. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281, 1985.PubMedGoogle Scholar
  6. 6.
    Dillmann, W.H. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29:579–582, 1980.PubMedGoogle Scholar
  7. 7.
    Dillmann, W.H. Fructose feeding increases Ca++-activated myosin ATPase activity and changes myosin isoenzyme distribution in the diabetic rat heart. Endocrinology 114: 1678–1685, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Dillmann, W.H. Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31: 199–204, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Dolphin P.J., R.M. Amy, and J.C. Russell: Effect of age on serum lipids and lipoproteins of male and female JCR:LA-corpulent rats. Biochim Biophys Acta 1042:99–106, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Fein F.S. and E.H. Sonnenblick. Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27: 255–270, 1985.Google Scholar
  11. 11.
    Fein,F.S., J.E. Strobeck, A.Malhotra, J. Scheuer, and E.H. Sonnenblick. Reversibility of diabetic cardiomyopathy with insulin in rats. Circ.Res. 49:1251–1261,1981.CrossRefGoogle Scholar
  12. 12.
    Ganguly, P.K., G.N. Pierce, K.S. Dhalla and N.S. Dhalla. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 244:E528–E535, 1983.Google Scholar
  13. 13.
    Gilchrist, J.S.C. and G.N. Pierce. Identification and purification of a calcium-binding protein in hepatic nuclear membranes. J Biol Chem 268: 4291–4299, 1993.PubMedGoogle Scholar
  14. 14.
    Kannel W.B., McGee D.L. Diabetes and cardiovascular risk factors. The Framingham Study. Circulation 1979;59:8–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Lopaschuk G.D. and J.C. Russell. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol 71:1302–1308, 1991.Google Scholar
  16. 16.
    MacLean I.M., R.V. Rajotte, and A.N. Belcastro. Insulin and islet cell transplants: effects on diabetic rat cardiac myofibril ATPase. Am J Physiol 252:E244–E247, 1987.PubMedGoogle Scholar
  17. 17.
    Maddaford T.G., J.C. Russell, and G.N. Pierce. Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. Am J Physiol 273:H1187–H1192, 1997.PubMedGoogle Scholar
  18. 18.
    Malhotra A, J.P. Mordes, L. McDermott, and T.F. Schaible. Abnormal cardiac biochemistry in spontaneously diabetic Bio-Breeding/Worcester rat. Am J Physiol 249:H1051–H1059, 1985.PubMedGoogle Scholar
  19. 19.
    Malhotra A, S. Penpargkul, F.S. Fein, E.H. Sonnenblick, and J. Scheuer. The effect of streptozotocininduced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Misra, T., J.S.C. Gilchrist, J. C. Russell, and G. N. Pierce. Cardiac myofibrillar andsarcoplasmic reticulum function are not depressed in insulin-resistant JCR:LA-cp rat. Am J Physiol. 276 (Heart Circ.Physiol. 45):H1811–H1817, 1999.PubMedGoogle Scholar
  21. 21.
    Penpargkul, S, F. Fein, E.H. Sonnenblick and J. Scheuer. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13:303–309, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Pierce G.N., R.E. Beamish and N.S. Dhalla. Heart Dysfunction in Diabetes, Boca Raton, FL, CRC Press, 1988, p.1–245Google Scholar
  23. 23.
    Pierce G.N. and N.S. Dhalla. Mechanisms of the defect in myofibrillar function during diabetes. Am J Physiol 248:E170–E175, 1985.PubMedGoogle Scholar
  24. 24.
    Pierce G.N. and N.S. Dhalla. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13: 1063–1069, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Pierce G.N., Dhalla N.S. Mitochondrial abnormalities in diabetic cardiomyopathy. Can J Cardiol;1:4854, 1985.Google Scholar
  26. 26.
    Pierce, G.N., P.K. Ganguly, A. Dzurba and N.S. Dhalla. Modification of the function of cardiac subcellular organelles by insulin. In: Advances in Myocardiology, edited by N.S. Dhalla and D.J. Hearse, 1985, p. 113–125.Google Scholar
  27. 27.
    Pierce G.N., M.K. Lockwood, and C.D. Eckhert. Cardiac contractile protein ATPase activity in a diet induced model of noninsulin dependent diabetes mellitus. Can. J. Cardiol. 5: 117–120, 1989.Google Scholar
  28. 28.
    Pierce, G.N., T.G. Maddaford and J.C. Russell. Cardiovascular dysfunction in insulin-dependent and non-insulin-dependent animal models of diabetes mellitus. Can. J. Physiol. Pharmacol. 75: 343350, 1997.Google Scholar
  29. 29.
    Pollack, P.S., A. Malhotra, F.S. Fein, and J. Scheuer. Effects of diabetes on cardiac contractile proteins in rabbits and reversal with insulin. Am J Physiol 251: H448–H454, 1986.Google Scholar
  30. 30.
    Redaelli, G., A. Malhotra, B. Li, P. Li, E. H. Sonnenblick, P. A. Hofmann and P. Anversa. Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res. 82:594–603, 1998.PubMedCrossRefGoogle Scholar
  31. 31.
    Regan T.J. Congestive heart failure in the diabetic. Annu Rev Med 34:161–168, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Rodrigues, B., M.C. Cam and J.H. McNeill. Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J. Mol. Cell Cardiol. 27:169–179, 1995.PubMedCrossRefGoogle Scholar
  33. 33.
    Rupp H., V. Elimban, and N.S. Dhalla. Modification of myosin isozymes and SR Ca (2)-pump ATPase of the diabetic rat heart by lipid-lowering interventions. Mol Cell Biochem 132:69–80, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Russell J.C., S.K. Ahuja, V. Manickavel, R.V. Rajotte, and R.M. Amy. Insulin resistance and impaired glucose tolerance in the atherosclerosis-prone LA/N corpulent rat. Arteriosclerosis 7:620–626, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Russell J.C. and R.M. Amy. Early atherosclerotic lesions in a susceptible rat model: the LAN-corpulent rat. Atherosclerosis 60:119–129, 1986.PubMedCrossRefGoogle Scholar
  36. 36.
    Russell J.C., D.G. Koeslag, P.J. Dolphin and R.M. Amy. Prevention of myocardial lesions in JCR:LAcorpulent rats by nifedipine. Arteriosclerosis 10:658–664, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Schaffer, S.W., M.S. Mozaffari, M. Artman and G.L. Wilson. Basis for myocardialmechanical defects associated with non-insulin-dependent diabetes. Am J Physiol 256:E25–E30, 1989.PubMedGoogle Scholar
  38. 38.
    Scheuer, J. and A.K. Bhan. Cardiac contractile proteins: Adenosine triphosphatase activity and physiological function. Circ Res 45: 1–12, 1979.PubMedCrossRefGoogle Scholar
  39. 39.
    Takeda, N., I.M.C. Dixon, T. Hata, V. Elimban, K.R. Shah and N. S. Dhalla. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Res. Clin. Pract. 30:S113–S122, 1996.CrossRefGoogle Scholar
  40. 40.
    Yu, Z., G. F. Tibbits and J. H. McNeill. Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am. J. Physiol. 266: H2082–H2089, 1994.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Tarun Misra
    • 1
  • James C. Russell
    • 2
  • Tod A. Clark
    • 1
  • Grant N. Pierce
    • 1
  1. 1.Division of Stroke &Vascular Disease,St. Boniface General Hospital Research Centre, and the Department of PhysiologyUniversity of Manitoba
  2. 2.Department of SurgeryUniversity of AlbertaEdmonton

Personalised recommendations