Alterations in 1,2-Diacylglycerols and Ceramides in Diabetic Rat Heart

  • Kenji Okumura
  • Kazunori Hayashi
  • Kichiro Murase
  • Hideo Matsui
  • Yukio Toki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 498)


Recent evidence has implicated lipid-mediated second messengers such as 1,2diacylgjycerol (DAG)-protein protein kinase C (PKC) pathway as an important mediator underling multiple aspects of myocardial function (1). For example, PKC is involved in Ca2+ -induced inotropy, in mediating myocardial preconditioning by diverse stimuli both in animals and humans, and in the signaling processes which lead to the production of proinflammatory mediators. Hyperglycemia and diabetes have been shown to be associated with PKC activities (2). The changes in DAG-PKC pathway are significant in causing cardiovascular dysfunctions and pathologies.


Diabetic Heart Ceramide Content Ventricular Contractile Function Left Ventricular Contractile Function Cholesterol Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Simpson. fit-Protein kinase C and hypertrophie signaling in human heur failure. Circulation. 99:334 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    _ D. Kova_ and G.L. King. Perspective in diabetes: Protein kinase C’ activation and the development of diabetic complications. Diabetes. 47:859 (1995).Google Scholar
  3. 3.
    P. Ping. J. Zhatg. Y. Qin. X.L. Tang. S. Manchikalapudi. X. Cao and R. Bolli. Ischemic preconditioning induces selective truislocation of protein kinase C isofonns r and i) in the heart ofconsciou’s rabbits without subcellular redistribution of total protein kinase C iciicjn. Cire Res. 81:404 (1997).Google Scholar
  4. 4.
    V.O. Rybin. and S.F. Steinberg. Protein kinase C isokonu expression and acgulation in the developing rat heart. Cire Res. 74:299 (1994).CrossRefGoogle Scholar
  5. 5.
    M.H. Disatnik, G Buruggi. and D Mochly-Rosen_ Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res. 2111:287 (1994).CrossRefGoogle Scholar
  6. 6.
    N. Bolling. R.A. Walsh. G. Song. T. Esiridge. GE. Sandusky. RL. Fouts. K Mimic. T Pickard. R Roden. MR Bristow. HN Sabbah. JL Mirrahi. G Groino. GL King. and CJ Vlahos. Increased protein kinase C activity and expression ofCat+-sensitive isofonns in the filling human heart. Circulation. 98:384 (1998).Google Scholar
  7. 7.
    K. Okumura. N. Akiyanna H. Hashimoto. K. Ogawrr and T. Satake. Alteration of 1.2-diacylgtvccrol content in the myocardium fions diabetic rets. Diabetes. 37:1 168(1988).Google Scholar
  8. 8.
    T. Inoguchi, P. Xia. M. Kunisaki. S. Higashi. E.P. Fccncr. and G.L. King. Insulin’s effect on protein kinase C and diacylgkecrol induced by diabetes and glucose in vascular tissues. Am J Physiol. 267:E369 (1994).PubMedGoogle Scholar
  9. 9.
    S.H. Ayo. R. Radnik. J.A Garoni. D.A. Troyer. and J.I. Kreisberg. High glucose increases diacylglyceaol mass and activates protein kinase C in ntesatgial cell cultures. Am J Physiol. 261:F571 (1991).PubMedGoogle Scholar
  10. 10.
    W. Li. W. Wang. and X. Liu. Comparative stade of high-glucose effect on phosphatidylcholine hydrolysis of cultured retinal capillary pericvtes and endothelial cells. Biochim Bioplays Acta. 1222.339 (1994).CrossRefGoogle Scholar
  11. 11.
    K. Okumura H. Matsui. K. Murase. A. Shimauchi. K. Shimizu. Y. Toki. T. Ito. and T. Itayakaya. Insulin increases distinct species of 1.2-diacylglycerol in isolated perused rat haut. Metabolism. 45:774 (1995).CrossRefGoogle Scholar
  12. 12.
    Y.A. Hannun. Functions of ceramide incoordinating cellular responses to stress. Science. 274:1855 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    Y.A. Hannun_C.R. Loomis. A.H.Jr. Merrill. and R.M. Bell. Sphingosine inhibition of protein kinase C activity and of phorbol dibutvrate binding in vitro and in human platelets. J Biol Cheer. 261:12604 (1986).Google Scholar
  14. 14.
    K. Okumura. K. Hayashi. I. Morishima. K. Mitrase. H. Matsui. Y. Toki, and T. Ito. Simulal.mcous quantitation of cenunides and I.2-diacvlgI cerol in tissues by latroscan thin-layer chromatogmphcflame-ionization detection. Lipids. 33:529 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Turcani. and H. Rupp. Etomoxir improves tell ventricular performance of pressure-overloaded rit heart. Circulation. 96:3681(1997).Google Scholar
  16. 16.
    F.J. Schmitz. P. ROsen. and H. Reinaucr. Improvement of myocardial limetion and metabolism in diabetic nits by the camitine palmitovl trmsfcrase inhibitor eiomoyir. Horan Met Res. 27: 515 (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kenji Okumura
    • 1
  • Kazunori Hayashi
    • 1
  • Kichiro Murase
    • 1
  • Hideo Matsui
    • 1
  • Yukio Toki
    • 1
  1. 1.Internal Medicine IINagoya UniversityNagoyaJapan

Personalised recommendations