(E,2E) Processes on Isoelectronic Hydrogen- and Alkali-Like Ions: Scaling Laws

  • L. U. Ancarani
  • P. A. Hervieux

Abstract

Triple differential cross sections (TDCSs) for (e, 2e) processes on the valence electrons of H-, Li-, Na- and K-like positive ions are calculated for intermediate incident energies in asymmetric and symmetric coplanar geometries. The long-range Coulomb interaction in the initial and final channels, and the short-range effects, are taken into account in the Coulomb Born approximation through the use of two effective charges. The latter are obtained within the framework of the frozen-core Hartree-Fock approximation which is also used for describing the bound states wave functions. As one moves from the H-like to K-like sequences, more TDCS structure is observed. An approximate scaling law for the TDCSs is predicted for the ionization of sequences of isoelectronic ions, provided the energies are properly scaled. The calculations illustrate that the scaling is generally well verified, in particular for increasing ionicity within a sequence.

Keywords

(e,2e) proscesses scaling laws ionization of ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Aichele et al., J. Phys. B31, 2369 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    R. Biswas and C. Sinha, Phys. Rev. A50, 354 (1994).ADSCrossRefGoogle Scholar
  3. [3]
    R. Biswas and C. Sinha, J. Phys. B30, 1589 (1997).ADSCrossRefGoogle Scholar
  4. [4]
    O. Rath Spivack et al.,Coincident Studies of Electron and Photon Impact Ionization, Ed. Whelan and Walters, Plenum Press, New York (1997).Google Scholar
  5. [5]
    X. Jia et al., Phys. Rev. A55, 1971 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    R. Biswas and C. Sinha, J. Phys. B28, 1311 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    Y. Khajuria and D. N. Tripathi, Phys. Rev. A59, 1197 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    L. U. Ancarani and P. A. Hervieux, Phys. Rev. A58, 336 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    Q. Shi et al., Phys. Rev. A58, 724 (1998).ADSCrossRefGoogle Scholar
  10. [10]
    O. Rath Spivack et al., J. Phys. B31, 845 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    A. Roy, K. Roy and N. C. Sil, J. Phys. B15, 1289 (1982).ADSCrossRefGoogle Scholar
  12. [12]
    Q. Shi et al., J. Phys. B30, 2859 (1997).ADSCrossRefGoogle Scholar
  13. [13]
    L. U. Ancarani, P. A. Hervieux and B. Najjari, J. Physique9, 55 (1999).Google Scholar
  14. [14]
    L. U. Ancarani and P. A. Hervieux, Phys. Rev. A, submitted.Google Scholar
  15. [15]
    J. Botero and J. H. Macek, Phys. Rev. A45, 154 (1992)ADSCrossRefGoogle Scholar
  16. [15a]
    J. H. Macek and J. Botero, Phys. Rev. A45, R8 (1992).ADSCrossRefGoogle Scholar
  17. [16]
    H. Ehrhardt et al., Z. Phys. D1, 3 (1986).ADSCrossRefGoogle Scholar
  18. [17]
    J. J. Thomson, Phil. Mag.23, 449 (1912).CrossRefGoogle Scholar
  19. [18]
    J. M. Rost and T. Pattard, Phys. Rev. A55, R5 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • L. U. Ancarani
    • 1
  • P. A. Hervieux
    • 1
  1. 1.Institut de PhysiqueL.P.M.C.MetzFrance

Personalised recommendations