Advertisement

Continuous Water Monitoring

Changes of Behavior Patterns as Indicators of Pollutants
  • Elke Blübaum-Gronau
  • Michael Hoffmann
  • O. Hunrich Spieser
  • Wilfred Scholz
Chapter
Part of the Environmental Science Research book series (ESRH, volume 56)

Abstract

The detection of sudden contamination pulses in surface waters has gained increasing importance over the past few years with view to drinking water production and the protection of aquatic life communities. An efficient monitoring system for practical applications cannot be based alone on physico-chemical analyses because, on the one hand, suitable analytical methods are not always available and, on the other, continuous analyses of all relevant parameters are hardly practicable for reasons of time and economy (Juhnke and Besch, 1971; van Hoof, 1980; Nusch, 1993). Moreover, measured concentrations do not provide any information about the biological availability of the detected substance. Neither does one know which effects the compound has on aquatic organisms in combination with other substances to which they may be exposed simultaneously. Estimates about the unnatural compounds which occur in the River Rhine range in an order of magnitude between 30,000 to 50,000 (Botterweg, 1988), of which only about 150 to 200 substances are covered by routine analyses (Botterweg et al., 1989). Furthermore, the interpretation of the results of chemical routine analyses by reference to available toxicity data is problematic, since toxicity data that were measured under standardized laboratory conditions are hardly relevant for field conditions, because theyleave the influence of the matrix of the water body out of account. For instance, humic acids, which occur ubiquitously, may alter the biological effectivity of contaminants by some orders of magnitude (Mayr, 1992).

Keywords

Behavioral Parameter Swimming Velocity Coordinate Distance Alarm Threshold Horizontal Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.M., 1971. Assessment of the effects of pollutants on physiology and behavior. Proc. R. Soc. Lond. B 177: 307–320.CrossRefGoogle Scholar
  2. Baatrup, E., and M. Bayley, 1993. Effects of the pyrethroid insectcide cypermethrin on the locomotor activity of the wolf spider Pardosa amantata: Quantitative analysis empoying computer-automated video tracking. Ecotoxicol. Environ. Saf. 26: 138–152.CrossRefGoogle Scholar
  3. Baillieul, M., and P. Scheunders, 1998. On-line determination of the velocity of simultaneously moving organisms by image analysis for the detection of sublethal toxicity. Water Research 32: 1027–1034.CrossRefGoogle Scholar
  4. Beitinger, T.L., and L. Freeman, 1983. Behavioral avoidance and selection responses of fishes to chemicals. Residue Reviews 90: 35–55.CrossRefGoogle Scholar
  5. Blübaum-Gronau, E., M. Hoffmann, O.H. Spieser, and E Krebs, 1994. Der Koblenzer Verhaltensfischtest, ein auf dem MeBsystem BehavioQuant® beruhender Biomonitor zur Gewässerüberwachung. Schr.-Reihe Verein Wasser-, Boden-und Lufthygiene 93, Gustav-Fischer Verlag, Stuttgart: 87–117.Google Scholar
  6. Blübaum-Gronau, E., O.H. Spieser, and E Krebs, 1992. Bewertungskriterien fiir einen Verhaltensfischtest zur kontinuierlichen Gewässerüberwachung. Schr.-Reihe Verein Wasser-, Boden-und Lufthygiene 89, Gustav-Fischer Verlag, Stuttgart: 333–348.Google Scholar
  7. Botterweg, J., 1988. Continue signalering van toxische stoffen in het aquatisch milieu met behulp van biologische bewakingssystemen-literatuurstudie. In: Publikaties en rapporten van het project “Ecologisch Herstel Rijn”. Publikatie no.5.Google Scholar
  8. Botterweg, J., C. van de Guchte, and L.W.C.A. van Breemen, 1989. Bio-alarmsystemen: een aanvulling op de traditionele bewaking van de waterkwaliteit. H2O 22: 788–794.Google Scholar
  9. Dicks, B., 1976. The applicability of the Milford Haven experience for new oil terminals. In: Marine ecology and oil pollution. Ed. Baker, J.M., Applied Science Publishers, Barking, Essex (UK): 67–87.Google Scholar
  10. DIN 38412 Teil 15,1982. Testverfahren mit Wasserorganismen (Gruppe L). Bestimmung der Wirkung von Wasserinhaltsstoffen auf Fische-Fischtest (L15). Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung.Google Scholar
  11. Elendt, B.-E, 1990. Selenium deficiency in Crustacea. An ultrastructural approach to antennal damage in Daphnia magna Strau. Protoplasma 154: 25–33.CrossRefGoogle Scholar
  12. Ermisch, R., and I. Juhnke, 1973. Automatische Nachweisvorrichtung für akut toxische Einwirkungen im Strömungsfischtest. Gewässer und Abwässer 52: 16–23.Google Scholar
  13. Giattina, J.D., and R.R. Garton, 1983. A review of the preference-avoidance responses of fishes to aquatic contaminants. Residue Reviews 87: 43–45.CrossRefGoogle Scholar
  14. Juhnke, I., and W.K. Besch, 1971. Eine neue Testmethode zur Friiherkennung akut toxischer Inhaltsstoffe im Wasser. Gewasser und Abwässer 50/51: 107–114.Google Scholar
  15. Kramer, K.J.M., and J. Botterweg, 1991. Aquatic biological early warning systems: an overview. In: Bioindicators and Environmental Management. Eds.: D.W. Jeffrey, and B. Madden, Acad. Press, London: 95–126.Google Scholar
  16. Larrick, S.R., K.L. Dickson, D.S. Cherry, and Jr.J. Cairns, 1978. Determining fish avoidance of polluted water. Hydrobiologia 61: 257–265.CrossRefGoogle Scholar
  17. Little, E.E., and S.E. Finger, 1990. Swimming behavior as an indicator of sublethal toxicity in fish. Environ. Toxicol. Chem. 9: 13–19.Google Scholar
  18. Lubinski, K.S., K.L. Dickson, and Jr.J. Cairns, 1977. Microprocessor-based interface converts video signals for object tracking. Computer Design/Dec. 16: 81–87.Google Scholar
  19. Mäckie, H., and H.-H. Stabel, 1989. Bioteste-Einsatz und Auswirkungen im Wasserwerksbetrieb. In: Qualitatstiberwachung von Roh-und Trinkwasser-Messung, Analyse und Bewertung. Berichte aus Wassergiitewirtschaft und Gesundheitsingenieurwesen, Technische Universität München 175–188.Google Scholar
  20. Mayr, C., 1992. Kombinationswirkung von Terbutylazin und Humussäure-Untersuchung biologischer Wirkungen mittels quantitativer Verhaltensmessung und der Akkumultation am Zebrabärbling (Brachydanio rerio). Diplomarbeit an der Fakultät für Biologie der Ludwig-MaximilianUniversität, München.Google Scholar
  21. Mello, N.K., 1975. Behavioral toxicology: A developing discipline. Fed. Proc. 34 No 9: 1832–1834.Google Scholar
  22. Miller, D.C., W.H. Lang, J.O.B. Greaves, and R.S. Wilson, 1982. Investigations in aquatic behavioral toxicology using a computerized video quantification system. In: Aquatic Toxicology and Hazard Assessment. Eds.: Pearson, J.G., R.B. Foster, and W.E. Bishop, American Society for Testing and Materials (ASTM) Special Technical Publication (STP) 766, Philadelphia: 206–220.CrossRefGoogle Scholar
  23. Nusch, E., 1993. Biologische Testverfahren-Aussagekraft und Grenzen der Übertragbarkeit. UWSFZ. Umweltchem. Ökotox. 5: 155–161.CrossRefGoogle Scholar
  24. Olla, B.L., 1974. Behavioral biotests-Behavioral measures of enviromental stress. In: Proceedings of a workshop on Marine Bioassays. Ed.: Olla, B.L., Marine Technology Society, Washington D.C. 24–31.Google Scholar
  25. Peichl, L., and E Schmidt-Bleek, 1986. Biosonden zum Friiherkennen von Umweltschäden. Umwelt. Z. des Vereins Deutscher Ingenieure für Immissionsschutz, Abfall, Gewässerschutz (Düsseldorf). Sonderausgabe Biotechnologie 4: 285–288.Google Scholar
  26. Poels, C.L.M., 1977. An automatic system for rapid detection of acute high concentrations of toxic substances in surface waters using trout. In: Biological monitoring of water and effluent quality. Ed.: Cairns, J., American Society for Testing and Materials (ASTM) Special Technical Publication (STP) 607: 85–95.Google Scholar
  27. Sachs, L., 1984. Angewandte Statistik (6. Auflage).Springer-Verlag, Berlin, Heidelberg, New York, Tokyo: 230–238.Google Scholar
  28. Scholz, W., 1994. Verhalten richtig analysiert. Elektronik Journal 3: 50–53.Google Scholar
  29. Smith, E.H., and H.C. Bailey, 1988. Development of a system for continuous biomonitoring of a domestic water source for early warning of contaminants. In: Automated Biomonitoring: Living Sensors as Environmental Monitors. Eds.: Gruber, D., and J. Diamond, John Wiley & Sons, New York, Chichester, Brisbane, Toronto: 182–205.Google Scholar
  30. Spieser, O.H, and D. Freitag, 1984. 28-Day Fish Test. In: überpriifung der Durchftihrbarkeit von Prtifvorschriften und der Aussagekraft der Stufe I und II des E. Chem. G. Umweltforschungsplan des Bundesministers des Inneren (10604011/02). Institut fiir Toxikologie der Gesellschaft fur Strahlen-und Umweltforschung, Mtinchen: 132–169.Google Scholar
  31. Spieser, O.H., and H.P. Frisch, 1985. Verfahren zur Messung der Bewegungsweisen und Konfigurationen von biologischen und nicht biologischen Objekten. Deutsche Patentschrift P 3543515.1.Google Scholar
  32. Spieser, O.H., and H.P. Frisch, 1988. Method of measuring the types of motion and configuration of biological and non biological objects. United States Patent No. 4,780,907.Google Scholar
  33. Spieser, O.H., and W. Scholz, 1992. Verfahren zur quantitativen Bewegungsanalyse von mehreren Objekten im selben Medium. Deutsche Patentschrift P 4224750.0.Google Scholar
  34. Spieser, O.H., and A. Yediler, 1986. Empfindliche Parameter bei der Entwicklung von Langzeittests an Fischen. Umweltforschungsplan des Bundesministers des Inneren (10603030). Institut für Toxikologie der Gesellschaft für Strahlen-und Umweltforschung, München.Google Scholar
  35. Van Hoof, F,1980. Evaluation of an automatic system for detection of toxic substances in surface water using trout. Bull. Envirnm. Contam. Toxicol. 25: 221–225.Google Scholar
  36. Warner, RE., K.K. Peterson, and L. Borgman, 1966. Behavioural pathology in fish: a quantitative study of sub-lethal pesticide toxication. In: Pesticides in the Environment and their effects on wildlife. Ed.: Moore, N.W., Journal of Applied Ecology. 3, Suppl.: 223–247.Google Scholar
  37. Williams, P.L., and D.B. Dusenbery, 1990. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol. Indust. Health 6: 425–440.Google Scholar
  38. WIR (Bund-Länder-Projektgruppe “Wirkungstest Rhein”) 1995. Kontinuierliche Biotestverfahren zur überwachung des Rheins. Ed.: Umweltbundesamt, UBA-Bericht 1/95, Berlin.Google Scholar
  39. Ziegler, S., 1994. Der Koblenzer Verhaltensfischtest—eine Studie zum Schwimm-und Bewegungsverhalten von Leuciscus idus melanotus L. unter dem Einflufl des Insektizids Endosulfan. Diplomarbeit am Institut ftir Tierphysiologie der Justus-Liebig-Universität, Giessen.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Elke Blübaum-Gronau
    • 1
  • Michael Hoffmann
    • 1
  • O. Hunrich Spieser
    • 1
  • Wilfred Scholz
    • 2
  1. 1.German Federal Institute of HydrologyKoblenzGermany
  2. 2.GSF-National Research Center for the Environment and HealthInstitute of ToxicologyOberschleißheimGermany

Personalised recommendations