p53 Mutation Load

A Molecular Linkage to Carcinogen Exposure and Cancer
  • S. Perwez Hussain
  • Curtis C. Harris
Chapter
Part of the Environmental Science Research book series (ESRH, volume 56)

Abstract

Normal tissue homeostasis is maintained by the interplay of a number of different genes that control cellular proliferation and cell death. Many of these genes, for example, ras, p53 and Rb,are altered in a variety of human cancers and are implicated in the natural history of human cancer. Several reports have described that each endogenous or exogenous mutagen induces a characteristic pattern of DNA alteration (Greenblatt et al., 1994; Patel et al.,1998), which can be displayed in a mutational spectrum that provides the type, location and frequency of alterations in a gene. The p53 tumor suppressor gene is of particular interest because it is mutated in about half of all cancer types arising in a variety of tissues, and it manifests a high frequency of missense mutations (substitution of an amino acid in the encoded protein) (Hollstein etal., 1991; Levine et al., 1991; Ponder, 1988). The extensive study of p53 mutation spectra has both provided information relevant to human cancer and generated several hypotheses. For example, a p53 mutation spectrum can reflect the DNA damage of a particular carcinogen and aid in defining the biochemical mechanisms responsible for the genetic lesions in DNA that cause human cancer. The frequency and type of p53 mutations can also act as a molecular dosimeter of carcinogen exposure and provide information about the molecular epidemiology of cancer risk. In this article, we will discuss how a characteristic mutation in the p53 tumor suppressor gene can indicate the exposure to a particular mutagen or carcinogen in the environment. In addition, the p.53 gene can be a target to evaluate the mutagenicity of an unknown environmental pollutant, by using human cell cultures and a highly sensitive genotypic mutation assay (Aguilar et al., 1994; Aguilar et al., 1993; Hussain et al., 1994a; Hussain etal., 1994b).

Keywords

Codon Adduct Fractionation Sarcoma Oligomerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, F, S.P. Hussain, and P. Cerutti. 1993. Afiatoxin B1 induces the transversion of G →T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl. Acad. Sci. U. S. A 90: 8586–8590.CrossRefGoogle Scholar
  2. Aguilar, F., C.C. Harris, T. Sun, M. Hollstein, and P. Cerutti. 1994. Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264: 1317–1319.CrossRefGoogle Scholar
  3. Bakalkin, G., T. Yakovleva, G. Selivanova, K.P. Magnusson, L. Szekely, E. Kiseleva, G. Klein, L. Terenius, and K.G. Wiman 1994. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. U. S. A 91: 413–417.CrossRefGoogle Scholar
  4. Baker, S.J., S. Markowitz, E.R. Fearon, J.K. Willson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915.CrossRefGoogle Scholar
  5. Brash, D.E. 1988. UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem. Photobiol. 48: 59–66.CrossRefGoogle Scholar
  6. Brash, D.E., J.A. Rudolph, J.A. Simon, A. Lin, G.J. McKenna, H.P. Baden, A.J. Halperin, and J. Ponten. 1991. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. U. S. A 88: 10124–10128.CrossRefGoogle Scholar
  7. Bredberg, A., K.H. Kraemer, and M.M. Seidman. 1986. Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc. Natl. Acad. Sci. U. S. A 83: 8273–8277.CrossRefGoogle Scholar
  8. Bressac, B., M. Kew, J. Wands, and M. Ozturk. 1991. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350: 429–431.CrossRefGoogle Scholar
  9. Chen, EL., Y. Chen, R. Bookstein, and W.H. Lee. 1991. Genetic mechanisms of tumor suppression by the human p53 gene. Science 250: 1576–1580.CrossRefGoogle Scholar
  10. Cho, Y., S. Gorina, P. Jeffrey, and N.P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: A framework for understanding how mutations inactivate p53. Science 265: 346–355.CrossRefGoogle Scholar
  11. Clore, G.M., J.G. Omichinski, K. Sakaguchi, N. Zambrano, H. Sakamoto, E. Appella, and A.M. Gronenborn. 1994. High-resolution solution structure of the oligomerization domain of p53 by multi-dimensional NMR. Science 265: 386–391.CrossRefGoogle Scholar
  12. DeLeo, A.B., G. Jay, E. Appella, G.C. Dubois, L.W. Law, and L.J. Old. 1979. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl. Acad. Sci. U. S. A 76: 2420–2424.CrossRefGoogle Scholar
  13. Denissenko, M.E, A. Pao, M. Tang, and G.P. Pfeifer. 1996. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274: 430–432.CrossRefGoogle Scholar
  14. Diller, L., J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S.J. Baker, B. Vogelstein, and et al. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell Biol. 10: 5772–5781.Google Scholar
  15. Eliyahu, D., A. Raz, P. Gruss, D. Givol, and M. Oren. 1984. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312: 646–649.CrossRefGoogle Scholar
  16. Eliyahu, D., N. Goldfinger, O. Pinhasi-Kimhi, G. Shaulsky, Y. Skurnik, N. Arai, V. Rotter, and M. Oren. 1988. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3: 313–321.Google Scholar
  17. Eliyahu, D., D. Michalovitz, S. Eliyahu, O. Pinhasi-Kimhi, and M. Oren. 1989. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. U. S. A 86: 8763–8767.CrossRefGoogle Scholar
  18. Fields, S., and S.K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1048.CrossRefGoogle Scholar
  19. Finlay, C.A., P.W. Hinds, T.H. Tan, D. Eliyahu, M. Oren, and A.J. Levine. 1988. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell Biol. 8: 531–539.Google Scholar
  20. Finlay, C.A., P.W. Hinds, and A.J. Levine. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093.CrossRefGoogle Scholar
  21. Gottlieb, T.M., and M. Oren. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta. 1287: 77–102.Google Scholar
  22. Greenblatt, M.S., W.P. Bennett, M. Hollstein, and C.C. Harris. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.Google Scholar
  23. Greenblatt, M.S., A.P. Grollman, and C.C. Harris. 1996. Deletions and insertions in the p53 tumor suppressor gene in human cancers: confirmation of the DNA polymerase slippage/misalignment model. Cancer Res. 56: 2130–2136.Google Scholar
  24. Hainaut, P., T. Hernandez, A. Robinson, P. Rodriguez-Tome, T. Flores, M. Hollstein, C.C. Harris, and R. Montesano. 1998. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 26: 205–213.CrossRefGoogle Scholar
  25. Harris, C.C. 1993. p53: at the crossroads of molecular carcinogenesis and cancer risk assessment. Science 262: 1980–1981.CrossRefGoogle Scholar
  26. Harris, C.C. 1996. The 1995 Walter Hubert Lecture-Molecular epidemiology of human cancer: insights from the mutational analysis of the p53 tumor suppressor gene. Br. J. Cancer 73: 261–269.CrossRefGoogle Scholar
  27. Hernandez, T.M., and P. Hainaut. 1998. A specific spectrum of p53 mutations in lung cancer from smokers: review of mutations compiled in the IARC p53 database. Environ. Health Perspect. 106: 385–391.CrossRefGoogle Scholar
  28. Hinds, P., C. Finlay, and A.J. Levine. 1989. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63: 739–746.Google Scholar
  29. Hollstein, M., D. Sidransky, B. Vogelstein, and C.C. Harris. 1991. p53 mutations in human cancers. Science 253: 49–53.CrossRefGoogle Scholar
  30. Hollstein, M., B. Shomer, M. Greenblatt, T. Soussi, E. Hovig, R. Montesano, and C.C. Harris. 1996. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 24: 141–146.CrossRefGoogle Scholar
  31. Horikoshi, N., A. Usheva, J. Chen, A.J. Levine, R. Weinmann, and T. Shenk. 1995. Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol. Cell Biol. 15: 227–234.Google Scholar
  32. Hsia, H.C., J.S. Lebkowski, P.M. Leong, M.P. Calos, and J.H. Miller. 1989. Comparison of ultraviolet irradiation-induced mutagenesis of the lad gene in Escherichia coli and in human 293 cells. J. Mol. Biol 205: 103–113.CrossRefGoogle Scholar
  33. Hsu, I.C., R.A. Metcalf, T. Sun, J.A. Welsh, N.J. Wang, and C.C. Harris. 1991. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350: 427–428.CrossRefGoogle Scholar
  34. Hupp, T.R., and D.P. Lane. 1995. Allosteric activation of latent p53 tetramers. Curr. Biol. 4: 865–875.CrossRefGoogle Scholar
  35. Hussain, S.P., F. Aguilar, P. Amstad, and P. Cerutti. 1994a. Oxy-radical induced mutagenesis of hotspot codons 248 and 249 of the human p53 gene. Oncogene 9: 2277–2281.Google Scholar
  36. Hussain, S.P., F. Aguilar, and P. Cerutti. 1994b. Mutagenesis of codon 248 of the human p53 tumor suppressor gene by N-ethyl-N-nitrosourea. Oncogene 9: 13–18.Google Scholar
  37. Hussain, S.P., C.H. Kennedy, P. Amstad, H. Lui, J.F. Lechner, and C.C. Harris. 1997. Radon and lung carcinogenesis: mutability of p53 codons 249 and 250 to 238Pu alpha-particles in human bronchial epithelial cells. Carcinogenesis 18: 121–125.CrossRefGoogle Scholar
  38. Hussain, S.P., and C.C. Harris. 1998. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 58: 4023–4037.Google Scholar
  39. Ishioka, C., C. Englert, P. Winge, Y.X. Yan, M. Engelstein, and S.H. Friend. 1995. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene 10: 1485–1492.Google Scholar
  40. Jayaraman, L., and C. Prives. 1995. Activation of p53 sequence-speicific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029.CrossRefGoogle Scholar
  41. Jeffrey, P.D., S. Gorina, and N.P. Pavletich. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502.CrossRefGoogle Scholar
  42. Jenkins, J.R., K. Rudge, and G.A. Currie. 1984. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–654.CrossRefGoogle Scholar
  43. Klein-Szanto, A.J., T. Iizasa, S. Momiki, I. Garcia-Palazzo, J. Caamano, R. Metcalf, J. Welsh, and C.C. Harris. 1992. A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells. Proc. Natl. Acad. Sci. U. S. A 89: 6693–6697.CrossRefGoogle Scholar
  44. Kress, M., E. May, R. Cassingena, and P. May. 1979. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol. 31: 472–483.Google Scholar
  45. Kress, S., C. Sutter, P.T. Strickland, H. Mukhtar, J. Schweizer, and M. Schwarz. 1992. Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res. 52: 6400–6403.Google Scholar
  46. Lane, D.P., and L.V. Crawford. 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.CrossRefGoogle Scholar
  47. Lee, W., T.S. Harvey, Y. Yin, P. Yau, D. Litchfield, and C.H. Arrowsmith. 1994. Solution structure of the tetrameric minimum transforming domain of p53. Nature Struc. Biol. 1: 877–890.Google Scholar
  48. Levine, A.J., J. Momand, and C.A. Finlay. 1991. The p53 tumour suppressor gene. Nature 351: 453–456.CrossRefGoogle Scholar
  49. Li, D., Y. Cao, L. He, N.J. Wang, and J. Gu. 1993. Aberrations of p53 gene in human hepatocellular carcinoma from China. Carcinogenesis 14: 169–173.CrossRefGoogle Scholar
  50. Lin, J., J. Chen, B. Elenbaas, and A.J. Levine. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 ElB 55-kD protein. Genes Dev. 8: 1235–1246.CrossRefGoogle Scholar
  51. Linzer, D.I., and A.J. Levine. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52.CrossRefGoogle Scholar
  52. Liu, X., C.W. Miller, P.H. Koeffier, and A.J. Berk. 1993. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol. Cell Biol. 13: 3291–3300.Google Scholar
  53. Lu, H., and A.J. Levine. 1995. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. U. S. A 92: 5154–5158.CrossRefGoogle Scholar
  54. Mace, K., E Aguilar, J.S. Wang, P. Vautravers, M. Gomez-Lechon, F.J. Gonzalea, J. Groopman, C.C. Harris, and A.M.A. Pfeifer. 1997. Afiatoxin B1 induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 18: 1291–1297.CrossRefGoogle Scholar
  55. Mack, D.H., J. Vartikar, J.M. Pipas, and L.A. Laimins. 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363: 281–283.CrossRefGoogle Scholar
  56. Martin, D.W., R.M. Munoz, M.A. Subler, and S. Deb. 1993. p53 binds to the TATA-binding protein-TATA complex. J. Biol. Chem. 268: 13062–13067.Google Scholar
  57. Martinez, J., I. Georgoff, and A.J. Levine. 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5: 151–159.CrossRefGoogle Scholar
  58. Mercer, W.E., M.T. Shields, M. Amin, G.J. Sauve, E. Appella, J.W. Romano, and S.J. Ullrich. 1990. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl. Acad. Sci. U. S. A 87: 6166–6170.CrossRefGoogle Scholar
  59. Michalovitz, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62: 671–680.CrossRefGoogle Scholar
  60. Montesano, R., P. Hainaut, and C.P. Wild. 1997. Hepatocellular carcinoma: from gene to public health. I Natl. Cancer Inst. 89: 1844–1851.CrossRefGoogle Scholar
  61. Moshinsky, D.J., and G.N. Wogan. 1997. UV-induced mutagenesis of human p53 in a vector replicated in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S. A 94: 2266–2271.CrossRefGoogle Scholar
  62. Nakazawa, H., D. English, P.L. Randell, K. Nakazawa, N. Martel, B.K. Armstrong, and H. Yamasaki. 1994. UV and skin cancer; Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc. Natl. Acad. Sci. U. S. A 91: 360–364.CrossRefGoogle Scholar
  63. Parada, L.E, H. Land, R.A. Weinberg, D. Wolf, and V. Rotter. 1984. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312: 649–651.CrossRefGoogle Scholar
  64. Park, J.W., K.C. Cundy, and B.N. Ames. 1989. Detection of DNA adducts by high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10: 827–832.CrossRefGoogle Scholar
  65. Patel, K.J., V.P.P.C.C. Yu, H. Lee, A. Corcoran, F.C. Thistlethwaite, M.J. Evans, W.H. Colledge, L.S. Friedman, B.A. Ponder, and A.R. Venkitaraman. 1998. Involvement of Brca2 in DNA repair. Molec. Cell 1: 347–357.Google Scholar
  66. Ponder, B. 1988. Cancer. Gene losses in human tumours [news]. Nature 335: 400–402.CrossRefGoogle Scholar
  67. Puisieux, A., J. Ji, C. Guillot, Y. Legros, T. Soussi, K. Isselbacher, and M. Ozturk. 1995. p53-mediated cellular response to DNA damage in cells with replicative hepatitis B virus. Proc. Natl. Acad. Sci. U. S. A 92: 1342–1346.CrossRefGoogle Scholar
  68. Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249: 1049–1051.CrossRefGoogle Scholar
  69. Scharer, E., and R. Iggo. 1992. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 20: 1539–1545.CrossRefGoogle Scholar
  70. Scorsone, K.A., Y.Z. Zhou, J.S. Butel, and B.L. Slagle. 1992. p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res. 52: 1635–1638.Google Scholar
  71. Seto, E., A. Usheva, G.P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, A J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. U. S. A 89: 12028–12032.CrossRefGoogle Scholar
  72. Soini, Y., S.C. Chia, W.P. Bennett, J.D. Groopman, J.S. Wang, V.M. DeBenedetti, H. Cawley, J.A. Welsh, C. Hansen, N.V. Bergasa, E.A. Jones, A.M. DiBisceglie, G.E. Trivers, C.A. Sandoval, I.E. Calderon, L.E. Munoz Espinosa, and C.C. Harris. 1996. An afiatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis 17: 1007–1012.CrossRefGoogle Scholar
  73. Soussi, T., C. Caron de Fromentel, and R May. 1990. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5: 945–952.Google Scholar
  74. Soussi, T., Y. Legros, R. Lubin, K. Ory, and B. Schlichtholz. 1994. Multifactorial analysis of p53 alteration in human cancer: a review. Int. I Cancer 57: 1–9.CrossRefGoogle Scholar
  75. Takeshima, Y., T. Seyama, W.P. Bennett, M. Akiyama, S. Tokuoka, K. Inai, K. Mabuchi, C.E. Land, and C.C. Harris. 1993. p53 mutations in lung cancers from non-smoking atomic-bomb survivors. Lancet 342: 1520–1521.CrossRefGoogle Scholar
  76. Thut, C.J., J.-L. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFii40 and TAFii60. Science 267: 100–104.CrossRefGoogle Scholar
  77. Tornaletti, S., D. Rozek, and G.P. Pfeifer. 1993. The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer [published erratum appears in Oncogene 1993 Dec;8(12):3469]. Oncogene 8: 2051–2057.Google Scholar
  78. Truant, R., H. Xiao, C.J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268: 2284–2287.Google Scholar
  79. Vogelstein, B., and K.W. Kinzler. 1992. p53 function and dysfunction. Cell 70: 523–526.CrossRefGoogle Scholar
  80. Wang, X.W., W. Vermeulen, J.D. Coursen, M. Gibson, S.E. Lupold, K. Forrester, G. Xu, L. Elmore, H. Yeh, J.H.J. Hoeijmakers, and C.C. Harris. 1996. The XPB and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10: 1219–1232.CrossRefGoogle Scholar
  81. Wolf, D., N. Harris, and V. Rotter. 1984. Reconstitution of p53 expression in a nonproducer Ab-MuLVtransformed cell line by transfection of a functional p53 gene. Cell 38: 119–126.CrossRefGoogle Scholar
  82. Ziegler, A., A.S. Jonason, D.J. Leffell, J.A. Simon, H.W. Sharma, J. Kimmelman, L. Remington, T. Jacks, and D.E. Brash. 1994. Sunburn and p53 in the onset of skin cancer. Nature 372: 773–776.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • S. Perwez Hussain
    • 1
  • Curtis C. Harris
    • 1
  1. 1.Laboratory of Human CarcinogenesisNational Cancer Institute, NIHBethesdaPalästina

Personalised recommendations