Advertisement

Induction of Ca2+ -Activated K+ Channel Expression during Systemic Hypertension: Protection against Pathological Vasoconstriction

  • Marcie G. Berger
  • Nancy J. Rusch

Abstract

During the past 15 years, patch-clamp studies have characterized a diverse population of K+ channel types in vascular smooth muscle cells. Prominent among these is the high-conductance, Ca2+ -activated K+ channel (BKCa channel), which appears to be ubiquitously expressed in arterial smooth muscle membranes. The BKCa channel in some vascular beds may act together with other K+ channel types to set the level of resting membrane potential in the arterial smooth muscle cells. During vascular excitation, the further activation of BKCa channels may provide a powerful pathway to hyperpolarize the arterial smooth muscle cells, thereby limiting voltage-gated Ca2+ influx and buffering vasoconstriction in small arteries and resistance vessels. Thus, under physiological conditions, the BKCa channel acts as a homeostatic mechanism to counteract arterial constriction and maintain blood flow to critical organs and tissues.

Keywords

Vascular Smooth Muscle Cell Blood Pressure Level Rest Membrane Potential Aortic Smooth Muscle Cell Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P. W., Trapani, A., Matsuki, N., Ingram, M. J., Ingram, F. D., and Hermsmeyer, K., 1981, Unaltered membrane properties of arterial muscle in Dahl strain genetic hypertension, Am. J. Physiol. 241:H224–H227.PubMedGoogle Scholar
  2. Adelman, J. P., Shen, K.-Z., Kavanaugh, M. P., Warren, R. A., Wu, Y., Lagrutta, A., Bond, C. T., and North, R. A., 1992, Calcium-activated potassium channels expressed from cloned complementary DNAs, Neuron 9:209–216.PubMedCrossRefGoogle Scholar
  3. Asano, M., Masuzawa-Ito, K., Matsuda, T., Imaizumi, Y., Watanabe, M., and Ito, K., 1993a, Functional role of Ca2+-activated K+ channels in resting state of carotid arteries from SHR, Am. J. Physiol. 265:H843–H851.PubMedGoogle Scholar
  4. Asano, M., Masuzawa-Ito, K., and Matsuda, T., 1993b, Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats, Br. J. Pharmacol. 108:214–223.PubMedCrossRefGoogle Scholar
  5. Atkinson, N. S., Robertson, G. A., and Ganetzky, B., 1991, A component of calcium-activated potassium channels encoded by the Drosophila slo locus, Science 253:551–555.PubMedCrossRefGoogle Scholar
  6. Berczi, V., Stekiel, W. J., Contney, S. J., and Rusch, N. J., 1992, Pressure-induced activation of membrane K+ current in rat saphenous artery, Hypertension 19:725–729.PubMedCrossRefGoogle Scholar
  7. Berger, M. G., and Rusch, N. J., 1999, Voltage and calcium-gated potassium channels: Functional expression and therapeutic potential in the vasculature, in: Perspectives in Drug Discovery and Design (J. M. Sabatier and H. Darbon, eds.), Kluwer Academic, Dordrecht, The Netherlands, Vol. 15/16, pp. 313–332.Google Scholar
  8. Bradbury, N. A., and Bridges, R. J., 1994, Role of membrane trafficking in plasma membrane solute transport, Am. J. Physiol. 267:C1–C24.PubMedGoogle Scholar
  9. Brayden, J. E., and Nelson, M. T., 1992, Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 356:532–535.CrossRefGoogle Scholar
  10. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A., and Salkoff, L., 1993, mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels, Science 261:221–224.PubMedCrossRefGoogle Scholar
  11. Carl, A., Lee, H. K., and Sanders, K. M., 1996, Regulation of ion channels in smooth muscles by calcium, Am. J. Physiol. 271:C9–C34.PubMedGoogle Scholar
  12. Cui, J., Cox, D. H., and Aldrich, R. W., 1997, Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels, J. Gen. Physiol. 109:647–673.PubMedCrossRefGoogle Scholar
  13. Dopica, A. M., Kirber, M. T., Singer, J. J., and Walsh, J. V., 1994, Membrane stretch directly activates large conductance Ca2+-activated K+ channels in mesenteric artery smooth muscle cells, Am. J. Hypertens. 7:82–89.Google Scholar
  14. England, S. K., Wooldridge, T. A., Stekiel, W. J., and Rusch, N. J., 1993, Enhanced single-channel K+ current in arterial membranes from genetically hypertensive rats, Am J. Physiol. 264:H1337–H1345.PubMedGoogle Scholar
  15. Folkow, B., 1982, Physiological aspects of primary hypertension, Physiol. Rev. 62:347–504.PubMedGoogle Scholar
  16. Friedman, S. M., and Friedman, C. L., 1976, Cell permeability, sodium transport, and the hypertensive process in the rat, Circ. Res. 39:433–441.PubMedCrossRefGoogle Scholar
  17. Garwitz, E. T., and Jones, A. W., 1982a, Aldosterone infusion into the rat and dose dependent changes in blood pressure and arterial ionic transport, Hypertension 4:374–381.PubMedCrossRefGoogle Scholar
  18. Garwitz, E. T., and Jones, A. W., 1982b, Altered arterial ion transport and its reversal in the aldosterone hypertensive rat, Am. J. Physiol. 243:H929–H933.Google Scholar
  19. Gribkoff, V. K., Starrett, J. E., and Dworetzky, S. I., 1997, The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels, Adv. Pharmacol. 37:319–348.PubMedCrossRefGoogle Scholar
  20. Hermsmeyer, K., 1976, Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension, Circ. Res. 38:362–367.PubMedCrossRefGoogle Scholar
  21. Hermsmeyer, K., 1982, Electrogenic ion pumps and other determinants of membrane potential in vascular muscle (the 1982 Bowditch Lecture), Physiologist 25:454–465.PubMedGoogle Scholar
  22. Jackson, W. F., and Blair, K. L., 1998, Characterization and function of Ca2+-activated K+ channels in arteriolar muscle cells, Am. J. Physiol. 274:H27–H34.PubMedGoogle Scholar
  23. Jackson, W. F., Blair, K. L., and Rusch, N. J., 1996, Large conductance Ca2+-activated K+ channels in arteriolar muscle cells have low Ca2+-sensitivity. Microcirculation 3:92 (Abstract).CrossRefGoogle Scholar
  24. Jones, A. W., 1973, Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats, Circ. Res. 33:563–572.PubMedCrossRefGoogle Scholar
  25. Jones, A. W., 1974, Reactivity of ion fluxes in rat aorta during hypertension and circulatory control, Fed. Proc. 33:133–137.PubMedGoogle Scholar
  26. Jones, A. W., 1983, Arterial tissue cations, in: Hypertension, Physiology and Treatment (J. Genest, O. Kuchel, P. Hamet, and M. Cantin, eds.), McGraw-Hill, New York, pp. 488–497.Google Scholar
  27. Jones, A. W., and Hart, R. G., 1975, Altered ion transport in aortic smooth muscle during deoxycortico-sterone acetate hypertension in the rat, Circ. Res. 37:333–341.PubMedCrossRefGoogle Scholar
  28. Kanagy, N. L., and Webb, R. C, 1996, Increased responsiveness and decreased expression of G proteins in deoxycorticosterone hypertension, Hypertension 27:740–745.PubMedCrossRefGoogle Scholar
  29. Kitazono, T., Heistad, D. D., and Faraci, F. M., 1993, ATP-sensitive potassium channels in the basilar artery during chronic hypertension, Hypertension 22:677–681.PubMedCrossRefGoogle Scholar
  30. Kolias, T. J., Chai, S., and Webb, R. C, 1993, Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats, Am. J. Hypertens. 23:1077–1082.Google Scholar
  31. Knaus, H.-G., Folander, K., Garcia-Calvo, M., Garcia, M. L., Kaczorowski, G. J., Smith, M., and Swanson, R., 1994, Primary sequence and immunological characterization of β-subunit of high conductance Ca2+-activated K+ channel from smooth muscle, J. Biol. Chem. 269:17274–17278.PubMedGoogle Scholar
  32. Knaus, H.-G., Eberhart, A., Koch, R. O. A., Munujos, P., Schmalhofer, W. A., Warmke, J. W., Kaczorowski, G. J., and Garcia, M. L., 1995, Characterization of tissue-expressed α subunits of the high conductance Ca2+-activated K+ channel, J. Biol Chem. 270:22434–22439.PubMedCrossRefGoogle Scholar
  33. Kwan, C. Y., 1985, Dysfunction of calcium handling by smooth muscle in hypertension, Can. J. Physiol. Pharmacol. 63:366–374.PubMedCrossRefGoogle Scholar
  34. Lagrutta, A., Shen, K., North, R. A., and Adelman, J. P., Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel, J. Biol. Chem. 269:20347–20351.Google Scholar
  35. Lamb, F. S., and Webb, R. C., 1989, Regenerative electrical activity and arterial contraction in hypertensive rats, Hypertension 13:70–76.PubMedCrossRefGoogle Scholar
  36. Li, P., Zou, A. P., Al-Kayed, N. J., Rusch, N. J., and Harder, D. R., 1994, Guanine nucleotide-binding proteins in aortic smooth muscle from hypertensive rats, Hypertension 23:914–918.PubMedCrossRefGoogle Scholar
  37. Liu, Y., Jones, A. W., and Sturek, M., 1994, Increased barium influx and potassium current in stroke-prone spontaneously hypertensive rats, Hypertension 23:1091–1095.PubMedCrossRefGoogle Scholar
  38. Liu, Y., Jones, A. W., and Sturek, M., 1995, Ca2+-dependent K+ current in arterial smooth muscle cells from aldosterone-salt hypertensive rats, Am. J. Physiol. 269:H1246–H1257.PubMedGoogle Scholar
  39. Liu, Y., Pleyte, K. A., Knaus, H.-G., and Rusch, N. J., 1997, Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats, Hypertension 30:1403–1409.PubMedCrossRefGoogle Scholar
  40. Liu, Y., Hudetz, A., Knaus, H.-G., and Rusch, N. J., 1998, Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats. Evidence for their protection against cerebral vasospasm, Circ. Res. 82:729–737.PubMedCrossRefGoogle Scholar
  41. Longhurst, P. A., Rice, P. J., Taylor, D. A., and Fleming, W. W., 1988, Sensitivity of caudal arteries and the mesenteric vascular bed to norepinephrine in DOCA-salt hypertension, Hypertension 12:133–142.PubMedCrossRefGoogle Scholar
  42. Martens, J. R., and Gelband, C. H., 1996, Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension, Circ. Res. 79:295–301.PubMedCrossRefGoogle Scholar
  43. McCobb, D. P., Natalie, L. F., Featherstone, T., Lingle, C. J., Saito, M., Krause, J. E., and Salkoff, L., 1995, A human calcium-activated potassium channel gene expressed in vascular smooth muscle, Am. J. Physiol. 269:H767–H777.PubMedGoogle Scholar
  44. McManus, O. B., Harris, G. H., Giangiacom, K. M., Feigenbau, P., Reube, J. P., Addy, M. E., Burka, J. F., Kaczorowski, G. J., and Garcia, M. L., 1993, An activator of calcium-dependent potassium channels isolated from a medicinal herb, Biochemistry 32:6128–6133.PubMedCrossRefGoogle Scholar
  45. McManus, O. B., Helms, L. M. H., Pallanck, L., Ganetsky, B., Swanson, R., and Leonard, R. J., 1995, Functional role of the β subunit of high conductance calcium-activated potassium channels, Neuron 14:645–650.PubMedCrossRefGoogle Scholar
  46. Meera, P., Wallner, M., Jiang, Z., and Toro, L., 1996, A calcium switch for the functional coupling between α (hslo) and β subunits (KV,Caβ) of maxi K channels, FEBS Lett. 382:84–88.PubMedCrossRefGoogle Scholar
  47. Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage-dependence of arterial smooth muscle tone, Am. J. Physiol. 259:C3–C18.PubMedGoogle Scholar
  48. Papp, B., Corvazier, E., Magnier, C., Kovacs, T., Bourdeau, N., Levy-Toledano, S., Bredoux, R., Levy, B., Poitevin, P., Lompre, A. M., Wuytack, F., and Enouf, J., 1993, Spontaneously hypertensive rats and platelet Ca2+-ATPases: Specific upregulation of the 97-kDa isoform, Biochem. J. 295:685–690.PubMedGoogle Scholar
  49. Paterno, R., Heistad, D. D., and Faraci, F. M., 1997, Functional activity of Ca2+ -dependent K+ channels is increased in basilar artery during chronic hypertension, Am. J. Physiol. 272:H1287–H1291.PubMedGoogle Scholar
  50. Rusch, N. J., and Hermsmeyer, K., 1993, Vascular muscle calcium channels in hypertension, in: Ionic Transport in Hypertension: New Perspectives (A. Coca, ed.), CRC Press, Boca Raton, Florida, pp. 197–227.Google Scholar
  51. Rusch, N. J., and Liu, Y., 1997, Potassium channels in hypertension: Homeostatic pathways to buffer arterial contraction, J. Lab. Clin. Med. 130:245–251.PubMedCrossRefGoogle Scholar
  52. Rusch, N. J., and Runnells, A. M., 1994, Remission of high blood pressure reverses arterial potassium channel alterations, Hypertension 23:941–945.PubMedCrossRefGoogle Scholar
  53. Rusch, N. J., De Lucena, R. G., Wooldridge, T. A., England, S. K., and Cowley, A. W., 1992, A Ca2+-dependent K+ current is enhanced in arterial membranes of hypertensive rats, Hypertension 19:301–307.PubMedCrossRefGoogle Scholar
  54. Rusch, N. J., Liu, Y., and Pleyte, K. A., 1996, Mechanisms for regulation of arterial tone by Ca2+-dependent K+ channels in hypertension, Clin. Exp. Pharmacol. Physiol. 23:1077–1082.PubMedCrossRefGoogle Scholar
  55. Sansom, S. C., and Stockand, J. D., 1994, Differential Ca2+-sensitivities of BK(Ca) isochannels in bovine mesenteric vascular smooth muscle, Am. J. Physiol. 266:C1182–C1189.PubMedGoogle Scholar
  56. Schreiber, M., and Salkoff, L., 1997, A novel calcium-sensing domain in the BK channel, Biophys. J. 73:1355–1363.PubMedCrossRefGoogle Scholar
  57. Scornik, F. S., and Toro, L., 1992, U46619, a thromboxane A2 agonist, inhibits KCa channel activity for pig coronary artery, Am. J. Physiol. 262:C708–C713.PubMedGoogle Scholar
  58. Shen, K., Lagrutta, A., Davies, N. W., Standen, N. B., Adelman, J. P., and North, R. A., 1994, Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: Evidence for tetrameric channel formation, Pflügers Arch. 426:440–445.PubMedCrossRefGoogle Scholar
  59. Sickowski, M., Davies, D. E., and Ng, L. L., 1994, Sodium-hydrogen antiporter protein in normotensive Wistar-Kyoto rats and spontaneously hypertensive rats, J. Hypertens. 12:775–781.Google Scholar
  60. Smith, A. E., 1995, Treatment of cystic fibrosis based on understanding CFTR, J. Inher. Metab. Dis. 18:508–516.PubMedCrossRefGoogle Scholar
  61. Smith, J. M., and Jones, A. W., 1991, Calcium antagonists inhibit elevated potassium efflux from aorta of aldosterone-salt hypertensive rats, Hypertension 15:78–83.CrossRefGoogle Scholar
  62. Stefani, E., Ottolia, M., Noceti, F., Olcese, R., Wallner, M., Latorre, R., and Toro, L., 1997, Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hslo), Proc. Natl. Acad. Sci. U.S.A. 94:5427–5431.PubMedCrossRefGoogle Scholar
  63. Stekiel, W. J., Contney, S. J., and Lombard, J. H., 1986, Small vessel membrane potential, sympathetic input, and electrogenic pump rate in SHR, Am. J. Physiol. 250:C547–C556.PubMedGoogle Scholar
  64. Tanaka, Y., Meera, P., Song, M., Knaus, H.-G., and Toro, L., 1997, Molecular constituents of maxi KCa channels in human coronary smooth muscle: Predominant α+ β subunit complexes, J. Physiol. 502:545–557.PubMedCrossRefGoogle Scholar
  65. Thompson, L. P., Bruner, C. A., Lamb, F. S., King, C. M., and Webb, R. C., 1987, Calcium influx and vascular reactivity in systemic hypertension, Am. J. Cardiol. 59:29A–34A.PubMedCrossRefGoogle Scholar
  66. Toro, L., Vaca, L., and Stefani, E., 1991, Calcium-activated potassium channels from coronary smooth muscle reconstituted in lipid bilayers, Am. J. Physiol. 260:H1779–H1789.PubMedGoogle Scholar
  67. Wang, Y., and Mathers, D. A., 1993, Ca2+-dependent K+ channels of high conductance in smooth muscle cells isolated from rat cerebral arteries, J. Physiol. 462:529–545.PubMedGoogle Scholar
  68. Wang, D. H., Du, Y., and Yao, A., 1996, Regulation of the gene encoding angiotensin II receptor in vascular tissue, Microcirculation 3:237–239.PubMedCrossRefGoogle Scholar
  69. Wei, A., Solaro, C., Lingle, C., and Salkoff, L., 1994, Calcium sensitivity of BK-type KCa channels determined by a separable domain, Neuron 13:671–681.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Marcie G. Berger
    • 1
  • Nancy J. Rusch
    • 2
  1. 1.Department of CardiologySinai Samaritan Medical CenterMilwaukeeUSA
  2. 2.Departments of Pharmacology, Cardiovascular Research CenterThe Medical College of WisconsinMilwaukeeUSA

Personalised recommendations