Advertisement

Molecular Biology of Voltage-Gated K+Channels

  • Olaf Pongs

Abstract

Voltage-gated K+ (Kv) channels may be assembled from various subunits as homoor heteromultimers. The pore-forming α-subunits are integral membrane proteins, which express functional tetrameric Kv channels in heterologous expression systems. Three main families encoding Kv channel α-subunits have been detected related to the Drosophila genes Shaker and ether-a-go-go and the human KvLQT1 (KCNQ1) gene. Members of each family contribute to cardiac Kv channels and to cardiac action potential repolarization. Auxiliary subunits do not express functional Kv channels by themselves. They associate with α-subunits and may modulate Kv channel properties, including voltage dependence of activation and inactivation, deactivation, single-channel conductance, recovery from inactivation, and pharmacology. Auxiliary β-subunits have a structure which suggests that they may function as NADPH-dependent oxidoreductases. Whether this putative enzymatic activity is independent of the association of β-subunits with the pore-forming α-subunits is not known. Auxiliary γ-subunits are similar in sequence and topology to Shaker-related α-subunits but yield functional Kv channels only when coexpressed with certain α-subunits. In most cases, however, the exact subunit compositions of native Kv channels have not been elucidated. Therefore, it is still difficult to know which of the cloned Kv channels contribute to the different components of outward K+ current in cardiac myocytes. In only a few cases has the combination of human genetics, molecular biology, electrophysiology, and pharmacology provided a clear-cut identification of the a and auxiliary subunits that contribute to native K+ currents.

Keywords

Potassium Channel Outward Current Glycine Receptor Auxiliary Subunit Transient Outward Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, G. W., Sesti, F., Splawsi, I., Buck, M., Lehmann, M. H., Timothy, K. W., Keating, M. H., and Goldstein, S. A. N., 1999, MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmias, Cell 97:175–187.PubMedCrossRefGoogle Scholar
  2. Acker, H., 1998, Reactive oxygen intermediates as mediators for regulating ion channel activity, in: Oxygen Regulation of Ion Channels and Gene Expression (J.Lopez-Barneo and E. K. Weir, eds.), Futura, Armonk,N.Y. pp. 9–18.Google Scholar
  3. Attali, B., 1996, Ion channels: A new wave for heart rhythms, Nature 384:24–25.PubMedCrossRefGoogle Scholar
  4. Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G., 1996, Kv LQT1 and IsK(minK) proteins associate to form the IKs cardiac potassium current, Nature 384:78–80.PubMedCrossRefGoogle Scholar
  5. Barry, D. M., and Nerbonne, J. M., 1996, Myocardial potassium channels: Electrophysiological and molecular diversity, Annu. Rev. Physiol. 58:363–394.PubMedCrossRefGoogle Scholar
  6. Barry, D. M., Trimmer, J. S., Merlie, J. P., and Nerbonne, J. M., 1995, Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels?, Circ. Res. 77:361–369.PubMedCrossRefGoogle Scholar
  7. Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M., 1998, Functional knockout of the transient outward current, long QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit, Circ. Res. 83:560–567.PubMedCrossRefGoogle Scholar
  8. Bixby, K. A., Nanao, M. H., Shen, N. V., Kreusch, A., Bellamy, H., Pfaffinger, P. J., and Choe, S., 1999,Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels, Nat. Struct.Biol. 6:38–43.PubMedCrossRefGoogle Scholar
  9. Boyden, P. A., and Jeck, C. D., 1995, Ion channel function in disease, Cardiovasc. Res. 29:312–318.PubMedGoogle Scholar
  10. Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated potassium channel genes, in: Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (R. A. North, ed.) CRC Press, Boca Raton,Florida, pp. 1–71.Google Scholar
  11. Chouinard S. W., Wilson, G. F., Schlimgen, A. K., and Ganetzky, B., 1995, A potassium channel β subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila Hyperkinetic locus, Proc.Natl. Acad. Sci. U.S.A. 92:6763–6767.PubMedCrossRefGoogle Scholar
  12. Cohen, J. A., Arai, M., Prak, E. L., Brooks, S. A., Young, L. H., and Prystowsky, M. B., 1992, Characterization of a novel mRNA expressed by neurons in mature brain, J. Neurosci. Res. 31:273–284.PubMedCrossRefGoogle Scholar
  13. Deal, K. K., England, S. K., and Tamkun, M. M., 1996, Molecular physiology of cardiac potassium channels,Physiol. Rev. 76:49–67.PubMedGoogle Scholar
  14. De Biasi, M., Wang, Z., Accili, E., Wible, B., and Fedida, D., 1997, Open channel block of human heart hKv1.5 by the β-subunit hKvβ1.2, Am. J. Physiol. 272:H2932–H2941.PubMedGoogle Scholar
  15. Dixon, J. E., Shi, W., Wang, H. S., McDonald, C, Yu, H., Wymore, R. S., Cohen, I. S., and McKinnon, D.,1996, Role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res. 79:659–668.PubMedCrossRefGoogle Scholar
  16. Doyle, D. A., Morais Cabral, J. H., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science 280:69–77.PubMedCrossRefGoogle Scholar
  17. Engeland, B., Neu, A., Ludwig, J., Roeper, J., and Pongs, O., 1998, Cloning and functional expression of rat ether-a-go-go-like K+ channel genes, J. Physiol. (London) 513:647–654.CrossRefGoogle Scholar
  18. England, S., Uebele, V., Shear, H., Kodali, J., Bennett, P., and Tamkun, M., 1995, Characterization of voltage-gated K+ channel β subunit expressed in human heart, Proc. Natl. Acad. Sci. U.S.A. 92:6309–6313.PubMedCrossRefGoogle Scholar
  19. Feng, J., Wible, B., Li, G. R., Wang, Z., and Nattel, S., 1997, Antisense oligonucleotide directed against Kv1.5 mRNA specifically inhibits ultrarapid delayed rectifier K+ current in cultured human atrial myocytes,Circ. Res. 80:572–579.PubMedCrossRefGoogle Scholar
  20. Feng, G., Tintrup, H., Kirsch, J., Nichol, M. C, Kuhse, J., Betz, H., and Sanes, J. R., 1998, Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity, Science 282:1321–1324.PubMedCrossRefGoogle Scholar
  21. Giese, K. P., Storm, J. F., Reuter, D., Fedorov, N. B., Shao, L-R., Leicher, T., Pongs, O., and Silva, A. J.,1998, Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvβ1.1-deficient mice with impaired learning, Learning Memory 5:257–273.PubMedGoogle Scholar
  22. Giles, W. R., and Imaizumi, Y., 1988, Comparison of potassium currents in rabbit atrial and ventricular cells,J. Physiol. (London) 405:123–145.Google Scholar
  23. Gulbis J. N., Mann, S., and MacKinnon, R., 1999, Structure of a voltage-dependent K+ channel β subunit,Cell 97:943–952.PubMedCrossRefGoogle Scholar
  24. Heginbotham, L., Lu, Z., Abramson, Z., and MacKinnon, R., 1994, Mutations in the K+ channel signature sequence, Biophys. J. 66:1061–1067.PubMedCrossRefGoogle Scholar
  25. Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates, Inc., Sunderland,Massachusetts.Google Scholar
  26. Jan, Y. N., and Jan, L. Y., 1997, Cloned potassium channels from eukaryotes and prokaryotes, Annu. Rev.Neurosci. 20:91–123.PubMedCrossRefGoogle Scholar
  27. Johns, D. C, Nuss, H. B., and Marban, E., 1997, Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs, J. Biol Chem. 272:31598–31603.PubMedCrossRefGoogle Scholar
  28. Kong, W., Po, S., Yamagishi, T., Ashen, M. D., Stetten, G., and Tomaselli, G. F., 1998, Isolation and characterization of the human gene encoding Ito: Further diversity by alternative MRNA splicing, Am.J. Physiol. 275:H1963–H1970.PubMedGoogle Scholar
  29. Kreusch, A., Pfaffinger, P. J., Stevens, C. F., and Choe, S., 1998, Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948.PubMedCrossRefGoogle Scholar
  30. Kwak, Y. G., Hu, N. N., Wie, J., George, A. L., Grobaski, T. D., Tamkun, M. M., and Murray, K. T., 1999,Protein kinase A phosphorylation alters Kvβ1.3 subunit-mediated inactivation of the Kv1.5 potassium channel, J. Biol. Chem. 274:13928–13932.PubMedCrossRefGoogle Scholar
  31. Leicher, T., Roeper, J., Weber, K., Wang, X., and Pongs, O., 1996, Structural and functional characterization of human potassium channel subunit β1 (KCNA1B), Neuropharmacology 35:787–795.PubMedCrossRefGoogle Scholar
  32. Leicher, T., Bähring, R., Isbrandt, B., and Pongs, O., 1998, Coexpression of the KCNA3B gene product with Kvl.5 leads to a novel A-type potassium channel, J. Biol. Chem. 273:35095–35101.PubMedCrossRefGoogle Scholar
  33. London, B., Jeron, A., Zhou, A., Buckett, P., Han, X., Mitchell, G. F., and Koren, G., 1998, Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and the first transmembrane segment of a voltage-gated potassium channel, Proc. Natl. Acad. Sci. U.S.A. 95:2926–2931.PubMedCrossRefGoogle Scholar
  34. Lopez-Barneo, J., Montoro, R., Ortega-Saenz, P., and Urena, J., 1998, Oxygen-regulated ion channels, in:Oxygen Regulation of Ion Channels and Gene Expression (J. Lopez-Barneo and E. K. Weir, eds.), Futura Press, Armonk, N.Y. pp. 127–144.Google Scholar
  35. McCormack, T., and McCormack, K., 1994, Shaker K+ channel β subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 79:1133–1135.PubMedCrossRefGoogle Scholar
  36. Nabauer, M., and Käb, M., 1998, Potassium channel down regulation in heart failure, Cardiovasc. Res.37:324–334.PubMedCrossRefGoogle Scholar
  37. Nabauer, M., Beuckelmann, D. J., Uberfuhr, P., and Steinbeck, G., 1996, Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93:168–177.PubMedCrossRefGoogle Scholar
  38. Nagaya, N., and Papazian, D. M., 1997, Potassium channel α and β subunits assemble in the endoplasic reticulum, J. Biol Chem. 272:3022–3027.PubMedCrossRefGoogle Scholar
  39. Papazian, D. M., 1999, Potassium channels: Some sssembly required. Neuron 23:7–10.PubMedCrossRefGoogle Scholar
  40. Pérez-Garciá, M. T., López-López, J. R., and González, C., 1999, Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels, J. Gen. Physiol. 113:897–907.PubMedCrossRefGoogle Scholar
  41. Pongs, O., 1999, Voltage-gated potassium channels: From hyperexcitability to excitement, FEBS Lett. 452:31–35.PubMedCrossRefGoogle Scholar
  42. Rettig, J, Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., and Pongs, O., 1994,Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289–294.PubMedCrossRefGoogle Scholar
  43. Roberds, S. L., Knoth, K. M., Po, S., Blair, T. A, Bennett, P. B., Hartshorne, R. P., Snyders, D. J, and Tamkun, M. M., 1993, Molecular biology of the voltage-gated potassium channels of cardiovascular system. J. Cardiovasc. Physiol. 4:68–80.CrossRefGoogle Scholar
  44. Robertson, B., 1997, The real life of voltage-gated K+ channels: More than model behaviour. Trends Pharmacol. Sci. 18:474–483.PubMedGoogle Scholar
  45. Roeper, J., Lorra, C., and Pongs, O., 1997, Frequency-dependent inactivation of mammalian A-type K+channel Kv1.4 regulated by Ca2+/calmodulin-dependent protein kinase, J. Neurosci. 17:3379–3391.PubMedGoogle Scholar
  46. Ruppersberg, J. P., Frank, R., Pongs, O., and Stocker, M., 1991a, Cloned neuronal Ik(A) channels reopen during recovery from inactivation, Nature 353:657–660.PubMedCrossRefGoogle Scholar
  47. Ruppersberg, J. P., Stocker, M., Pongs, O., Heinemann, S. H., Frank R., and Koenen, 1991b, Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation, Nature 352:711–714.PubMedCrossRefGoogle Scholar
  48. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T., 1995, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKs potassium channel, Cell 81:299–307.PubMedCrossRefGoogle Scholar
  49. Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T., 1996,Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83.PubMedCrossRefGoogle Scholar
  50. Scott, V. E., Rettig, J., Parcej, D. N., Keen, J. N., Findlay, F. B. C., Pongs, O., and Dolly, J. O., 1994, Primary structure of a β subunit of α-dendrotoxin-sensitive K+ channels from bovine brain, Proc. Natl. Acad. Sci.U.S.A. 91:1637–1641.PubMedCrossRefGoogle Scholar
  51. Sewing, S., Roeper, J., and Pongs, O., 1996, Kvβ1 subunit binding specific for Shaker-related potassium channel a subunits, Neuron 16:455–463.PubMedCrossRefGoogle Scholar
  52. Shi, G., Nakahira, K., Hammond, S., Rhodes, K. J., Schechter, L. E., and Trimmer, J. S., 1996, Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852.PubMedCrossRefGoogle Scholar
  53. Shimoni, Y., Severson, D., and Giles, W. R., 1992, Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle, J. Physiol. (London) 488:673–688.Google Scholar
  54. Stern, M., and Ganetzky, B., 1989, Altered synaptic transmission in Drosophila Hyperkinetic mutants, J.Neurogenet. 5:215–228.PubMedCrossRefGoogle Scholar
  55. Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., and Nerbonne, J. M., 1997, Outward K+ current densities and Kvl.5 expression are reduced in chronic human atrial fibrillation, Circ. Res.80:772–781.PubMedCrossRefGoogle Scholar
  56. Wang, Z., Feng, J., Pond, A. L., Nerbonne, J. M., and Nattel, S., 1999, The potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes,Circ. Res. 84:551–561.PubMedCrossRefGoogle Scholar
  57. Weir, E. K., and Archer, S. L., 1995, The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels, FASEB J. 9:183–189.PubMedGoogle Scholar
  58. Wickenden, A. D., Jegla, T. J., Kaprielian, R., and Backx, P. H., 1999, Regional contributions of Kv1.4, Kv4.2,and Kv4.3 to transient outward K+ current in rat ventricle. Am. J. Physiol. 276:H1599–H1607.PubMedGoogle Scholar
  59. Wilson, G. F., Wang, Z., Chouinard, S. W., Griffith, L. C, and Ganetzky, B., 1998, Interaction of the K+channel β subunit. Hyperkinetic, with eag family members, J. Biol. Chem. 273:6389–6394.PubMedCrossRefGoogle Scholar
  60. Xu, H., Barry, D. M., Li, H., Brunet, S., Guo, W., and Nerbonne, J. M., 1999a, Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant negative Kv2 α subunit, Circ. Res. 85:623–633.PubMedCrossRefGoogle Scholar
  61. Xu, H., Guo, W., and Nerbonne, J. M., 1999b, Four kinetically distinct depolarization-activated outward K+currents in adult mouse ventricular myoctes, J. Gen. Physiol, 113:661–678.PubMedCrossRefGoogle Scholar
  62. Yellen, G., 1998, The moving parts of voltage-gated ion channels, Rev. Biophys. 31:239–295.CrossRefGoogle Scholar
  63. Yu, W., Xu, J., and Li, M., 1996, NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of Shaker-like potassium channels, Neuron 16:441–453.PubMedCrossRefGoogle Scholar
  64. Zhu, S. R., Wulf, A., Schwarz, M., Isbrandt, D., and Pongs, O., 1999a, Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current, Recept. Channels, 6:387–400.PubMedGoogle Scholar
  65. Zhu, X.-R., Netzer, R., Blke, K., Liu, A., and Pongs, O., 1999b, Structural and functional characterization of Kv6.2, a new -subunit of voltage-gated potassium channel, Recept. Channels, 6:337–350.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Olaf Pongs
    • 1
  1. 1.Institut für Neurale SignalverarbeitungZentrum fr Molekulare NeurobiologieHamburgGermany

Personalised recommendations