Modulation of Vascular K+Channels by Extracellular Messengers

  • D. J. Beech
  • A. Cheong
  • R. Flemming
  • C. Guibert
  • S. Z. Xu


There can be no doubt from what is now a considerable volume of literature that a host of endogenous extracellular messengers activate or inhibit vascular K+ channels directly or via intracellular or intercellular coupling mechanisms. It is also true, however, that some investigators have reported that K+ channel blockers have no effect on the actions of vasodilators and vasoconstrictors that have been suggested by other authors to involve K+ channels. Such apparent contradictions may be explained in some cases by the vasculature’s heterogeneity—between species and vascular beds, and the location, size, and type of blood vessel in question. However, this is only one possible explanation. Blood vessels also seem to have a wealth of parallel or backup mechanisms. As an example, for illustration purposes, a vasodilatory extracellular messenger may simultaneously activate K+ channels and suppress voltage-gated Ca2+ channels in vascular smooth muscle cells. Either effect may be sufficient for full vasodilation such that if one effect is prevented experimentally, there is no change in the size of the vasodilation. This is a parallel system. Alternatively, a backup system may exist whereby a mechanism that is not normally operative becomes essential in a certain condition, perhaps during or after ischemia. Developing this further, it is plausible (and there is supporting evidence) that vasoconstrictor and vasodilator mechanisms have commonality and thus interact in such a way that a vasodilatory mechanism is negated by one vasoconstrictor mechanism but not another. The combination of biological complexity, experimental variability, and the different experimental conditions used by investigators has, perhaps not surprisingly, produced a spectrum of conclusions from an essential functional role of K+ channels to no role at all.


Smooth Muscle Cell Nitric Oxide Vascular Smooth Muscle Cell Pulmonary Artery Smooth Muscle Cell Epoxyeicosatrienoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalkjaer, C. and Poston, L., 1996, Effects of pH on vascular tension: Which are the important mechanisms? J. Vasc. Res. 33(5):347–359.PubMedCrossRefGoogle Scholar
  2. Adeagbo, A. S. O., and Malik, K. U., 1991, Contribution of K+ channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries, J. Pharmacol. Exp. Ther. 258:452–458.PubMedGoogle Scholar
  3. Adeagbo, A. S. O., and Oriowo, M. A., 1998, Histamine receptor subtypes mediating hyperpolarization in the isolated, perfused rat mesenteric pre-arteriolar bed, Eur. J. Pharmacol. 347(2–3):237–244.PubMedCrossRefGoogle Scholar
  4. Ahn, S. D., and Hume, J. R., 1997, pH regulation of voltage-dependent K+ channels in canine pulmonary arterial smooth muscle cells, Pflügers Arch. 433:758–765.PubMedCrossRefGoogle Scholar
  5. Aiello, E. A., Walsh, M. P., and Cole, W. C., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 268:H926–H934.PubMedGoogle Scholar
  6. Aiello, E. A., Malcolm, A. T., Walsh, M. P., and Cole, W. C., 1998, Beta-adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells, Am. J. Physiol. 275:H448–H459.PubMedGoogle Scholar
  7. Archer, S. L., Huang, M. C., Reeve, H. L., Hampi, V., Tolarova, S., Michelakis, E., and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct mysocytes in conduit and resistance arteries determines their responses to nitric oxide and hypoxia, Circ. Res. 78:431–442.PubMedCrossRefGoogle Scholar
  8. Armstead, W. M., 1997, Role of activation of calcium-sensitive K+ channels and cAMP in opioid-induced pial artery dilation, Brain Res. 747:252–258.PubMedCrossRefGoogle Scholar
  9. Armstead, W. M., 1998a, Contribution of KCa channels activation to hypoxic cerebrovasodialtion does not involve NO, Brain Res. 799:44–48.PubMedCrossRefGoogle Scholar
  10. Armstead, W. M., 1998b, Relationship among NO, the KATP channel, and opioids in hypoxic pial artery dilation in Am. J. Physiol. 275:H988–H994.PubMedGoogle Scholar
  11. Bari, F., Errico, R. A., Louis, T. M., and Busija, D. W., 1996, Interaction between ATP-sensitive K+ channels and nitric oxide on pial arterioles in piglets, J. Cereb. Blood Flow Metab. 16:1158–1164.PubMedCrossRefGoogle Scholar
  12. Barlow, R. S., and White, R. E., 1998, Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity, Am. J. Physiol. 275:H1283–H1289.PubMedGoogle Scholar
  13. Barman, S. A., 1997a, Pulmonary vasoreactivity to serotonin during hypoxia is modulated by ATP-sensitive potassium channels J. Appl. Physiol. 83:569–574.PubMedGoogle Scholar
  14. Barman, S. A., 1997b, Role of calcium-activated potassium channels and cyclic nucleotides on pulmonary vasoreactivity to serotonin, Am. J. Physiol. 273:L142–L147.PubMedGoogle Scholar
  15. Beech, D. J., 1997, Actions of neurotransmitters and other messengers on Ca2+ channels and K+ channels in smooth muscle cells, Pharmacol. Ther. 73:91–119.PubMedCrossRefGoogle Scholar
  16. Beech, D. J. and Bolton, T. B., 1989, Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein, Br. J. Pharmacol. 98:851–864.PubMedCrossRefGoogle Scholar
  17. Bell, D., and McDermott, B. J., 1996, Calcitonin gene-related peptide in the cardiovascular system: Characterisation of receptor populations and their (patho)physiological significance Pharmacol. Rev. 48:253–288.PubMedGoogle Scholar
  18. Benham, C. D., and Bolton, T. B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit, J. Physiol, (London) 381:385–406.Google Scholar
  19. Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membranes, Pflügers Arch. 403:120–127.PubMedCrossRefGoogle Scholar
  20. Berg, T., and Koteng, O, 1997, Signalling pathways in bradykinin- and nitric oxide-induced hypotension in the normotensive rat; role of K+-channels, Br. J. Pharmacol. 121:1113–1120.PubMedCrossRefGoogle Scholar
  21. Berger, M. G., Vandier, C., Bonnet, P., Jackson, W. F., and Rusch, N. J., 1998, Intracellular acidosis differentially regualtes Kv channels in coronary and pulmnary vascular muscle, Am. J. Physiol. 275:H1351–H1359.PubMedGoogle Scholar
  22. Berne, R. M., Rubio, R., amd Curnish, R. R., 1974, Release of adenosine from ischemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides, Circ. Res. 35:262–271.CrossRefGoogle Scholar
  23. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle, Nature 368:850–853.PubMedCrossRefGoogle Scholar
  24. Bonev, A. D., and Nelson, M. T., 1996, Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C, J. Gen. Physiol. 108:315–323.PubMedCrossRefGoogle Scholar
  25. Bonnet, P., Rusch, N. J., and Harder, D. R., 1991, Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells, Pflügers Arch. 418:292–296.PubMedCrossRefGoogle Scholar
  26. Bouchard, J.-F., Dumont, E., and Lamontagne, D., 1994, Evidence that prostaglandins I2, E2„ and D2 may activate ATP-sensitive potassium channels in the isolated rat heart, Cardiovasc. Res. 28:901–905.PubMedCrossRefGoogle Scholar
  27. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and Maclntyre, I., 1985, Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56.PubMedCrossRefGoogle Scholar
  28. Bychkov, R., Gollash, M., Steinke, T., Ried, C., Luft, F. C., and Haller, H., 1997, Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries, J. Pharmacol. Exp. Ther. 285:293–298.Google Scholar
  29. Byrne, N. G., and Large, W. A., 1988, Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein, J. Physiol, (London) 404:557–573.Google Scholar
  30. Cabell, F., Weiss, D. S., and Price, J. M., 1994, Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca2+-activated K+ channels. Am. J. Physiol. 267:H1455–H1460.PubMedGoogle Scholar
  31. Chataigneau, T., Félétou, M., Thollon, C., Villeneuve, N., Vilaine, J.-P., Duhault, J., and Vanhoutte, P. M., 1998, Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries, Br. J. Pharmacol. 123:968–974.PubMedCrossRefGoogle Scholar
  32. Churchill, P. C. and Bidani, A. K.,1990, Adenosine and renal function, in: Adenosine and Adenosine Receptors (M. Williams, ed.). The Humana Press, Clifton, New Jersey, pp 335–380.CrossRefGoogle Scholar
  33. Clapp, L. H., Turcato, S., Hall, S., and Baloch, M., 1998, Evidence that Ca++-activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost, Eur. J. Pharmacol. 356:215–224.PubMedCrossRefGoogle Scholar
  34. Cohen, R. A., Plane, F., Najibi, S., Huk, I., Malinski, T., and Garland, C. J., 1997, Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery, Proc. Natl. Acad. Sci. U.S.A. 94:4193–4198.PubMedCrossRefGoogle Scholar
  35. Danialou, G., Vicaut, E., Sambe, A., Aubier, M., and Boczkowski, J., 1997, Predominant role of A1 adenosine receptors in mediating adenosine induced vasodilation of rat diaphragmatic arterioles: Involvement of nitric oxide and the ATP-dependent K+ channels, Br. J. Pharmacol. 121:1355–1363.PubMedCrossRefGoogle Scholar
  36. Darkow, D. J., Lu, L., and White, R. E., 1997, Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP, Am. J. Physiol. 272:H2765–H2773.PubMedGoogle Scholar
  37. Dart, C., and Standen, N. B., 1993, Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery, J. Physiol, (London) 471:767–786.Google Scholar
  38. Dart, C., and Standen, N. B., 1995, Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery, J. Physiol, (London) 483:29–30.Google Scholar
  39. Deka, D. K., Raviprakash, V., and Mishra, S. K., 1997, K(ATP) channels do not mediate vasodilation by 3-morpholinosydnonimine in goat coronary artery, Eur. J. Pharmacol. 330(2):157–164.PubMedCrossRefGoogle Scholar
  40. Desilets, M., Driska, S. P., and Baumgarten, C. M., 1989, Current fluctuations and oscillations in smooth muscle cells from hog carotid artery: Role of the sarcoplasmic reticulum, Circ Res. 65:708–722PubMedCrossRefGoogle Scholar
  41. Dong, H., Waldorn, G. J., Cole, W. C., and Triggle C. R., 1998, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br. J. Pharmacol. 123:821–832.PubMedCrossRefGoogle Scholar
  42. Dumas, M., Dumas, J.-P., Rochette, L., Advenier, C., and Guidicelli, J.-F., 1997, Role of potassium channels and nitirc oxide in the effects of iloprost and prostaglandin E1 on hypoxic vasoconstriction in the isolated perfused lung of the rat, Br. J. Pharmacol. 120:405–410.PubMedCrossRefGoogle Scholar
  43. Duncker, D. J., van Zon, N. S., Pavek, T. J., Herrlinger, S. K., and Bache, R. J., 1995, Endogeneous adenosine mediates coronary vasodilation during exercise after KATP blockade, in J. Clin. Invest. 95:285–295.PubMedCrossRefGoogle Scholar
  44. Durante, W., Kroll, M. H., Christodoulides, N., Peyton, K. J., and Schafer, A. I., 1997, Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells, Circ. Res. 80:557–564.PubMedCrossRefGoogle Scholar
  45. Eckman, D. M., Hopkins, N., McBride, C., and Keef, K. D., 1998, Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: Role of epoxyeicosatrienoic acid, Br. J. Pharmacol 124:181–189.PubMedCrossRefGoogle Scholar
  46. Edvinsson, L., MacKenzie, E. T., and McCulloch, J., 1993, Cerebral Blood Flow and Metabolism, Raven Press, New York.Google Scholar
  47. Edwards, F. R., and Hirst, G. D. S., 1988, Inward rectification in submucosal arterioles of guinea-pig ileum in J. Physiol, (London) 404:437–454.Google Scholar
  48. Edwards, F. R., Hirst, G. D. S., and Silverberg, G. D., 1988, Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation, J. Physiol, (London) 404:455–466.Google Scholar
  49. Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries, Nature 396:269–272.PubMedCrossRefGoogle Scholar
  50. Faraci, F. M., Breese, K. R., and Heistad, D. D., 1994, Cerebral vasodilation during hypercapnia: Role of glibenclamide-sensitive potassium channels and nitric oxide, Stroke 25:1679–1683.PubMedCrossRefGoogle Scholar
  51. Fukamo, Y., Toki, Y., Numaguchi, Y., Nakashima, Y., Mukawa, H., Matsui, H., Okumura, K., and Ito, T., 1998, Nitroglycerin-induced aortic relaxation mediated by calcium-activated potassium channel is markedly diminished in hypertensive rats, Life Sci. 63:1047–1055.CrossRefGoogle Scholar
  52. Gambone, L. M., Murray, P. A., and Flavahan, N. A., 1997, Synergistic interaction between endotheliumderived NO and prostacyclin in pulmonary artery: Role for K+ ATP channels, Br. J. Pharmacol 121:271–279.PubMedCrossRefGoogle Scholar
  53. Geary, G. G., Krause, D. N., and Duckies, S. P., 1997, Melatonin directly constricts rat cerebral arteries through modulation of potassium channels, Am. J. Physiol. 273:H1530–H1536.PubMedGoogle Scholar
  54. Geary, G. G., Duckies, S. P. and Krause, D. N., 1998, Effect of melatonin in the rat tail artery: Role of K+ channels and endothelial factors, Br. J. Pharmacol 123:1533–1540.PubMedCrossRefGoogle Scholar
  55. Gebremedhin, D., Ma, Y.-M., Flack, J. R., Roman, R. J., vanRollins, M., and Harder, D. R., 1992, Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle, Am. J. Physiol. 263:H519–H525.PubMedGoogle Scholar
  56. Gebremedhin, D., Bonnet, P., Greene A. S., England, S. K., Rusch, N. J., Lombard, J. H., and Harder, D. R., 1994, Hypoxia increases the activity of Ca2+-sensitive K+ channels in cat cerebral arterial muscle cell membranes, Pflügers Arch. 428:621–630.PubMedCrossRefGoogle Scholar
  57. Gebremedhin, D., Kaldunski, M., Jacobs, E. R., Harder, D. R., and Roman, R. J., 1996, Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles, Am. J. Physiol. 270:F69–F81.PubMedGoogle Scholar
  58. Gebremedhin, D., Lange, A. R., Narayan, J., Aebly, M. R., Jacobs, E. R., and Harder, D. R., 1998, Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current, J. Physiol, (London) 507:771–781.CrossRefGoogle Scholar
  59. Gidday, J. M., Maceren, R. G., Shah, A. R., Meier, J. A., and Zhu Y., 1996, KATP channels mediate adenosine-induced hyperemia in retina, Invest. Ophthalmol. Visual Sci. 37:2624–2633.Google Scholar
  60. Gordienko, D. V., Clausen, C., and Goligorsky, M. S., 1994, Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries, Am. J. Physiol. 266:25–41.Google Scholar
  61. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G., 1994, Pharmacological characterisation of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines, Mol. Pharmacol. 45:1227–1234.PubMedGoogle Scholar
  62. Guibert, C., and Beech, D. J.,1999, Positive and negative coupling of the endothelin ETA receptor to Ca2+-permeable channels in rabbit cerebral cortex arterioles, J. Physiol, (London) 514:843–856.CrossRefGoogle Scholar
  63. Hall, S., Turcato, S., and Clapp, L., 1996, Abnormal activation of K+ channels underlies relaxation to bacterial lipopolysaccharide in rat aorta, Biochem. Biophys. Res. Commun. 224:184–190.CrossRefGoogle Scholar
  64. Halpern, W., and Kelley, M., 1991, In vitro methodology for resistance arteries. Blood Vessels 28:245–251.PubMedGoogle Scholar
  65. Hashemzadeh-Gargari, H., and Rembold, C. M., 1992, Histamine activates whole cell K+ currents in swine carotid arterial smooth muscle cell, Comp. Biochem. Physiol. C 102(l):33–37.PubMedCrossRefGoogle Scholar
  66. Hayabuchi, Y., Nakaya, Y., Matsuoka, S., and Kuroda, Y., 1998a, Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K+ channels, Heart Vessels 13:9–17.PubMedCrossRefGoogle Scholar
  67. Hayabuchi, Y., Nakaya, Y., Matsuoka, S., and Kuroda, Y., 1998b, Effect of acidosis on Ca2+-activated K + channels in cultured porcine coronary artery smooth muscle cells, Pflügers Arch. 436:509–514.PubMedCrossRefGoogle Scholar
  68. Helliwell, R. M., Wang, Q., Hogg, R. C., and Large, W. A., 1994, Synergistic action of histamine and adenosine triphosphate on the response to noradrenaline in rabbit pulmonary artery smooth muscle cells, Pflügers Arch. 426:433–439.PubMedCrossRefGoogle Scholar
  69. Henderickx, H., and Casteels, R., 1974, Electrogenic sodium pump in arterial smooth muscle cells, Pflügers Arch. 346:299–306.CrossRefGoogle Scholar
  70. Hill, C. E., Kirton, A., Wu, D. D., and Vanner, S. J., 1997, Role of maxi-K+ channels in endothelin-induced vasoconstriction of mesenteric and submucosal arterioles, Am. J. Physiol. 273: G1087–G1093.PubMedGoogle Scholar
  71. Hoang, L. M., and Mathers, D. A., 1998, Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway, Br. J. Pharmacol. 123:5–12.PubMedCrossRefGoogle Scholar
  72. Hogg, R. C., Wang, Q., and Large, W. A., 1994, Effects of C1 channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein, Br. J. Pharmacol. 111:1333–1341.PubMedCrossRefGoogle Scholar
  73. Holz, F. G., and Steinhausen, M., 1987, Renovascular effects of adenosine receptor agonists, Renal Physiol 10:272–282.PubMedGoogle Scholar
  74. Hu, S., and Kim, H. S., 1993, Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid, Eur. J. Pharmacol. 230:215–221.PubMedCrossRefGoogle Scholar
  75. Hu, S. L., Kim, H. S., and Jeng, A. Y., 1991, Dual action of endothelin-1 on the Ca2+-activated K+ channel in smooth-muscle cells of porcine coronary-artery, Eur. J. Pharmacol. 194:31–36.PubMedCrossRefGoogle Scholar
  76. Hu, S., Kim, H. S., Savage, P., and Jeng, A. Y., 1997, Activation of BK(Ca) channel via endothelin ET(A) receptors in porcine coronary artery smooth muscle cells, Eur. J. Pharmacol 324:277–282.PubMedCrossRefGoogle Scholar
  77. Huang, Y., and Kwok, K. H., 1997, Effects of putative K+ channel blockers on β-adrenoceptor-mediated vasorelaxation of rat mesenteric artery, J. Cardiovasc. Pharmacol 29:515–519.PubMedCrossRefGoogle Scholar
  78. Husken, B. C., Pfaffendorf, M., and van Zwieten, P. A., 1997, Contribution of ATP-sensitive potassium channels to β-adrenoceptor-mediated responses, Naunyn-Schmiedebergs Arch. Pharmacol 355:97–102.PubMedGoogle Scholar
  79. Imig, J. D., Zou, A.-P., Stec, D. E., Harder, D. R., Flack, J. R., and Roman, R. J., 1996, Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles, Am. J. Physiol. 270:R217–R227.PubMedGoogle Scholar
  80. Ishida, Y., and Honda, H., 1993, Inhibitory action of 4-aminopyridine on Ca2+-ATPase of the mammalian sarcoplasmic reticulum, J. Biol. Chem. 268:4021–4024.PubMedGoogle Scholar
  81. Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine Hl-receptor stimulation in rabbit coronary artery cells, J. Physiol, (London) 468:379–400.Google Scholar
  82. Ishizaka, H., and Kuo, L., 1996, Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle, Circ. Res. 78:50–57.PubMedCrossRefGoogle Scholar
  83. Jackson, W. F., Konig, A., Dambacher, T., and Busse, R., 1993, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am. J. Physiol. 264:H238–H243.PubMedGoogle Scholar
  84. Jensen, B. S., Strobaek, D., Christophersen, P., Jorgensen, T. D., Hansen, C., Silahtaroglu, A., Olesen, S.-P., and Ahring, P. K., 1998, Characterisation of the cloned human intermediate-conductance Ca2+-activated K+ channel, Am. J. Physiol. 275:C848–C856.PubMedGoogle Scholar
  85. Jiang, C, and Collins, P., 1994, Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide, Br. J. Pharmacol. 111:711–716.PubMedCrossRefGoogle Scholar
  86. Kang, T. M., So, I., and Kim, K. W., 1995, Caffeine- and histamine-induced oscillations of KCa current in single smooth muscle cells of rabbit cerebral artery, Pflügers Arch. 431:91–100.PubMedCrossRefGoogle Scholar
  87. Kinoshita, H., and Katusic, Z. S., 1997, Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis, Stroke 28:433–438.PubMedCrossRefGoogle Scholar
  88. Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V. J., and Singer, J. J., 1992, Both membrane stretch and fatty acids directly activate large conductance Ca++-activated K+ channels in vascular smooth muscle cells, FEBS Lett. 297:24–28.PubMedCrossRefGoogle Scholar
  89. Kitakaze, M, Takshima, S., Minamino, T., Node, K, Shinozaki, Y., Mori, H., and Hori, M., 1997, Temporary acidosis during reperfusion limits myocardial infarct size in dogs, Am. J. Physiol. 272:H2071–H2078.PubMedGoogle Scholar
  90. Kitazono, T., Faraci, F. M, and Heistad, D. D., 1993, Role of ATP-sensitive K+ channels in CGRP-induced dilation in vivo, Am. J. Physiol. 265:H581–H585.PubMedGoogle Scholar
  91. Kitazono, T., Ibayashi, S., Nagao, T., Fujii, K., and Fujishima, M., 1997, Role of Ca2+-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo, Br. J. Pharmacol. 120:102–106.PubMedCrossRefGoogle Scholar
  92. Kleppisch, T., and Nelson, M. T., 1995a, ATP-sensitive K+ currents in cerebral arterial smooth muscle: Pharmacological and hormonal modulation, Am. J. Physiol. 269:H1634–H1640.PubMedGoogle Scholar
  93. Kleppisch, T., and Nelson, M. T., 1995b, Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase, Proc. Natl. Acad. Sci., U.S.A. 92:12441–12445.PubMedCrossRefGoogle Scholar
  94. Klockner, U., and Isenberg, G., 1991, Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current, Pflügers Arch. 418:168–175.PubMedCrossRefGoogle Scholar
  95. Knot, H. J., Zimmerman, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifer K+ channels, J. Physiol, (London) 492:419–430.Google Scholar
  96. Kontos, H. A., Raper, A. J., and Patterson, J. L., 1977, Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels, Stroke 8:258–360.CrossRefGoogle Scholar
  97. Krippeitdrews, P., Haberland, C., Fingerle, J., Drews, G., and Lang, F., 1995, Effect of H2O2 on membrane potential and [Ca2+]i- of cultured rat arterial smooth-muscle cells, Biochem. Biophys. Res. Commun. 209:139–145.CrossRefGoogle Scholar
  98. Kubo, M., Nakaya, Y., Matsuoka, S., Saito, K., and Kuroda, Y., 1994, Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells, Circ. Res. 74:471–476.PubMedCrossRefGoogle Scholar
  99. Kubo, M., Quayle, J. M., and Standen, N. B., 1997, Angiotensin II inhibition through ATP-sensitive K+ currents in rat smooth muscle cells through protein kinase C, J. Physiol, (London) 503:489–496.CrossRefGoogle Scholar
  100. Kuo, L., and Chancellor, J. D., 1995, Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium, Am. J. Physiol. 269:H541–H549.PubMedGoogle Scholar
  101. Ma, Y.-H., Gebremedhin, D., Schwartzman, M. L., Falck, J. R., Clark, J. E., Masters, B. S., Harder, D. R., and Roman, R. J., 1993, 20-Hydroxyeicosatetranoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries, Circ. Res. 72:126–130.PubMedCrossRefGoogle Scholar
  102. Martens, J. R., and Gelband, G. H., 1996, Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension, Circ. Res. 79:295–301.PubMedCrossRefGoogle Scholar
  103. Mayhan, W. G., and Faraci, F. M., 1993, Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels, Am. J. Physiol. 265:H152–H157.PubMedGoogle Scholar
  104. McCarron, J. G., and Halpern, W., 1990, Potassium dilates rat cerebral arteries by two independent mechanisms, Am. J. Physiol. 259:H902–H908.PubMedGoogle Scholar
  105. McGiff, J. C., 1991, Cytochrome P450 metabolism of arachidonic acid, Annu. Rev. Pharmacol. Toxicol. 31:339–369.PubMedCrossRefGoogle Scholar
  106. McKay, M. K., and Hester, R. L., 1996, Role of nitric oxide, adenosine, and ATP-sensitive potassium channels in insulin-induced vasodilation, Hypertension 28:202–208.PubMedCrossRefGoogle Scholar
  107. Meno, J. R., Ngai, A. C., Ibayashi, S., and Winn, H. R., 1991, Adenosine release and changes in pial arteriolar diameter during transient cerebral ischaemia and reperfusion, J. Cereb. Blood Flow Metab. 11:986–993.PubMedCrossRefGoogle Scholar
  108. Liu, Y., Hudetz, A. G., Knaus, H.-G., Rusch, N. J. 1998, Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rates, Circ. Res. 82:729–737.PubMedCrossRefGoogle Scholar
  109. Minami, K., Hirata, Y., Tokumura, A., Nagaya, Y., and Fukuzawa, K., 1995, Protein-kinase C-independent inhibition of the Ca2+-activated K+ channel by angiotensin-II and endothelin-1, Biochem. Pharmacol. 49:1051–1056.PubMedCrossRefGoogle Scholar
  110. Mistry, D. K., and Garland, C. J., 1998, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, Br. J. Pharmacol. 124:1131–1140.PubMedCrossRefGoogle Scholar
  111. Miyoshi, H., and Nakaya, Y., 1995, Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase, Basic Res. Cardiol. 90:332–336.PubMedCrossRefGoogle Scholar
  112. Miyoshi, Y., Nakaya, Y., Wakatsuki, T., Nakaya, S., Fujino, K., Saito, K., and Inoue, I., 1992, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery, Circ. Res. 70:612–616.PubMedCrossRefGoogle Scholar
  113. Morii, S., Ngai, A.C., Ko, A. R., and Winn, H. R., 1987, Role of adenosine in regulation of cerebral blood flow: Effects of theophylline during normoxia and hypoxia, Am. J. Physiol. 253:H165–H175.PubMedGoogle Scholar
  114. Muira, H., and Gutterman, D. D., 1998, Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P450 monooxygenase and Ca++-activated K+ channels, Circ. Res. 83:501–507.CrossRefGoogle Scholar
  115. Muraki, K., Imaizumi, Y., Ohya, S., Sato, K., Takii, T., Onozaki, K., and Watanabe, M., 1997, Apamin-sensitive Ca2+-dependent K+ current and hyperpolarization in human endothelial cells, Biochem. Biophys. Res. Commun. 236:340–343.PubMedCrossRefGoogle Scholar
  116. Murphy, M. E., and Brayden, J. E., 1995, Nitric oxide hyperpolarises rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol, (London) 486:47–58.Google Scholar
  117. Nakashima, M., and Vanhoutte, P. M., 1995, Isoproterenol causes hyperpolarization through opening of ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein, J. Pharmacol. Exp. Ther. 272:379–384PubMedGoogle Scholar
  118. Neliat, G., Masson, F., and Gargouil, Y. M., 1989, Modulation of the spontaneous transient outward currents by histamine in single vascular smooth muscle cells, Pflügers Arch. 414 (Suppl. 1):S186–S187.PubMedCrossRefGoogle Scholar
  119. Ney, P., and Feelisch, M., 1995, Vasodilator effects of PGE1 in the coronary and systemic circulation of the rat are mediated by ATP-sensitive potassium (K+) channels, Agents Actions-Suppl. 45:71–76.Google Scholar
  120. Nilius, B., Schwarz, G., and Droogmans, G., 1993, Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells, J.Physiol. (London) 472:359–371.Google Scholar
  121. Okazaki, K., Endou, M., and Okumura, F., 1998, Involvement of barium-sensitive K+ channels in endothelium-dependent vasodilation produced by hypercapnia in rat mesenteric vascular beds, Br. J. Pharmacol. 125:168–185.PubMedCrossRefGoogle Scholar
  122. Oltman, C. I., Weitraub, N. L., VanRollins, M., and Dellsperger, K. C., 1998, Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation, Circ. Res. 83:932–939.PubMedCrossRefGoogle Scholar
  123. Onoue, H., and Katusic, Z. S., 1998, Subarachnoid hemorrhage and the role of potassium channels in relaxations of canine basilar artery to nitrovasodilators, J. Cereb. Blood Flow Metab. 18:186–195.PubMedCrossRefGoogle Scholar
  124. Osipenko, O. N., Evans, A. M., and Gurney, A. M., 1997, Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current, Br. J. Phamacol. 120:1461–1470.CrossRefGoogle Scholar
  125. Park, M. K., Lee, S., H., Lee, S. J., Ho, W. K., and Earm, Y. E., 1995, Different modulation of Ca-activated K channels by the intracellular redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit, Pflügers Arch. 430:308–314.PubMedCrossRefGoogle Scholar
  126. Pelligrino, D. A., Wang, Q., Koenig, H. M., and Albrecht, R. F., 1995, Role of nitric oxide, adenosine, N-methyl-D-aspartate, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats, Brain Res. 704:61–70.PubMedCrossRefGoogle Scholar
  127. Peng, W., Michael, J. R., Hoidal, J. R., Karwande, S. V., and Farrukh, I. S., 1998, ET-1 modulates KCa-channel activity and arterial tension in normoxic and hypoxic human pulmonary vasculature, Am.J. Physiol. 275:L729–L739.PubMedGoogle Scholar
  128. Plane, F., Wiley, K. E., Jeremy, J. Y., Cohen, R. A., and Garland, C. J., 1998, Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide donors in the rabbit isolated carotid artery, Br. J. Pharmacol. 123:1351–1358.PubMedCrossRefGoogle Scholar
  129. Pluta, R. M., Boock, R. J., Afshar, J. K., Clouse, K., Bacic, M., Ehrenreich, H., and Oldfield, E. H., 1997, Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage, J. Neurosurg. 87:287–293.PubMedCrossRefGoogle Scholar
  130. Price, J. M., Cabell, J. F., and Hellerman, A.,1996, Inhibition of cAMP mediated relaxation in rat coronary vessels by block of Ca++ activated K+ channels, Life Sci. 58:2225–2232.PubMedCrossRefGoogle Scholar
  131. Price, J. M., Baker, C. H., and Bond, R. F., 1997, Calcium-activated potassium channel-mediated arteriolar relaxation during endotoxic shock, Shock 7:294–299.PubMedCrossRefGoogle Scholar
  132. Prior, H. M., Yates, M. S., and Beech, D. J.,1998a, Functions of large conductance (BKCa), delayed rectifier (Kv) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery, J. Physiol. (London) 511:159–169.CrossRefGoogle Scholar
  133. Prior, H. M., Webster, N., Quinn, K. V., Beech, D. J., and Yates, M. S., 1998b, K+-induced dilation in a small renal artery: No role for inward rectifier K+ channels, Cardiovasc. Res. 37:780–790.PubMedCrossRefGoogle Scholar
  134. Prior, H. M., Yates, M. S., and Beech, D. J., 1998c, Role of K+ channels in A2A adenosine receptor-mediated dilation of the pressurised renal arcuate artery, Br. J. Pharmacol. 126:494–500.CrossRefGoogle Scholar
  135. Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1994, Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J. Physiol. (London) 475:9–13.Google Scholar
  136. Quayle, J. M., Dart, C., and Standen, N. B., 1996, The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle, J. Physiol. (London) 494:715–726.Google Scholar
  137. Randall, M. D.,1995, The involvement of ATP-sensitive potassium channels and adenosine in the regulation of coronary flow in the isolated perfused rat heart, Br. J. Pharmacol. 116:3068–3074.PubMedCrossRefGoogle Scholar
  138. Randall, M. D., and McCulloch, A. I., 1995, The involvement of ATP-sensitive potassium channels in β-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed, Br. J. Pharmacol. 115:607–612.PubMedCrossRefGoogle Scholar
  139. Rubanyi, G. M., and Polokoff, M. A., 1994, Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology, Pharmacol. Rev. 46:325–415.PubMedGoogle Scholar
  140. Rusko, J., Li, L., and van Breemen, C., 1995,17β-Estradiol stimulation of endothelial K+ channels, Biochem. Biophys. Res. Commun. 214:367–372.PubMedCrossRefGoogle Scholar
  141. Sakai, Y., and Saito, K., 1998, Reciprocal interactions among neuropeptides and adenosine in the cardiovascular system of rats: A role of K(ATP) channels, Eur. J. Pharmacol. 345:279–284.PubMedCrossRefGoogle Scholar
  142. Sakai, Y., Yoshikawa, N., Akima, M., and Saito, K., 1998, Role for adenosine A1 and A2 receptors in femoral vasodilation induced by intra-arterial adenosine in rabbits, Eur. J. Pharmacol. 353:257–264.PubMedCrossRefGoogle Scholar
  143. Salter, K. J., and Kozlowski, R. Z., 1996, Endothelin receptor coupling to potassium and chloride channels in isolated rat pulmonary arterial myocytes, J. Pharmacol. Exp. Ther. 279:1053–1062.PubMedGoogle Scholar
  144. Salter, K. J., and Kozlowski, R. Z., 1998, Differential electrophysiological actions of endothelin-1 on Cl- and K+ currents in myocytes isolated from aorta, basilar and pulmonary artery, J. Pharmacol. Exp. Ther. 284:1122–1131.PubMedGoogle Scholar
  145. Salter, K. J., Turner, J. L., Albawarni, S., Clapp, L. H., and Kozlowski, R. Z., 1995, Ca2+-activated Cl- and K+ channels and their modulation by endothelin-1 in rat pulmonary arterial smooth-muscle cells, Exp. Physiol. 80:815–824.PubMedGoogle Scholar
  146. Schubert, R., Serebyakov, V. N., Engel, H., and Hopp, H.-H., 1996, Iloprost activates KCa channels of vascular smooth muscle cells: Role of cAMP-dependent protein kinase, Am. J. Physiol. (London) 271:0203- C1211.Google Scholar
  147. Schubert, R., Serebyrakov, V. N., Mewes, H., and Hopp, H.-H., 1997, Iloprost dilates rat small arteries: Role of KATP-channel activation by cAMP-dependent protein kinase, Am. J. Physiol. (London) 272:H1147– H1156.Google Scholar
  148. Scornik, F. S., and Toro, L., 1992, U46619, a thromboxane A2 agonist, inhibits Kca channel activity from pig coronary artery, Am. J. Physiol. 262:C708–C713.PubMedGoogle Scholar
  149. Sheridan, B. C, Mclntyre, R. C., Jr., Meldrum, D. R., and Fullerton, D. A., 1997, KATP channels contribute to beta- and adenosine receptor-mediated pulmonary vasorelaxation, Am. J. Physiol. 273:L950–L956.PubMedGoogle Scholar
  150. Shimoda, L. A., Sylvester, J. T., and Sham, J. S. K., 1998, Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1, Am. J. Physiol. 274:L842–L853.PubMedGoogle Scholar
  151. Smirnov, S. V., and Aaronson, P. I., 1996, Modulatory effects of arachidonic acid on the delayed rectifier K+ current in rat pulmonary arterial myocytes: Structural aspects and involvement of protein kinase C, Circ. Res. 79:20–31.PubMedCrossRefGoogle Scholar
  152. Sobey, C. G., Heistad, D. D., and Faraci, F. M., 1997, Mechanisms of bradykinin-induced cerebral vasodilatation in rats: Evidence that reactive oxygen species activate K+ channels, Stroke 28:2990–2295.Google Scholar
  153. Song, Y., and Simard, J. M., 1995, β-Adrenoceptor stimulation activates large-conductance Ca2+-activated K+ channels in smooth muscle cells from basilar artery of guinea pig, Pflügers Arch. 430:984–993.PubMedCrossRefGoogle Scholar
  154. Spencer, R. H., Sokolov, Y., Li, H., Takenas, B., Milici, A. J., Aiyar, J., Nguyen, A., Park, H., Jap, B. K., Hall, J. E., Gutman, G. A., and Chandy, K. G., 1997, Purification, visualisation, and biophysical characterisation of Kvl.3 tetramers, J. Biol. Chem. 272:2389–2395.PubMedCrossRefGoogle Scholar
  155. Sun, C.-W., Alonso-Galicia, M., Taheri, M. R., Flack, J. R., Harder, D. R., and Roman, R. J., 1998, Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles,Circ. Res. 83:1069–1079.PubMedCrossRefGoogle Scholar
  156. Tabrizchi, R., and Lupichuk, S. M., 1995, Vasodilation produced by adenosine in isolated rat perfused mesenteric artery: A role for endothelium, Naunyn-Schmiedeberg’s Arch. Pharmacol. 352:412–418.CrossRefGoogle Scholar
  157. Taguchi, H., Heistad, D. D., Kitazono, T., and Faraci, F. M., 1994, ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia, Circ. Res. 74:1005–1008.PubMedCrossRefGoogle Scholar
  158. Takizawa, S., Ozaki, H., and Karaki, H., 1997, Interleukin-lβ-induced, nitric oxide-dependent and -independent inhibition of vascular smooth muscle contraction, Eur. J. Pharmacol. 330:143–150.PubMedCrossRefGoogle Scholar
  159. Taniguchi, J., Furukawa, K.-I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167–172.PubMedCrossRefGoogle Scholar
  160. Toro, L., Amador, M., and Stefani, E., 1990, ANG II inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers, Am. J. Physiol. 258:H912–H915.PubMedGoogle Scholar
  161. Toyoda, K., Fujii, K., Ibayashi, S., Kitazono, T., Nagao, T., and Fujishma, M., 1997, Role of ATP-sensitive potassium channels in brain stem circulation during hypotension, Am. J. Physiol. 273:H1342–H1346.PubMedGoogle Scholar
  162. Van de Voorde, J., Brochez, V., and Vanheel, B., 1994, Heterogenous effects of histamine on isolated rat coronary arteries, Eur. J. Pharmacol. 271:17–23.PubMedCrossRefGoogle Scholar
  163. Van Renterghem, C., Vigne, P., Barhanin, J., Schmid-Alliana, A., Frelin, C., and Lazdunski, M., 1988, Molecular mechanisms of action of the vasoconstrictor peptide endothelin, Biochem. Biophys. Res. Commun. 157:977–985.PubMedCrossRefGoogle Scholar
  164. von Beckerath, N., Cyrys, C., Dischner, A., and Daut, A., 1991, Hypoxic vasodilation in isolated, perfused guinea-pig heart: An analysis of the underlying mechanisms, J. Physiol. (London) 442:297–319.Google Scholar
  165. Wang, J., Juhaszova, M., Rubin, L. J., and Yuan X.-J., 1997, Hypoxia inhibits gene expression of voltage-gated K+ channel α subunits in pulmonary artery smooth muscle cells, J. Clin. Invest. 100:2347–2353.PubMedCrossRefGoogle Scholar
  166. Wang, Q., and Large, W. A., 1993, Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery, J. Physiol. (London) 468:125–139.Google Scholar
  167. Wang, R., and Wu, L., 1997, The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells, J. Biol. Chem. 273:8222–8226.Google Scholar
  168. Webb, R. C, and Bohr, D. F., 1978, Potassium-induced relaxation as an indicator of Na+,K+-ATPase activity in vascular smooth muscle, Blood Vessels 15:198–207.PubMedGoogle Scholar
  169. Wei, E. P., Kontos, H., A., and Beckman, J. S.,1996, Mechanisms of cerebral vasodilatation by superoxide, hydrogen peroxide, and peroxynitrite, Am. J. Physiol. 271:H1262–H1266.PubMedGoogle Scholar
  170. Wei, E. P., Kontos, H. A., and Beckman, J. S., 1998, Antioxidants inhibit ATP-sensitive potassium channels in cerebral arterioles, Stroke 29:817–823.PubMedCrossRefGoogle Scholar
  171. Weisbrod, R. M., Grisworld, M. C., Yaghoubi, M., Komalavilas, P., Linclon, T. M., and Cohen, R. A., 1998, Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide, Br. J. Pharmacol 125:1695–1707.PubMedCrossRefGoogle Scholar
  172. Wellman, G. C, Bonev, A. D., Nelson, M. T., and Brayden, J. E., 1996, Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca++ -dependent K+ channels, Circ. Res. 79:1024–1030.PubMedCrossRefGoogle Scholar
  173. Wellman, G. C., Quayle, J. M., and Standen, N. B., 1998, ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle, J. Physiol. (L ondon) 507:117–129.CrossRefGoogle Scholar
  174. White, R. E., Darkow, D. J., and Falvo Lang, J. L., 1995, Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent mechanism, Circ. Res. 77:936–942.PubMedCrossRefGoogle Scholar
  175. Williams, D. L., Jr., Katz, G. M., Roy-Contancin, L., and Reuben, J. P., 1988, Guanosine 5’-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells, Proc. Natl. Acad. Sci., U.S.A. 85:9360–9364.PubMedCrossRefGoogle Scholar
  176. Xiong, Z., and Cheung, D. W., 1994, Neuropeptide Y inhibits Ca2+-activated K+ channels in vascular smooth muscle cells from the rat tail artery, Pflügers Arch. 429:280–284.PubMedCrossRefGoogle Scholar
  177. Xu, X., and Lee, K. S., 1996, Dual effects of arachidonic acid on ATP-sensitive K+ current of coronary smooth muscle cells, Am. J. Physiol. 270.-H1957–H1962.PubMedGoogle Scholar
  178. Yamazaki, J., Sato, K., Ohara, F., and Nagao, T., 1998, Direct activation of endothelial NO pathway by Ba2+ in canine coronary artery, Br. J. Pharmacol. 124:1149–1158.PubMedCrossRefGoogle Scholar
  179. Yuan, X.-J., Goldman, W. F., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1993, Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes, Am. J. Physiol. 264:L116–L123.PubMedGoogle Scholar
  180. Yuan, X.-J., Goldman, W. F., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.PubMedCrossRefGoogle Scholar
  181. Zhao, Y.-J., Wang, J., Rubin, L. J., and Yuan, X.-J., 1997, Inhibition of Kv and KCa channels antagonizes NO-induced relaxation in pulmonary artery, Am. J. Physiol. 272:H904–H912.PubMedGoogle Scholar
  182. Zou, A.-P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J., 1996, Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity, Am. J. Physiol. 270:F822–F832PubMedGoogle Scholar
  183. Zygmunt, P. M., Edwards, G., Weston, A. H., Larsson, B., and Hogestatt, E. D., 1997, Involvement of voltage-depedendent potassium channels in the EDHF-mediated ralxation of rat hepatic artery, Br. J. Pharmacol. 121:141–149.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. J. Beech
    • 1
  • A. Cheong
    • 1
  • R. Flemming
    • 1
  • C. Guibert
    • 1
  • S. Z. Xu
    • 1
  1. 1.School of Biomedical SciencesUniversity of LeedsLeedsUK

Personalised recommendations