Skip to main content

Overview: Physiological Role of K+Channels in the Regulation of Vascular Tone

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 212 Accesses

Abstract

Calcium entry through voltage-dependent Ca2+ channels plays an important role in the contractile responses of vascular smooth muscle, particularly in the resistance vasculature. Thus, agents or interventions that open or close these Ca2+ channels have significant effects on smooth muscle contractile activity. Accordingly, regulation of smooth muscle membrane potential through changes in K+ channel activity, and subsequent alterations in the activity of voltage-dependent Ca2+ channels, is a major mechanism of vasodilation and vasoconstriction, both in normal and in pathophysiological conditions. Activation of K+ channels will result in hyperpolarization, closure of voltage-dependent Ca2+ channels, and vasodilation, whereas inhibition of K+ channels will have the opposite effects. Several different types of K+ channels are present in most vascular smooth muscle cells. Membrane potential and diameter are determined, in part, by the integrated activity of these K+ channels, which are regulated by multiple dilator and constrictor signals in vascular smooth muscle. The objective of this chapter is to provide an overview of the evidence supporting the important functional roles of the major K+ channels found in vascular smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeagbo, A. S., and Triggle, C. R., 1993, Varying extracellular [K+]: A functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed, J. Cardiovasc. Pharmacol. 21:423–429.

    Article  PubMed  CAS  Google Scholar 

  • Aiello, E. A., Walsh, M. P., and Cole, W. C., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol. 268:H926–H934.

    PubMed  CAS  Google Scholar 

  • Archer, S. L., Souil, E., Dinh-Xuan, A. T., Schremmer, B., Mercier, J. C., El Yaagoubi, A., Nguyen-Huu, L., Reeve, H. L., and Hampl, V., 1998, Molecular identification of the role of voltage-gated K+ channels, Kvl.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes, J. Clin. Invest. 101:2319–2330.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft, S. J., and Ashcroft, F. M., 1990, Properties and functions of ATP-sensitive K-channels, Cell. Signal. 2:197–214.

    Article  PubMed  CAS  Google Scholar 

  • Bari, F., Louis, T. M., and Busija, D. W., 1998, Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets, Stroke 29:222–227.

    Article  PubMed  CAS  Google Scholar 

  • Belloni, F. L., and Hintze, T. H., 1991, Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilatation, Am. J. Physiol. 261:H720–H727.

    PubMed  CAS  Google Scholar 

  • Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle, Nature 368:850–853.

    Article  PubMed  CAS  Google Scholar 

  • Bonev, A. D., Jaggar, J. H., Rubart, M., and Nelson, M. T., 1997, Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries, Am. J. Physiol. 273:C2090–C2095.

    PubMed  CAS  Google Scholar 

  • Boyle, J. P., Tomasic, M., and Kotlikoff, M. I., 1992, Delayed rectifier potassium channels in canine and porcine airway smooth muscle cells, J. Physiol. (London) 447:329–350.

    CAS  Google Scholar 

  • Brayden, J. E., 1990, Membrane hyperpolarization is a mechanism of endothelium- dependent cerebral vasodilation, Am. J. Physiol. 259:H668–H673.

    PubMed  CAS  Google Scholar 

  • Brayden, J. E., and Nelson, M. T., 1992, Regulation of arterial tone by activation of Ca2+ dependent potassium channels, Science 256:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Brayden, J. E., Quayle, J. M., Standen, N. B., and Nelson, M. T., 1991, Role of potassium channels in the vascular response to endogenous and pharmacological vasodilators, Blood Vessels 28:147–153.

    PubMed  CAS  Google Scholar 

  • Cabell, F., Weiss, D. S., and Price, J. M., 1994, Inhibition of adenosine-induced coronary vasodilation by block of large- conductance Ca2+-activated K+ channels, Am. J. Physiol. 267:H1455–H1460.

    PubMed  CAS  Google Scholar 

  • Campbell, W. B., Gebremedhin, D., Pratt, P. F., and Harder, D. R., 1996, Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors, Circ. Res. 78:415–423.

    Article  PubMed  CAS  Google Scholar 

  • Carl, A., 1995, Multiple components of delayed rectifier K+ current in canine colonic smooth muscle, J. Physiol. (London) 484:339–353.

    CAS  Google Scholar 

  • Clapp, L. H., and Gurney, A. M., 1991, Outward currents in rabbit pulmonary artery cells dissociated with a new technique, Exp. Physiol. 76:677–693.

    PubMed  CAS  Google Scholar 

  • Clapp, L. H., and Gurney, A. M., 1992, ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells, Am. J. Physiol. 262:H916–H920.

    PubMed  CAS  Google Scholar 

  • Clement-Chomienne, O., Walsh, M. P., and Cole, W. C., 1996, Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes, J. Physiol. (London) 495:689–700.

    CAS  Google Scholar 

  • Cole, W. C., Clement-Chomienne, O., and Aiello, E. A., 1996, Regulation of 4-aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation, Biochem. Cell Biol. 74:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Daut, J., Maier-Rudolph, W., von Beckerath, N., Mehrke, G., Gunther, K., and Goedel-Meinen, L., 1990, Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels, Science 247:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  • Davies, N. W., Standen, N. B., and Stanfield, P. R., 1992, The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle, J. Physiol. (London) 445:549–568.

    CAS  Google Scholar 

  • Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries [see comments], Nature 396:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. M., Clapp, L. H., and Gurney, A. M., 1994, Augmentation by intracellular ATP of the delayed rectifier current independently of the glibenclamide-sensitive K-current in rabbit arterial myocytes, Br. J. Pharmacol 111:972–974.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pascual, A., Labadia, A., Jimenez, E., and Costa, G., 1995, Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: Mediation by nitric oxide and changes in apamin-sensitive K+ conductance, Br. J. Pharmacol 115:1221–1230.

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Kaldunski, M., Jacobs, E. R., Harder, D. R., and Roman, R. J., 1996, Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles, Am. J. Physiol. 270:F69–F81.

    PubMed  CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1992, Ionic currents in single smooth muscle cells of the canine renal artery, Circ. Res. 71:745–758.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization, Circ. Res. 77:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., Ishikawa, T., Post, J. M., Keef, K. D., and Hume, J. R., 1993, Intracellular divalent cations block smooth muscle K+ channels, Circ. Res. 73:24–34.

    Article  PubMed  CAS  Google Scholar 

  • Hart, P. J., Overturf, K. E., Russell, S. N., Carl, A., Hume, J. R., Sanders, K. M., and Horowitz, B., 1993, Cloning and expression of a Kvl.2 class delayed rectifier K+ channel from canine colonic smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 90:9659–9663.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, G. D., and Edwards, F. R., 1989, Sympathetic neuroeffector transmission in arteries and arterioles, Physiol. Rev. 69:546–604.

    PubMed  CAS  Google Scholar 

  • Imamura, Y., Tomoike, H., Narishige, T., Takahashi, T., Kasuya, H., and Takeshita, A., 1992, Glibenclamide decreases basal coronary blood flow in anesthetized dogs, Am. J. Physiol. 263:H399–H404

    PubMed  CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J. P., Namba, N., Inazawa, J., Gonzalez, G., Aguilar-Bryan, L., Seino, S., and Bryan, J., 1995, Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor [see comments], Science 270:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, I., Nakaya, Y., Nakaya, S., and Mori, H., 1989, Extracellular Ca2+-activated K channel in coronary artery smooth muscle cells and its role in vasodilation, FEBS Lett. 255:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine Hi-receptor stimulation in rabbit coronary artery cells, J. Physiol. (London) 468:379–400.

    CAS  Google Scholar 

  • Ishizaka, H., and Kuo, L., 1996, Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle, Circ. Res. 78:50–57.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, W. F., 1993, Arteriolar tone is determined by activity of ATP-sensitive potassium channels, Am. J. Physiol. 265:H1797–H1803.

    PubMed  CAS  Google Scholar 

  • Jackson, W. F., Konig, A., Dambacher, T., and Busse, R., 1993, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am. J. Physiol. 264:H238–H243.

    PubMed  CAS  Google Scholar 

  • Jaggar, J. H., Stevenson, A. S., and Nelson, M. T., 1998, Voltage dependence of Ca2+ sparks in intact cerebral arteries, Am. J. Physiol. 274.-C1755–C1761.

    PubMed  CAS  Google Scholar 

  • Kajioka, S., Kitamura, K., and Kuriyama, H., 1991, Guanosine diphosphate activates an adenosine 5’-triphosphate-sensitive K+ channel in the rabbit portal vein, J. Physiol. (London) 444:397–418.

    CAS  Google Scholar 

  • Kanatsuka, H., Sekiguchi, N., Sato, K., Akai, K., Wang, Y., Komaru, T., Ashikawa, K., and Takishima, T., 1992, Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart, Circ. Res. 71:912–922.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, H., and Katusic, Z. S., 1997, Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis, Stroke 28:433–437.

    Article  PubMed  CAS  Google Scholar 

  • Kleppisch, T., and Nelson, M. T., 1995, Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 92:12441–12445.

    Article  PubMed  CAS  Google Scholar 

  • Knot, H. I, and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries, Am. J. Physiol. 269:H348–H355.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels, J. Physiol. (London) 492:419–430.

    CAS  Google Scholar 

  • Komaru, T., Lamping, K. G., Eastham, C. L., and Dellsperger, K. C., 1991, Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses, Circ. Res. 69:1146–1151.

    Article  PubMed  CAS  Google Scholar 

  • Lederer, W. J., and Nichols, C. G., 1989, Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches, J. Physiol. (London) 419:193–211.

    CAS  Google Scholar 

  • Li, P. L., and Campbell, W. B., 1997, Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein, Circ. Res. 80:877–884.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, J. N., Schnermann, J., Brosius, F. C., Briggs, J. P., and Furspan, P. B., 1992, Intracellular ATP can regulate afferent arteriolar tone via ATP- sensitive K+ channels in the rabbit, J. Clin. Invest. 90:733–740.

    Article  PubMed  CAS  Google Scholar 

  • Merkel, L. A., Lappe, R. W., Rivera, L. M., Cox, B. F., and Perrone, M. H., 1992, Demonstration of vasorelaxant activity with an A1-selective adenosine agonist in porcine coronary artery: Involvement of potassium channels, J. Pharmacol. Exp. Ther. 260:437–443.

    PubMed  CAS  Google Scholar 

  • Miyoshi, Y., and Nakaya, Y., 1991, Angiotensin II blocks ATP-sensitive K+ channels in porcine coronary artery smooth muscle cells, Biochem. Biophys. Res. Commun. 181:700–706.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., and Nakaya, Y., 1995, Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase, Basic Res. Cardiol. 90:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, Y., Nakaya, Y., Wakatsuki, T., Nakaya, S., Fujino, K., Saito, K., and Inoue, I., 1992, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery, Circ. Res. 70:612–616.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995a, Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries, J. Physiol. (London) 489:723–734.

    CAS  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995b, Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol. (London) 486:47–58.

    CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Huang, Y., Brayden, J. E., Hescheler, J., and Standen, N. B., 1990, Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels, Nature 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., Cheng, H., Rubart, M., Santana, L. F., Bonev, A. D., Knot, H. J., and Lederer, W. J., 1995, Relaxation of arterial smooth muscle by Ca2+ sparks [see comments], Science 270:633–637.

    Article  PubMed  CAS  Google Scholar 

  • Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., Sanders, K. M., and Horowitz, B., 1994, Cloning and characterization of a Kvl.5 delayed rectifier K+ channel from vascular and visceral smooth muscles, Am. J. Physiol. 267:C1231–C1238

    PubMed  CAS  Google Scholar 

  • Perez, G., Bonev, A. D., Patlak, J. B., and Nelson, M. T., 1999, Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries, J. Gen. Physiol. 113:385–388.

    Article  Google Scholar 

  • Porter, V. A., Bonev, A. D., Knot, H. J., Heppner, T. J., Stevenson, A. S., Kleppisch, T., Lederer, W. J., and Nelson, M. T., 1998, Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides, Am. J. Physiol. 274:0346–0355.

    Google Scholar 

  • Post, J. M., Hume, J. R., Archer, S. L., and Weir, E. K., 1992, Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction, Am. J. Physiol. 262:C882–C890.

    PubMed  CAS  Google Scholar 

  • Quast, U. and Cook, N. S., 1989, in vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide, J. Pharmacol Exp. Ther. 250:261–271.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., McCarron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol. 265:0363–0370.

    Google Scholar 

  • Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1994, Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J. Physiol. (London) 475:9–13.

    CAS  Google Scholar 

  • Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165–1232.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., and Nelson, M. T., 1994, Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries, Am. J. Physiol. 267:C1589–C1597.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., Schubert, R., Hescheler, J., and Nelson, M. T., 1993, cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells, Am. J. Physiol. 265:C299–C303.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., Bonev, A. D., and Nelson, M. T., 1996, Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+ and Ba2+, Am. J. Physiol. 271.-H696–H705.

    PubMed  Google Scholar 

  • Russell, S. N., Smirnov, S. V., and Aaronson, P. I., 1992, Effects of BRL 38227 on potassium currents in smooth muscle cells isolated from rabbit portal vein and human mesenteric artery, Br. J. Pharmacol. 105:549–556.

    Article  PubMed  CAS  Google Scholar 

  • Samaha, F. F., Heineman, F. W., Ince, C., Fleming, J., and Balaban, R. S., 1992, ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo, Am. J. Physiol. 262:C1220–C1227.

    PubMed  CAS  Google Scholar 

  • Scornik, F. S., and Toro, L., 1992, U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery, Am. J. Physiol. 262:C708–C713.

    PubMed  CAS  Google Scholar 

  • Scornik, F. S., Codina, J., Birnbaumer, L., and Toro, L., 1993, Modulation of coronary smooth muscle KCa channels by Gsα independent of phosphorylation by protein kinase A, Am. J. Physiol. 265:H1460– H1465.

    PubMed  CAS  Google Scholar 

  • Smirnov, S. V., and Aaronson, P. I., 1992, Ca2+-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries, J. Physiol. (London) 457:431–454.

    CAS  Google Scholar 

  • Smirnov, S. V., Robertson, T. P., Ward, J. P., and Aaronson, P. I., 1994, Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells, Am. J. Physiol. 266:H365– H370.

    PubMed  CAS  Google Scholar 

  • Sakol, P. T., Hu, W., Yi, L., Toral, J., Chandra, M., Ziai, M. R., 1994, Cloning of an apamin binding protein of vascular smooth muscle, J. Prot. Chem. 13:117–128.

    Article  Google Scholar 

  • Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science 245:177–180.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, J., Furukawa, K. I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Toro, L., Amador, M., and Stefani, E., 1990, ANG II inhibits Ca2+ activated potassium channels from coronary smooth muscle in lipid bilayers. Am. J. Physiol. 258:H912–H915.

    PubMed  CAS  Google Scholar 

  • Volk, K. A., and Shibata, E. F., 1993, Single delayed rectifier potassium channels from rabbit coronary artery myocytes, Am. J. Physiol. 264:H1146–H1153.

    PubMed  CAS  Google Scholar 

  • Wakatsuki, T., Nakaya, Y., and Inoue, I., 1992, Vasopressin modulates K+-channel activities of cultured smooth muscle cells from porcine coronary artery, Am. J. Physiol. 263:H491–H496.

    PubMed  CAS  Google Scholar 

  • Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J., and Adelman, J. P., 1998, Mechanism of Ca2+ gating in small-conductance Ca2+ activated potassium channels, Nature 395:503–507.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X. J., 1995, Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i- in pulmonary arterial myocytes, Circ. Res. 77:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X. J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1995, Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells, Exp. Physiol. 80:803–813.

    PubMed  CAS  Google Scholar 

  • Yuan, X. J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brayden, J.E. (2001). Overview: Physiological Role of K+Channels in the Regulation of Vascular Tone. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics