Skip to main content

Three-Dimensional Structure of the K+Channel Pore: Basis for Ion Selectivity and Permeability

  • Chapter
Book cover Potassium Channels in Cardiovascular Biology

Abstract

Physiologists have long known that ions play a central role in the excitability of nerve and muscle. In a series of papers between 1881 and 1887, Sidney Ringer showed that the solution perfusing a frog heart must contain salts of sodium, potassium, and calcium mixed in a definite proportion if the heart is to continue beating (Hille, 1992). Later, Hodgkin and Huxley, in their classical studies on squid giant axons (Hodgkin and Huxley, 1952;a,Hodgkin and Huxley, 1952;b), found that the conductance changes of membranes could be separated into two distinct “permeation” pathways, one for sodium and another for potassium. This early recognition that distinct proteins conferred selective passageways for different ions was fully established with the discovery and use of pharmacological agents and toxins. For example, the toxins tetrodotoxin (TTX) and saxitoxin (STX) selectively and reversibly block Na+ current without affecting K+ conductance (Hille, 1966; Hille, 1968; Nakamura et al., 1965). These early studies laid the foundation for the concept of channel “gating,” wherein the availability of the channel’s active site or pore is allosterically regulated in a time- and voltage-dependent manner (Hodgkin and Huxley, 1952c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement, J. P. T., Boyd, A. E., Gonzalez, G., Herrera-Sosa, H., Nguy, K., Bryan, J., and Nelson, D. A., 1995, Cloning of the beta cell high affinity sulfonylurea receptor: A regulator of insulin secretion, Science 268:423–426.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1971, Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons, J. Gen. Physiol. 58:413–437.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Hille, B., 1972, The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier, J. Gen. Physiol. 59:388–400.

    Article  PubMed  CAS  Google Scholar 

  • Baukrowitz, T., and Yellen, G., 1995, Modulation of K+ current by frequency and external [K+]: A tale of two inactivation mechanisms, Neuron 15:951–960.

    Article  PubMed  CAS  Google Scholar 

  • Baukrowitz, T., and Yellen, G., 1996, Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel, Science 271:653–656.

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla, F., and Armstrong, C. M., 1972, Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons, J. Gen. Physiol. 60:588–608.

    Article  PubMed  CAS  Google Scholar 

  • Billman, G. E., 1994, Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischemia, Cardiovasc. Res. 28:762–769.

    Article  PubMed  CAS  Google Scholar 

  • Bixby, K. A., Nanao, M. H., Shen, N. V., Kreusch, A., Bellamy, H., Pfaffinger, P. J, and Choe, S., 1999, Zn2+ binding and molecular determinants of tetramerization in voltage-gated K+ channels, Nat. Struct. Biol. 6:38–43.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1986, Molecular properties of voltage-sensitive sodium channels, Annu. Rev. Biochem. 55:953–985.

    Article  PubMed  CAS  Google Scholar 

  • Chandy, K. G., 1991, Simplified gene nomenclature [letter], Nature 352:26.

    Article  PubMed  CAS  Google Scholar 

  • Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated K+ channel genes, in: Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (R. A. North, ed.), CRC Press, Boca Raton, Florida, pp. 1–77.

    Google Scholar 

  • Choi, K. L., Aldrich, R. W., and Yellen, G., 1991, Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 88:5092–5095.

    Article  PubMed  CAS  Google Scholar 

  • Choi, K. L., Mossman, C., Aube, J., and Yellen, G., 1993, The internal quaternary ammonium receptor site of Shaker potassium channels, Neuron 10:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Cota, G., and Stefani, E., 1984, Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog, J. Physiol. (London) 351:135–154.

    CAS  Google Scholar 

  • Dorman, V., Partenskii, M. B., and Jordan, P. C, 1996, A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: The origin of cation selectivity, Biophys. J. 70:121–134.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity [see comments], Science 280:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Elinder, F., Madeja, M., and Arhem, P., 1996, Surface charges of K channels: Effects of strontium on five cloned channels expressed in Xenopus oocytes, J. Gen. Physiol. 108:325–332.

    Article  PubMed  CAS  Google Scholar 

  • Green, W. N., Weiss, L. B., and Andersen, O. S., 1987, Batrachotoxin-modified sodium channels in planar lipid bilayers: Ion permeation and block, J. Gen. Physiol. 89:841–872.

    Article  PubMed  CAS  Google Scholar 

  • Guy, H. R., and Durell, S. R., 1995, Structural models of Na+, Ca2+, and K+ channels, Soc. Gen. Physiol. Ser. 50:1–16.

    PubMed  CAS  Google Scholar 

  • Guy, H. R., and Seetharamulu, P., 1986, Molecular model of the action potential sodium channel,Proc. Natl. Acad. Sci. U.S.A. 83:508–512.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Takahashi, K., 1974, The anomalous rectification and cation selectivity of the membrane of a starfish egg cell, J. Membr. Biol. 18:61–80.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., Miyazaki, S., Krasne, S., and Ciani, S., 1977, Anomalous permeability of the egg cell membrane of a starfish in K + -T1+ mixtures, J. Gen. Physiol. 70:269–281.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, H. A., Kirsch, G. E., Drewe, J. A., Taglialatela, M., Joho, R. H., and Brown, A. M., 1991, Exchange of conduction pathways between two related K+ channels, Science 251:942–944.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., Abramson, T., and MacKinnon, R., 1992, A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels, Science 258:1152–1155.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., Lu, A., Abramson, T., and MacKinnon, R., 1994, Mutations in the K+ channel signature sequence, Biophys. J. 66:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., Odessey, E., and Miller, C., 1997, Tetrameric stoichiometry of a prokaryotic K+ channel, Biochemistry. 36:10335–10342.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels, Nature 309:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo, P., and MacKinnon, R., 1995, Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor, Science 268:307–310.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1966, Common mode of three agents that decrease the transient change in sodium permeability in nerves, Nature 210:1220–1222.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1968, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol. 51:199–219.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1970, Ionic channels in nerve membranes, Prog. Biophys. Mol. Biol. 21:1–32.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1973, Potassium channels in myelinated nerve: Selective permeability to small cations, J. Gen. Physiol. 61:669–686.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1992, Ionic Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Hille, B., and Schwarz, W., 1978, Potassium channels as multi-ion single-file pores, J. Gen. Physiol. 72:409–442.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., Woodhull, A. M., and Shapiro, B. I., 1975, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH, Trans. R. Soc. London 270:301–318.

    Article  CAS  Google Scholar 

  • Hockerman, G. H., Johnson, B. D., Abbott, M. R., Scheuer, T., and Catterall, W. A., 1997, Molecular determinants of high affinity phenylalkylamine block of L-type calcium channels in transmembrane segment IIIS6 and the pore region of the α1 subunit, J. Biol. Chem. 272:18759–18765.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116:449–472.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952b, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116:424–448.

    CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F., 1952c, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D., 1955, The potassium permeability of a giant nerve fibre, J. Physiol. (tendon) 128:61–88.

    CAS  Google Scholar 

  • Holmgren, M., Jurman, and M. E., Yellen, G. 1996, N-type inactivation and the S4-S5 region of the Shaker K+ channel, J. Gen. Physiol, 108:195–206.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, M., Smith, P. L., and Yellen, G., 1997, Trapping of organic blockers by closing of voltage-dependent K+ channels, J. Neurosci. 14:1385–1393.

    Google Scholar 

  • Hopkins, W. F., Demas, V., and Tempel, B. L., 1994, Both N- and C-terminal regions contribute to the assembly and functional expression of homo- and heteromultimeric voltage-gated K+ channels, J. Neurosci. 14:1385–1393.

    PubMed  CAS  Google Scholar 

  • Hoshi, T., Zagotta, W. N., Aldrich, R. W. 1990, Biophysical and molecular mechanism of Shaker potassium channel inactivation, Science 250: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. S., Latorre, R., Toro, L., and Stefani, E., 1995, External barium block of Shaker potassium channels: Evidence for two binding sites, J. Gen. Physiol. 106:1069–1087.

    Article  PubMed  CAS  Google Scholar 

  • Immke, D., Wood, M., Kiss, L., and Korn, S. J., 1999, Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore, J. Gen. Physiol. 113:819–836.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, N., Gonoi, T., Clement, J. P. T., Namba, N., Inazawa, J., Gonzalez, G., Aguilar-Bryan, L., Seino, S., and Bryan, J., 1995, Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor [see comments], Science 270:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  • Isacoff, E. Y., and Jan, Y. N., 1991, Putative receptor for the cytoplamic inactivation gate in the Shaker K+ channel Nature, 353:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson, E., 1998, Using theory and simulation to understand permeation and selectivity in ion channels, Methods 14:342–351.

    Article  PubMed  CAS  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1997, Cloned potassium channels from eukaryotes and prokaryotes, Annu. Rev. Neurosci. 20:91–123.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. D., Hockerman, G. H., Scheuer, T., and Catterall, W. A., 1996, Distinct effects of mutations in transmembrane segment IVS6 on block of L-type calcium channels by structurally similar phenylal-kylamines, Mol. Pharmacol. 50:1388–1400.

    PubMed  CAS  Google Scholar 

  • Jordan, P. C, 1990, Ion-water and ion-polypeptide correlations in a gramicidin-like channel: A molecular dynamics study, Biophys. J. 58:1133–1156.

    Article  PubMed  CAS  Google Scholar 

  • Keating, M. T., and Sanguinetti, M. C., 1996, Molecular genetic insights into cardiovascular disease, Science 272:681–685.

    Article  PubMed  CAS  Google Scholar 

  • Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A., 1995, A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem, Nature 376:690–695.

    Article  PubMed  CAS  Google Scholar 

  • Koster, J. C., Sha, Q., Shyng, S., and Nichols, C. G., 1999, ATP inhibition of KATP channels: Control of nucleotide sensitivity by the N-terminal domain of the Kir6.2 subunit, J. Physiol. (London) 515:19–30.

    Article  CAS  Google Scholar 

  • Kowey, P. R., Marinchak, R. A., Rials, S. J., and Bharucha, D., 1997, Pharmacologic and pharmacokinetic profile of class III antiarrhythmic drugs, Am. J. Cardiol. 80:16–23.

    Article  Google Scholar 

  • Krapivinsky, G., Medina, L, Eng, L., Krapivinsky, L., Yang, Y., and Clapham, D. E., 1998, A novel inward rectifier K+ channel with unique pore properties, Neuron 20:995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Kreusch, A., Pfaffinger, P. J., Stevens, C. F., and Choe, S., 1998, Crystal structure of the tetramerization domain of the Shaker potassium channel, Nature 392:945–948.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, Y., Baldwin, T. J., Jan, Y. N., and Jan, L. Y., 1993, Primary structure and functional expression of a mouse inward rectifier potassium channel, Nature 362:127–133.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, H. P., Baker, O. S., Dhillon, D. S., and Isacoff, E. Y., 1996, Transmembrane movement of the Shaker K+ channel S4, Neuron 16:387–397.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. K., John, S. A., and Weiss, J. N., 1999, Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1, J. Gen. Physiol. 113:555–564.

    Article  PubMed  CAS  Google Scholar 

  • Lesage, F., Reyes, R., Fink, M., Duprat, F., Guillemare, E., and Lazdunski, M., 1996, Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge, EMBO J. 15:6400–6407.

    PubMed  CAS  Google Scholar 

  • Li, M., Jan, Y. N., and Jan. L. Y., 1992, Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel, Science 257:1225–1230.

    Article  PubMed  CAS  Google Scholar 

  • Liman, E. R., Hess, P., Weaver, F., and Koren, G., 1991, Voltage-sensing residues in the S4 region of a mammalian K+ channel, Nature 353:752–756.

    Article  PubMed  CAS  Google Scholar 

  • Liman, E. R., Tytgat, J., and Hess, P., 1992, Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs, Neuron 9:861–871.

    Article  PubMed  CAS  Google Scholar 

  • Lipkind, G. M., Hanck, D. A., and Fozzard, H. A., 1995, A structural motif for the voltage-gated potassium channel pore, Proc. Natl. Acad. Sci. U.S.A., 92:9215–9219.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Jurman, M. E., and Yellen, G., 1996, Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16:859–867.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Holmgren, M., Jurman, M. E. and Yellen, G., 1997, Gated access to the pore of the voltage-dependent K+ channel, Neuron 19:175–184.

    Article  PubMed  Google Scholar 

  • Lopez, G. A., Jan, Y. N., and Jan, L. Y., 1994, Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore, Nature 367:179–182.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, J., Owen, D., and Pongs, O., 1997, Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel, EMBO J. 16:6337–6345.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., 1991, Determination of the subunit stoichiometry of a voltage-activated potassium channel, Nature 350:232–235.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., and Miller, C., 1989, Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor, Science 245:1382–1385.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., and Yellen, G., 1990, Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels, Science 250:276–279.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T., 1998, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280:106–109.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, R., Zhou, J., Babble, T., and Koren, G., 1999, Ile-177 and Ser-180 in the S1 segment are critically important in Kv1.1 channel function, J. Biol Chem. 274:11487–11493.

    Article  PubMed  CAS  Google Scholar 

  • Minor, D. L., Jr., Masseling, S. J., and Jan, Y. N., and Jan, L. Y., 1999, Transmembrane structure of an inwardly rectifying potassium channel, Cell 96:879–891.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., 1998, Chemical basis for alkali cation selectivity in potassium-channel proteins, Chem. Biol 5:R291–R301.

    Article  PubMed  CAS  Google Scholar 

  • Murrell-Lagnado, R. D., Aldrich, R. W. 1993, Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides, J. Gen. Physiol. 102:949–975.

    Article  PubMed  CAS  Google Scholar 

  • Nagaya, N., and Papazian, D. M., 1997, Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum, J. Biol Chem. 272:3022–3027.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Nakajima, S., and Grundfest, H., 1965, The action of tetrodotoxin on electrogenic components of squid giant axons, J. Gen. Physiol 48:985–996.

    Article  CAS  Google Scholar 

  • Neyton, J., and Miller, C, 1988, Discrete Ba2+ as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel, J. Gen. Physiol 92:569–586.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, C. G., and Lopatin, A. N., 1997, Inward rectifier potassium channels, Annu. Rev. Physiol. 59:171–191.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Ogielska, E. M., and Aldrich, R. W., 1998, A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore, J. Gen. Physiol. 112:243–257.

    Article  PubMed  CAS  Google Scholar 

  • Ogielska, E. M., and Aldrich, R. W., 1999, Functional consequences of a decreased potassium affinity in a potassium channel pore: Ion interactions and C-type inactivation, J. Gen. Physiol. 113:347–358.

    Article  PubMed  CAS  Google Scholar 

  • Papazian, D. M., 1999, Potassium channels: Some assembly required, Neuron 23:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan. Y. N., and Jan, L. Y., 1987, Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila, Science 237:749–753.

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, V. A., 1975, Ion-membrane interactions as structural forces, Ann. N.Y. Acad. Sci. 264:161–171.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., Cortes, D. M., and Cuello, L. G., 1998, Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy, Nat. Struct. Biol. 5:459–469.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., Cortes, D. M., and Cuello, L. G., 1999, Structural rearrangements underlying K+ channel activation gating, Science 285:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. Z., Tanada, T. N., and Catterall, W. A., 1996, Molecular determinants of high affinity dihydropyridine binding in L- type calcium channels, J. Biol. Chem. 271:5293–5296.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. Z., Johnson, B. D., Hockerman, G. H., Acheson, M., Scheuer, T., and Catterall, W., 1997, Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis, J. Biol. Chem. 272:18752–18758.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, D. S., Scheuer, T., and Catterall, W. A., 1991, Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs, Mol. Pharmacol. 40:756–765.

    PubMed  CAS  Google Scholar 

  • Ravindran, A., and Moczydlowski, E., 1989, Influence of negative surface charge on toxin binding to canine heart Na channels in planar bilayers, Biophys. J. 55:359–365.

    Article  PubMed  CAS  Google Scholar 

  • Reuveny, E., Slesinger, P. A., Inglese, J., Morales, J. M., Iniguez-Lluhi, J. A., Lefkowitz, R. J., Bourne, H. R., Jan, Y. N., and Jan, L. Y., 1994, Activation of the cloned muscarinic potassium channel by G protein βγ subunits, Nature 370:143–146.

    Article  PubMed  CAS  Google Scholar 

  • Roux, B., and MacKinnon, R., 1999, The cavity and pore helices in the KcsA K+ channel: Electrostatic stabilization of monovalent cations, Science 285:100–102.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, M., Duprat, F., Heurteaux, C., Hugnot, J. P., and Lazdunski, M., 1997, New modulatory α subunits for mammalian Shab K+ channels, J. Biol Chem. 272:24371–24379.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., Baker, K., Butler, A., Covarrubias, M., Pak, M. D., and Wei, A., 1992, An essential ‘set‘ of K+ channels conserved in flies, mice and humans, Trends Neurosci. 15:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Seoh, S. A., Sigg, D., Papazian, D. M., and Bezanilla, F., 1996, Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel, Neuron 16:1159–1167.

    Article  PubMed  CAS  Google Scholar 

  • Shen, N. V., and Pfaffinger, P. J., 1995, Molecular recognition and assembly sequences involved in the subfamily- specific assembly of voltage-gated K+ channel subunit proteins, Neuron 14:625–633.

    Article  PubMed  CAS  Google Scholar 

  • Shen, N. V., Chen, X., Boyer, M. M., and Pfaffinger, P. J., 1993, Deletion analysis of K+ channel assembly, Neuron 11:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Z., Skach, W., Santarelli, V., and Deutsch, C., 1997, Evidence for interaction between transmembrane segments in assembly of Kv1.3, Biochemistry 36:15501–15513.

    Article  PubMed  CAS  Google Scholar 

  • Silvestry, F. E., and Kimmel, S. E., 1996, Calcium-channel blockers in ischemic heart disease, Curr. Opin. Cardiol 11:434–439.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B. N., 1999, Current antiarrhythmic drugs: An overview of mechanisms of action and potential clinical utility, J. Cardiovasc. Electrophysiol. 10:283–301.

    Article  PubMed  CAS  Google Scholar 

  • Starkus, J. G., Kuschel, L., Rayner, M. D., Heinemann, and S. H., 1997, Ion conduction through C-type inactivated Shaker channels, J. Gen. Physiol. 110:539–550.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, M., Hellwig, M., and Kerschensteiner, D., 1999, Subunit assembly and domain analysis of electrically silent K+ channel α-subunits of the rat Kv9 subfamily, J. Neurochem. 72:1725–1734.

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela, M., Champagne, M. S., Drewe, J. A., and Brown, A. M., 1994, Comparison of H5, S6 and H5-S6 exchanges on pore properties of voltage-dependent K+ channels, J. Biol. Chem. 269:13867–13873.

    PubMed  CAS  Google Scholar 

  • Tinker, A., Jan. Y. N., and Jan, L. Y., 1996, Regions responsible for the assembly of inwardly rectifying potassium channels, Cell 87:857–868.

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli, G. F., Backx, P. H. and Marban, E., 1993, Molecular basis of permeation in voltage-gated ion channels, Circ. Res. 72:491–496.

    Article  PubMed  CAS  Google Scholar 

  • Tu, L., Santarelli, V., Sheng, Z., Skach, W., Pain, D., and Deutsch, C., 1996, Voltage-gated K+ channels contain multiple intersubunit association sites, J. Biol. Chem. 271:18904–18911.

    Article  PubMed  CAS  Google Scholar 

  • Ussing, H. H., 1949, The distinction by means of tracers between active transport and diffusion: The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19:43–56.

    Article  CAS  Google Scholar 

  • Wible, B. A., Taglialatela, M., Ficker, E., and Brown, A. M., 1994, Gating of inwardly rectifying K+ channels localized to a single negatively charged residue, Nature 371:246–249.

    Article  PubMed  CAS  Google Scholar 

  • Wickman, K. D., Iniguez-Lluhl, J. A., Davenport, P. A., Taussig, R., Krapivinsky, G. B., Linder, M. E., Gilman, A. G., and Clapham, D. E., 1994, Recombinant G-protein βγ-subunits activate the muscariniegated atrial potassium channel, Neuron 16:113–122.

    Google Scholar 

  • Yang, J., Jan, Y. N., and Jan, L. Y., 1995, Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel, Neuron 14:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Yang, N., and Horn, R., 1995, Evidence for voltage-dependent S4 movement in sodium channels, Neuron 15:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Yang, N., George, A. L., Jr., and Horn, R., 1996, Molecular basis of charge movement in voltage-gated sodium channels, Neuron 16:113–122.

    Article  PubMed  Google Scholar 

  • Yellen, G., Jurman, M. E., Abramson, T., and MacKinnon, R., 1991, Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel, Science 251:939–942.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., Sodickson, D., Chen, T. Y., and Jurman, M. E., 1994, An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding, Biophys. J. 66:1068–1075.

    Article  PubMed  CAS  Google Scholar 

  • Yeola, S. W., Rich, T. C., Uebele, V. N., Tamkun, M. M., and Snyders, D. J., 1996, Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel: Role of S6 in antiarrhythmic drug binding, Circ. Res. 78:1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Yool, A. J., and Schwarz, T. L., 1991, Alteration of ionic selectivity of a K+ channel by mutation of the H5 region, Nature 349:700–704.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Xu, J., and Li, M., 1996, NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of Shaker-like potassium channels, Neuron 16:441–453.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Zhu, B., Yao, J. A., and Tseng, G. N., 1998, Differential effects of S6 mutations on binding of quinidine and 4-aminopyridine to rat isoform of Kv1.4: Common site but different factors in determining blockers’ binding affinity, J. Pharmacol. Exp. Ther. 287:332–343.

    PubMed  CAS  Google Scholar 

  • Zhou, W., and Jones, S. W., 1995, Surface charge and calcium channel saturation in bullfrog sympathetic neurons, J. Gen. Physiol. 105:441–462.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cho, HC., Backx, P.H. (2001). Three-Dimensional Structure of the K+Channel Pore: Basis for Ion Selectivity and Permeability. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics