Skip to main content

Use of Transgenic and Gene-Targeted Mice to Study K+Channel Function in the Cardiovascular System

  • Chapter

Abstract

A large number of K+ channel genes are expressed in the mammalian heart (for reviews, see Chandy and Gutman, 1995; Deal et al., 1996; Yost, 1999). The diversity of channel expression is enhanced further by coassembly of subunits encoded by different genes to form heteromeric channels, interaction of α-subunits with β-subunits, alternative splicing of K+ channel genes, posttranslational channel modifications, and factors that control insertion and clustering of channels on the cell membrane (Po et al., 1993; Morales et al., 1995; Kim et al., 1996; London et al., 1997; Zhou et al., 1998). This marked diversity leads to a complex array of K+ currents within the heart that varies among species and changes during development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., Keating, M. T., and Goldstein, S. A. N., 1999, MiRP1 forms I Kr potassium channels with HERG and is associated with cardiac arrhythmia, Cell 97:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., Gintant, G.A., and Liu, D.-W., 1991, Heterogeneity within the ventricular wall: Electrophysiology and pharmacology of epicardial, endocardial, and M cells, Circ. Res. 69:1427–1450.

    Article  PubMed  CAS  Google Scholar 

  • Babij, P., Askew, G. R., Nieuwenhuijsen, B., Su, C.-M., Bridal, T. R., Jow, B., Argentieri, T. M., Kulik, J., DeGennaro, L. J., Spinelli, W., and Colatsky, T. J., 1998, Inhibition of cardiac delayed rectifier K+ current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice, Circ. Res. 83:668–678.

    Article  PubMed  CAS  Google Scholar 

  • Babila, T., Moscucci, A., Wang, H., Weaver, F. E., and Koren, G., 1994, Assembly of mammalian voltage-gated potassium channels: Evidence for an important role of the first transmembrane segment, Neuron 12:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Baker, L. C, London, B., Choi, B-R., Koren, G., and Salama, G., 1998, Optical mapping of reentrant VT in transgenic mice, Circulation 98-I744 (Abstract).

    Google Scholar 

  • Banbury Conference on Genetic Background in Mice, 1997, Mutant mice and neuroscience: Recommendations concerning genetic background, Neuron 19:755–759.

    Article  Google Scholar 

  • Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M., 1998, Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit, Circ. Res. 83:560–567.

    Article  PubMed  CAS  Google Scholar 

  • Berul, C. I., Christe, M. E., Aronovitz, M. J., Seidman, C. E., Seidman, J. G., and Mendelsohn, M. E., 1997, Electrophysiological abnormalities and arrhythmias in alpha MHC mutant familial hypertrophic mice, J. Clin. Invest. 99:570–576.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, S. K., and Smithies, O., 1994, Altering mice by homologous recombination using embryonic stem cells, J. Biol. Chem. 269:27155–27158.

    PubMed  CAS  Google Scholar 

  • Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated K+ channel genes, in: Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (R. A. North, ed.), CRC Press, Boca Raton, Florida, pp. 1–79.

    Google Scholar 

  • Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., and Keating, M. T., 1995, A molecular basis for cardiac arrhythmias: HERG mutations cause long QT syndrome, Cell 80:795–803.

    Article  PubMed  CAS  Google Scholar 

  • Deal, K. K., England, S. K., and Tamkun, M. M., 1996, Molecular physiology of cardiac potassium channels, Physiol. Rev. 76:49–67.

    PubMed  CAS  Google Scholar 

  • Dixon, J. E., Shi, W., Wang. H.-S., McDonald, C., Yu, H., Wymore, R. S., Cohen, I. S., and McKinnon, D., 1996, Role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res. 79:659–668.

    Article  PubMed  CAS  Google Scholar 

  • Doevendans, P. A., Daemen, M. J., de Muinck, E. D., and Smits, J. F., 1998, Cardiovascular phenotyping in mice, Cardiovasc. Res. 39:34–49.

    Article  PubMed  CAS  Google Scholar 

  • Drici, M.-D., Arrighi, I., Chouabe, C., Mann, J. R., Lazdunski, M., Romey, G., and Barhanin, J., 1998, Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome, Circ. Res. 83:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Fiset, C., Clark, R. B., Shimoni, Y., and Giles, W. R., 1997, Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle, J. Physiol. (London) 500:51–64.

    PubMed  CAS  Google Scholar 

  • Fishman, G., 1998, Timing is everything in life: Conditional transgene expression in the cardiovascular system, Circ. Res. 82:837–844.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W., Xu, H., London, B., and Nerbonne, J. M., 1999, Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J. Physiol, 521: 587–599.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J. A., Kutschke, W., and London, B., 1998, Differential susceptibilities to class III antiarrhythmic drugs in mice with targeted disruptions in voltage-dependent potassium channel subunits, Circulation 98:I–695 (Abstract).

    Google Scholar 

  • Izumo, S., and Shioi, T., 1998, Cardiac transgenic and gene-targeted mice as models of cardiac hypertrophy and failure: A problem of (new) riches, J. Card. Failure 4:349–361.

    Article  Google Scholar 

  • Johns, D. C., Nuss, H. B., and Marban, E., 1997, Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs, J. Biol. Chem. 272:31598–31603.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, A., and Salama, G., 1995, Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts, Circ. Res. 77:784–802.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Cho, K. O., Rothschild, A., and Sheng, M., 1996, Heteromultimerization and NMDA receptorclustering activity of Chapsyn-110, a member of the PSD-95 family of proteins, Neuron 17:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, T., McTiernan, C. F., Frye, C. S., Slawson, S. E., Koretsky, A. P., Demetris, A. J., and Feldman, A. M., 1997, Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α, Circ. Res. 81:627–635.

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt, S., Yang, T., Anderson, M. E., Wessels, A., Niswender, K. D., Magnuson, M. A., and Roden, D. M., 1999, Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system, Circ. Res. 84:146–152.

    Article  PubMed  CAS  Google Scholar 

  • Lagna, G., and Hemmati-Brivanlou, A., 1998, Use of dominant-negative constructs to modulate gene expression, Curr. Top. Dev. Biol. 36:75–98.

    PubMed  CAS  Google Scholar 

  • London, B., Hill, J. A., Nguyen, H., Schieferl, S., and Nadal-Ginard, B., 1995, in vivo mutagenesis of the mouse heart: Targeted replacement of the murine delayed rectifier potassium channel mKv1.5 with the rat brain delayed rectifier channel rKv1.1, Circulation 92:I–155 (Abstract).

    Google Scholar 

  • London, B., Trudeau, M. C., Newton, K. P., Beyer, A. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Satler, C. A., and Robertson, G. A., 1997, Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current, Circ. Res. 81:870–878.

    Article  PubMed  CAS  Google Scholar 

  • London, B., Jeron, A., Zhou, J., Buckett, P., Han, X., Mitchell, G. F., and Koren, G., 1998a, Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel, Proc. Natl. Acad. Sci. U.S.A. 95:2926–2931.

    Article  PubMed  CAS  Google Scholar 

  • London, B., Wang, D. W., Hill, J. A., and Bennett, P. B., 1998b, The transient outward current in mice lacking the potassium channel gene Kv1.4, J. Physiol. (London) 509:171–182.

    Article  CAS  Google Scholar 

  • London, B., Pan, X.-H., Lewarchik, C. M., and Lee, J. S., 1998c, QT interval prolongation and arrhythmias in heterozygous Merg1-targeted mice, Circulation 98:I–56 (Abstract).

    Google Scholar 

  • MacKinnon, R., 1991, Determination of the subunit stoichiometry of a voltage-activated potassium channel, Nature 350:232–235.

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi, V., Koren, G., Michaud, S., Pinset, C., and Izumo, S., 1989, Identification of the sequences responsible for the tissue-specific and hormonal regulation of the cardiac myosin heavy chain genes, in: Cellular and Molecular Biology of Muscle Development (F. Stockdale L. Kedes, eds.), Alan R. Liss Inc., New York, pp. 369–379.

    Google Scholar 

  • Mitchell, G. F., Jeron, A., and Koren, G., 1998, Measurement of heart rate and Q-T interval in the conscious mouse, Am. J. Physiol. 274:H747–H751.

    PubMed  CAS  Google Scholar 

  • Morales, M. J., Castellino, R. C., Crews, A. L., Rasmusson, R. L., and Strauss, H. C, 1995, A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits, J. Biol. Chem. 270:6272–6277.

    Article  PubMed  CAS  Google Scholar 

  • Po, S., Roberds, S., Snyders, D. J., Tamkun, M. M., and Bennett, P. B., 1993, Heteromultimeric assembly of human potassium channels: Molecular basis of a transient outward current?, Circ. Res. 72:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Curran, M. E., Spector, P. S., and Keating, M. T., 1996, Spectrum of HERG K+ -channel dysfunction in an inherited cardiac arrhythmia, Proc. Natl. Acad. Sci. U.S.A. 93: 2208–2212.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, B., 1998, Inducible gene targeting in mice using the Cre/lox system, Methods 14:381–392.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkanp, W., Chen, Q., and Sun, Y., 1997, KCNE1 mutations cause Jervell and Lange-Nielsen syndrome, Nat. Genet. 17:267–268.

    Article  PubMed  CAS  Google Scholar 

  • Shastry, B. S., 1998, Gene disruption in mice: Models of development and disease, Mol. Cell. Biochem. 181:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Splawski, I., Timothy, K. W., Vincent, G. M., Atkinson, D. L., and Keating, M. T., 1997, Molecular basis of the long-QT syndrome associated with deafness, N. Engl. J. Med. 336:1562–1567.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, N., Dalton, N., Mao, L., Rockman, H. A., Peterson, K. L., Gottshall, K. R., Hunter, J. J., Chien, K. R., and Ross, J., Jr., 1996, Transthoracic echocardiography in models of cardiac disease in the mouse, Circulation 94:1109–1117.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M., 1998, The use of embryonic stem cells for the genetic manipulation of the mouse, Curr. Topi. Dev. Biol. 36:99–114.

    CAS  Google Scholar 

  • Vaidya, D., Morley, G. E., Samie, F. H., and Jalife, J., 1999, Reentry and fibrillation in the mouse heart: A challenge to the critical mass hypothesis, Circ. Res. 85:174–181.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Curran., M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., Shen, J., Timothy, K. W., Vincent, G. M., de Jager, T., Schwartz, P. J., Towbin, J. A., Moss, A. J., Atkinson, D. L., Landes, G. M., Connors, T. D., and Keating, M. T., 1996, Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias Nat. Genet. 12:17–23.

    Article  PubMed  Google Scholar 

  • Wickenden, A. D., Huang, Q., Factor, S. M., Backx, P. H., and Fishman, G. I., 1997, Expression of a dominant-negative Kv4.2 channel in the hearts of transgenic mice, Circulation 96:I–422 (Abstract).

    Google Scholar 

  • Wickman, K., Nemec, J., Gendler, S. J., and Clapham, D. E., 1998, Abnormal heart rate regulation in GIRK4 knockout mice, Neuron 20:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Dixon, J. E., Barry, D. M., Trimmer, J. S., Merlie, J. P., McKinnon, D., and Nerbonne, J. M., 1996, Developmental analysis reveals mismatches in the expression of K+ channel α subunits and voltagegated K+ channel currents in rat ventricular myocytes, J. Gen. Physiol. 108:405–419.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Barry, D. M., Li, H., Brunei, S., Guo, W., and Nerbonne, J. M., 1999, Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 α subunit, Circ. Res. 85:623–633.

    Article  PubMed  CAS  Google Scholar 

  • Yost, C. S., 1999, Potassium channels: Basis aspects, functional roles, and medical significance, Anesthesiology 90:1186–1203.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Gong, Q., Epstein, M. L., and January, C. T., 1998, HERG channel dysfunction in human long QT syndrome: Intracellular transport and functional defects, J. Biol. Chem. 273:21061–21066.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, H. G., and Millar, H. D., 1998, Technology and application of ultraminiature catheter pressure transducers, Can. J. Cardiol. 14:1259–1266.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

London, B. (2001). Use of Transgenic and Gene-Targeted Mice to Study K+Channel Function in the Cardiovascular System. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics