Calculation of Absorbed Dose Distributions Using Removal- Diffusion Theory for BNCT Treatment Planning

  • B. Albertson
  • J. Niemkiewicz
  • T. E. Blue
  • N. Gupta

Abstract

Successful implementation of Boron Neutron Capture Therapy (BNCT), requires a knowledge of the radiation dose distributions in the tissue being treated. In order to plan a BNCT treatment, a treatment planning system is necessary, which is accurate, as well as, fast enough to calculate dose distributions in minutes. Most BNCT treatment planning has focused on Monte Carlo1,2 or Discrete Ordinates3 techniques. Removal-diffusion theory may provide an alternative calculation technique that may be both accurate enough and fast enough for BNCT treatment planning. This work investigates the use of removal-diffusion theory for BNCT to calculate neutron flux distributions and, subsequently, neutron absorbed dose distributions, within a patient’s head.

Keywords

Boron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.J. Wheeler, M.L. Griebenow, D.E. Wessol, and D.W. Nigg, “Analytical Modeling for Neutron Capture Therapy,” Strahlentherapie und Oncolgie, 165, 186 (1989).Google Scholar
  2. 2.
    R.G. Zamenhoff, S. Clement, K. Lin, C. Lui, D. Ziegelmiller, and O.K. Harling, “Monte Carlo Treatment Planning and High-Resolution Alpha Track Autoradiography for Neutron Capture Therapy, ”Strahlentherapie und Oncolgie, 165, 188 (1989).Google Scholar
  3. 3.
    D.W. Nigg, P.D. Randolph, and F.J. Wheeler, “Demonstration of Three-Dimensional Deterministic Radiation Transport Theory Dose Distribution Analysis for Boron Neutron Capture Therapy,” Medical Physics, 18(1), 43 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Niemkiewicz, and T.E. Blue, “The Use of Removal-Diffusion Theory to Calculate Neutron Flux Distributions for Dose Determination in Boron Neutron Capture Therapy,” Proc. 7th International Symposium on Neutron Capture Therapy for Cancer, B. Larson, J. Crawford, and R. Weinreich, Eds., Zurich, Switzerland, Sept. 4–7 1996.Google Scholar
  5. 5.
    J. Briesmeister, Ed., “MCNP-A General Monte Carlo N-Particle Transport Code, Version 4B,” LA-12625-M (March 1997).Google Scholar
  6. 6.
    K.L. Derstine, “DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Difference Diffusion Theory Problems,” Argonne National Laboratory, ANL-82–64, Argonne (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • B. Albertson
    • 1
  • J. Niemkiewicz
    • 2
  • T. E. Blue
    • 1
  • N. Gupta
    • 1
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.Grant/Riverside Methodist HospitalsColumbusUSA

Personalised recommendations