Skip to main content

Boron Neutron Capture Therapy for Glioblastoma Multiforme

Results from the Initial Phase I/II Dose Escalation Studies

  • Chapter
Frontiers in Neutron Capture Therapy

Abstract

Glioblastoma multiforme (GBM) accounts for about 80% of all adult malignant gliomas. Despite aggressive surgery, chemotherapy and radiation therapy, GBM continues to be one of the most intractable brain tumors. The median and 5-year survivals are typically 9 to 10 months and <5%, respectively.1 For primary malignant brain tumors, the most powerful prognostic factors are histology, age and functional status.2 Although GBM rarely metastasizes to other sites and organs, the tumor cells infiltrate deeply into the surrounding brain and may even reach the contralateral hemisphere. External beam photon radiation therapy cannot ablate the infiltrating GBM cells because radiation doses high enough to kill those cells would cause unacceptable necrosis of normal brain tissues. Boron neutron capture therapy (BNCT) has the potential to address this inadequacy through a more selective Irradiation of GBM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.G. Davis, S. Freels, J. Grutsch, S. Barlas, and S. Brem, Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991, J. Neurosurg., 88:1–10, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. W.J. Curran, CB Scott, J. Horton, J.S. Nelson, A.S. Weinstein, A.J. Fischbach, C.H. Chang, M. Rotman, S.O. Asbell, R.E. Krisch, and D.F. Nelson, Recursive partitioning analysis of prognostic factors in three radiation oncology group malignant glioma trials, J. Nat. Cancer Inst., 85:704–710, 1993.

    Article  PubMed  Google Scholar 

  3. H. Hatanaka, and Y. Nakagawa, Clinical results of long surviving brain tumor patients who underwent boron neutron capture therapy, Int. J. Radiat. Oncol. Biol. Phys., 28:1061–1066, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. J.A. Coderre, T.M. Button, P.L. Micca, C. Fisher, M.M. Nawrocky, and H.B. Liu, Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex, Int. J. Radiat. Oncol. Biol. Phys., 30:643–652, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. J.S. Nelson, Y. Tsukada, D. Schoenfeld, K. Fulling, J. Lamarche, and N. Peress, Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas, Cancer, 52:550–554, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. R.G. Fairchild, D. Gabel, B.H. Laster, D. Greenberg, W. Kiszenick, and P. Micca, Microanalytical techniques for boron analysis using the 10B(n,α)7Li reaction, Med. Phys., 13:50–56, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. W. Bauer, P. Micca, and B. White, A rapid method for the direct analysis of boron in whole blood by atomic emission spectroscopy, in: “Advances in Neutron Capture Therapy”, A.H. Soloway, R.F. Barth, and D.E. Carpenter, eds., Plenum Press, New York, pp. 403–407, 1993.

    Chapter  Google Scholar 

  8. J.A. Coderre, A.D. Chanana, D.D. Joel, E.H. Elowitz, P.L. Micca, M.M. Nawrocky, M. Chadha, J.O. Gebbers, M. Shady, N.S. Peress, and D.N. Slatkin, Biodistribution of P-boronophenylalanine in patients with glioblastoma multiforme: Boron concentration correlates with tumor cellularity, Radiat. Res., 149:163–170, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. M. Chadha, J. Capala, J.A. Coderre, E.H. Elowitz, J. Iwai, D.D. Joel, H.B. Liu, L. Wielopolski, and A.D. Chanana, Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory, Int. J. Radiat. Oncol. Biol. Phys., 40:829–834, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. L. Wielopolski, J. Capala, M. Chadha, N. Pendzick, and A.D. Chanana, Considerations for patient positioning in static beams for BNCT, in: “Advances in Neutron Capture Therapy, Volume I, Medicine and Physics,” B. Larsson, J. Crawford, and R. Weinreich, eds., Elsevier, Amsterdam, pp. 357–360, 1997.

    Google Scholar 

  11. H.B. Liu, D.D. Greenberg, J. Capala, J.A. Coderre, and F.J. Wheeler, An improved neutron collimator for brain tumor irradiation in clinical boron neutron capture therapy, Med. Phys., 23:2051–2060, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. J.D. Cox, J. Stetz, and T.F. Pajak, Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC), Int. J. Radiat. Oncol. Biol. Phys., 31:1341–1346, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. P.J. Kelly, C. Daumas-Duport, B.W. Sheithauer, and D.B. Kispert, Stereotactic histologic correlations of computed tomography-and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms, Mayo Clin. Proc., 62:450–459, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. G.M. Morris, J.A. Coderre, J.W. Hopewell, P.L. Micca, and L. Wielopolski, Boron neutron capture therapy: Re-irradiation response of the rat spinal cord, Radiother. Oncol., (in press).

    Google Scholar 

  15. G.M. Morris, J.A. Coderre, J.W. Hopewell, P.L. Micca, M.M. Nawrocky, H.B. Liu, and T. Bywaters, Response of the central nervous system to boron neutron capture irradiation: Evaluation using rat spinal cord model, Radiother. Oncol, 32:249–255, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. J.A. Coderre, M.S. Makar, P.L. Micca, M.M. Nawrocky, H.B. Liu, D.D. Joel, D.N. Slatkin, and H.I. Amols, Derivations of relative biological effectiveness for the high-LET radiation produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo, Int. J. Radiat. Oncol. Biol. Phys., 27:1121–1129, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. H. Fukuda, J. Hiratsuka, C. Honda, T. Kobayashi, K. Yoshino, H. Karashima, J. Takahashi, Y. Abe, K. Kanda, M. Ichihashi, and Y. Mishima, Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the skin, Radiat. Res., 138:435–42, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diaz, A.Z. et al. (2001). Boron Neutron Capture Therapy for Glioblastoma Multiforme. In: Hawthorne, M.F., Shelly, K., Wiersema, R.J. (eds) Frontiers in Neutron Capture Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1285-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1285-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5478-9

  • Online ISBN: 978-1-4615-1285-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics