Skip to main content

Dermal Exposures in Residences

  • Chapter
Residential Exposure Assessment

Abstract

Dermal exposure is clearly an important route of entry for environmental materials not just into the skin itself (where undesirable endpoints may include dermatitis, skin irritation, sensitization or even skin cancer), but also into the body as a whole. Once an agent has passed this first line of defense and has entered the systemic circulation, it has the opportunity to produce effects in the rest of the body, such as liver toxicity, kidney damage, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AIHC (American Industrial Health Council). 1994. Exposure factors sourcebook. Washington, D.C. 118 pages.

    Google Scholar 

  • Baynes, R.E., C. Brownie, H. Freeman, and J.E. Reviere. 1996. In vitro percutaneous absorption of benzidine in complex mechanistically defined chemical mixtures. Toxicol. Appl. Pharmacol. 141:497–506.

    Article  CAS  Google Scholar 

  • Doull, J., C.D. Klaassen, and M.O. Amdur. 1991. Casarett and DoulPs Toxicology. Macmillan. New York New York.

    Google Scholar 

  • Driver, J.H., J.J. Konz, and G.K. Whitmyre. 1989. Soil adherence to human skin. Bull. Env. Contam. Toxicol. 43:814–820.

    Article  CAS  Google Scholar 

  • Dutkiewicz, T. and H. Tyras. 1967. A study of the skin absorption of ethylbenzene in man. Brit. Med. J. 24:330–332.

    CAS  Google Scholar 

  • Dutkiewicz, T. and H. Tyras. 1968. Skin absorption of toluene, styrene, and xylene in man. Brit. J. Indust. Med. 25:243–246.

    CAS  Google Scholar 

  • ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals). 1993. Technical Report No. 20: Percutaneous Absorption. August 1993. Brussels.

    Google Scholar 

  • Fenske, R.A., J.T. Leffingwell, and R.C. Spear. 1985. Evaluation of fluorescent tracer methodology for dermal exposure assessment. In: Honeycutt, R.C., Zweig, G., and Ragsdale (eds.). Dermal exposure related to pesticide use. ACS Symposium Series Number 273. American Chemical Society. Washington, D.C.

    Google Scholar 

  • Fenske, R.A., J.T. Leffingwell, and R.C. Spear. 1986. A video imaging technique for assessing dermal exposure. II. Fluorescent tracer testing. AIHA Journal 47:771–775.

    Article  CAS  Google Scholar 

  • Fenske, R.A. 1993. Dermal exposure assessment techniques. Ann. Occup. Hyg. 37(6):687–706.

    Article  CAS  Google Scholar 

  • Fenske, R.A., and C. Lu. 1994. Determination of handwash removal efficiency: Incomplete removal of the pesticide chlorpyrifos from skin by standard handwash techniques. AIHA Journal 55(5):425–432.

    Article  CAS  Google Scholar 

  • Flynn, G.L. 1990. Physico-chemical determinants of skin absorption. Pages 93–127. In: Gerity, T.R. and Henry, C.J. (eds.). Principles of route to route extrapolation for risk assessment. Elsevier Science Publishing Company, Inc. Amsterdam, The Netherlands.

    Google Scholar 

  • Health Canada, U.S. Environmental Protection Agency, and American Crop Protection Association. 1995. Pesticide handler’s exposure database (PHED). 1992. Version 1.1 update. March 1995.

    Google Scholar 

  • Howes, D., R. Guy, J. Hadgraft et al. 1996. Methods for assessing percutaneous absorption. The report and recommendations of ECVAM workshop 13. ATLA 24:81–106.

    Google Scholar 

  • Hussain, A.S., A.K. Kane, X. Yu, and R. Bronaugh. 1992. Chemical structure-skin permeability relationships: A neural network analysis. Abstract. Pharm. Res. 9:S191.

    Google Scholar 

  • Hussain, A.S., R.D. Johnson, N.N. Vachharajani, and W.A. Ritschel. 1993. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data. Pharm. Res. 10(3):466–469.

    Article  CAS  Google Scholar 

  • Jin, B. and A.J. Hopfinger. 1996. Characterization of lipid membrane dynamics by simulation: 3. Probing molecular transport across the phospholipid bilayer. Pharm Res 13:1786–1794.

    Article  CAS  Google Scholar 

  • Kasting, G.B., R.L. Smith, and E.R. Cooper. 1987. Effect of lipid solubility and molecular size on percutaneous absorption. Pharmacol. Skin 1:138–153.

    Google Scholar 

  • Kasting, G.B. and P.J. Robinson. 1993. Skin permeability is limited by viable tissues. Pharm. Res. 10:930–931.

    Article  CAS  Google Scholar 

  • Kissel, J.C., K.Y. Richter, and R.A. Fenske. 1996. Factors affecting soil adherence to skin in hand-press trials. Bull. Environ. Contam. Toxicol. 56(5):722–728.

    Article  CAS  Google Scholar 

  • Keeble, V.B., L. Correll, and M. Ehrich. 1993. Evaluation of knit glove fabrics as barriers to dermal absorption of organophosphorous insecticide using an in vitro test system. Toxicol. 81(3):195–203.

    Article  CAS  Google Scholar 

  • Knaak, j.B., M.A. Al-Bayati, O.G Raabe, J.L. Wiedmann, J.W Pensyl, J.H. Ross, A.P. Leber, and P. Jones. 1992. Mixer-loader-applicator exposure and percutaneous absorption studies involving EPTC herbicide. Biological monitoring for pesticide exposure, measurement estimation, and risk reduction. American Chemical Society. Washington, D.C.

    Google Scholar 

  • Knarr, R.D., G.L. Cooper, E.A. Brian, M.G. Kleinschmidt, and D.G. Graham. 1985. Worker exposure during aerial application of a granular formulation of Ordram selective herbicide to rice. Arch. Environ. Contam. Toxicol. 14(5):523–527.

    Article  CAS  Google Scholar 

  • Lavy, T.L., J.S. Shepard, and D.C. Bouchard. 1980. Field worker exposure and helicopter spray pattern of 2,4,5-T Bull. Env. Contam. Toxicol. 24:90–96.

    Article  CAS  Google Scholar 

  • Leung, H. and D.J. Paustenbach. 1994. Techniques for estimating the percutaneous absorption of chemicals due to occupational and environmental exposure. Appl. Occup. and Env. Hyg. 9(3):187–197.

    Article  CAS  Google Scholar 

  • Lioy, P.J., T. Wainman, and C. Weisel. 1993. A wipe sampler for the quantitative measurement of dust on smooth surfaces: Laboratory performance studies. J. Exposure Anal. Environ. Epidemiol. 3(3):315–330.

    CAS  Google Scholar 

  • MacKay, D. 1982. Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274.

    Article  CAS  Google Scholar 

  • McArthur, B. 1992. Dermal measurement and wipe sampling methods: A review. Appl. Occup. Environ. Hygiene 7(9):599–606.

    Article  CAS  Google Scholar 

  • Ness, S.A. 1994. Surface and dermal monitoring for toxic exposures. Van Nostrand Reinhold. New York, New York. 561 pages.

    Google Scholar 

  • Potts, R.O. and R.H. Guy. 1992. Predicting skin permeability. Pharm. Res. 9:663–669.

    Article  CAS  Google Scholar 

  • Qiao, G.L., J.D. Brooks, R.E. Baynes, N.A. Monteiro-Reviere, P.L. Williams, and J.E. Reviere. 1996. Use of mechanistically defined chemical mixtures (MDCM) to assess component effects on the percutaneous absorption and cutaneous disposition of topically exposed chemicals. I. Studies with parathion mixtures in isolated perfused porcine skin. Toxicol. Appl. Pharmacol. 141:473–486.

    CAS  Google Scholar 

  • Que Hee, S.S., B. Peace, C.S. Clark, J.R. Boyle, R.L. Bornschein, and P.B. Hammond. 1985. Evolution of efficient methods to sample lead sources, such as house dust and hand dust, in the homes of children. Environ. Res. 38:77–95.

    Article  CAS  Google Scholar 

  • Rougier, A., D. Dupuis, C. Lotte, R. Rouget, and H. Schaefer. 1983. In vivo correlation between stratum corneum reservoir function and percutaneous absorption. J. Invest. Dermatol. 81:275–278.

    Article  CAS  Google Scholar 

  • Rougier, A., D. Dupuis, C. Lotte, and R. Rouget. 1985. The measurement of the stratum corneum reservoir. A predictive method for in vivo percutaneous absorption studies: Influence of application time. J. Invest. Dermatol. 84:66–88.

    Article  CAS  Google Scholar 

  • Rougier, A., C. Lotte, and H. Maibach. 1987. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J. Pharm. Sci. 76:451–454.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1985. Development of statistical distributions of ranges of standard factors used in exposure assessments. EPA/600/8-85/010. Office of Health and Environmental Assessment, Exposure Assessment Group. Washington D.C.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1987. Pesticide assessment guidelines. Subdivision U Applicator exposure monitoring. Publication PB87-133286. National Technical Information Service. Springfield, Virginia.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1989. Methods for assessing exposure to chemical substances. EPA/560/5-85-017. Office of Toxic Substances. Washington D.C.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1992a. Dermal exposure assessment: Principles and applications. Interim report. EPA/600/8-91/01 1B. Office of Research and Development. Washington, D.C. Page 5.49.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1992b. Laboratory method to determine the retention of liquids on the surface of hands. Final report. Versar, Inc. Springfield, Virginia. EPA-68-02-4254, EPA/747/R-92/003. NTIS PB93-105534. U.S. Environmental Protection Agency, Office of Pollution, Prevention, and Toxics, Washington D.C. 72 pages.

    Google Scholar 

  • Williams, PL., D. Thompson, G.L. Qiao, N.A. Monteiro-Reviere, and J.E. Reviere. 1996. Use of mechanistically defined chemical mixtures (MDCM) to assess mixture component effects on the percutaneous absorption and cutaneous disposition of topically exposed chemicals. II. Development of a general der-matopharmacokinetic model for use in risk assessment. Toxicol. Appl. Pharmacol. 141:487–496.

    Article  CAS  Google Scholar 

  • Wilschut, A., W.F. ten Berge, P.J. Robinson, and T.E. McKone. 1995. Estimating skin permeation: the validation of five mathematical skin permeation models. Chemosphere 30:1275–1296.

    Article  CAS  Google Scholar 

  • Zellers, E.T. and R. Sulewski. 1993. Modeling the temperature dependence of N-methylpyrrolidone permeation through butyl- and natural-rubber gloves. AIHA Journal 54:465–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baker, S., Driver, J., McCallum, D. (2000). Dermal Exposures in Residences. In: Baker, S., Driver, J., McCallum, D. (eds) Residential Exposure Assessment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1279-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1279-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5475-8

  • Online ISBN: 978-1-4615-1279-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics