Skip to main content

CD4+ T Cells Specific for Factor VIII as a Target for Specific Suppression of Inhibitor Production

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 489))

Abstract

Some hemophilia A patients, when treated with factor VIII (fVIII) products to control bleeding episodes, develop antibodies (Ab) to surface domains of fVIII that are essential for its procoagulant function 1,3 Development of fVIII inhibitors is a serious therapeutic complication that affects 20 – 25% of patients with hemophilia A 1,3 Individuals without congenital fVIII deficiency may also develop pathogenic autoimmune inhibitory Ab to fVIII that cause acquired hemophilia, a rare yet severe bleeding disorder (4,5 ). FVIII inhibitors are high affinity IgG, and their synthesis requires the intervention of fVIII specific CD4+ T helper cells.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aledort L. Inhibitors in hemophilia patients: Current status and management. Am J Hematol 1994; 47:208–217.

    Article  PubMed  CAS  Google Scholar 

  2. Hoyer LW. The incidence of factor VIII inhibitors in patients with severe hemophilia A. In: Aledort LM, Hoyer LW, Lusher JM, Reimer HM, White GC, eds. Inhibitors to Coagulation Factors. Adv Exp Med Biol 1995; 386:35–45.

    Chapter  Google Scholar 

  3. Kreuz W, Escuriola-Ettingshausen C, Martinez-Saguer I, Gungor T, Kornhuber B. Epidemiology of inhibitors in haemophilia A. Vox Sang 1996; 70(suppl 1):2–8.

    Article  PubMed  Google Scholar 

  4. Shulman NR, Hirschman RJ. Acquired hemophilia. Trans Assoc Am Physicians 1969; 82:388–397.

    PubMed  CAS  Google Scholar 

  5. Cohen AJ, Kessler CM. Acquired inhibitors. Baillieres Clin Haematol 1996; 9:331–354.

    Article  PubMed  CAS  Google Scholar 

  6. Engel AG. Myasthenia gravis and myasthenic syndromes. Ann Neurol 1984; 16:519–534.

    Article  PubMed  CAS  Google Scholar 

  7. Conti-Fine BM, Protti MP, Bellone M, Howard Jr. JF. Myasthenia gravis: The immunobiology of an autoimmune disease. RG Landes, Austin, 1997.

    Google Scholar 

  8. Germain RH, Margulies DM The biochemistry and cell biology of antigen processing and presentation. Ann Rev Immunol 1993; 11:403–450.

    Article  CAS  Google Scholar 

  9. Abbas AK, Lichtman AH, Pober JS. T lymphocyte antigen recognition and activation. In: Cellular and Molecular Immunology. Abbas AK, Lichtman AH, Pober JS, eds. Philadelphia: W.B. Saunders 1997; 138–170.

    Google Scholar 

  10. Lenschow DJ, Walunas TL, Bluestone JA. CD28B7 system of T cell costimulation. Ann Rev Immunol 1996; 14:233–258.

    Article  CAS  Google Scholar 

  11. Lanzavecchia K. Antigen-specific interaction between T and B cells. Nature 1985; 11:537–539.

    Article  Google Scholar 

  12. Abbas A, Murphy K, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383:787–793.

    Article  PubMed  CAS  Google Scholar 

  13. Romagnani S. The Th1/I12 paradigm. Immunol Today 1997; 18:263–266.

    Article  PubMed  CAS  Google Scholar 

  14. Weigle WO, Romball CG. CD4+ T-cell subsets and cytokines involved in peripheral tolerance. Immunol Today 1997; 18:533–538.

    Article  PubMed  CAS  Google Scholar 

  15. O’Garra A, Steinman L, Gijbels K. CD4+ T cell subsets in autoimmunity. Curr Opin Immunol 1997; 9:872–883.

    Article  PubMed  Google Scholar 

  16. Seder RA, Mart T, Sieve MC, Strober W, Letterio J, Roberts AB, Kelsall B. Factors involved in the differentiation of TGF-ß-producing cells from naive CD4+ T cells: IL-4 and IFN-y have opposing effects, while TGF-ß positively regulates its own production. J Immunol 1998; 160:5719–5728.

    PubMed  CAS  Google Scholar 

  17. Shi HN, Grusby MJ, Nagler-Anderson C. Orally induced peripheral nonresponsiveness is maintained in the absence of functional Thl or Th2 cells. J Immunol 1999; 162:5143–5148.

    PubMed  CAS  Google Scholar 

  18. Briere F, Servet-Delprat C, Bridon JM, Saint-Remy JM, Banchereau J. Human interleukin-10 induces naïve surface immunoglobulin D+ (sIgD+)B cells to secrete IgG 1 and IgG3. J Exp Med 1994; 179:757–762.

    Article  PubMed  CAS  Google Scholar 

  19. Letterio J, Roberts AB. Regulation of immune responses by TGF-ß. Ann Rev Immunol 1998; 16:137–161.

    Article  CAS  Google Scholar 

  20. King C, Davies J, Mueller R, Lee MS, Krahl T, Yeung B, O’Connor E, Sarvetnick N. TGF-ß1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 1998; 8:601–613.

    Article  PubMed  CAS  Google Scholar 

  21. Gorham JD, Guler ML, Fenoglio D, Gubler U, Murphy KM. Low dose TGF-ß attenuates IL-12 responsiveness in murine Th cells. J Immunol 1998; 161:1664–1670.

    PubMed  CAS  Google Scholar 

  22. Bright JJ, Sriram S. TGF-ß inhibits IL-12-induced activation of Jak-STAT pathway in T lymphocytes. J Immunol 1998; 161:1772–1777.

    PubMed  CAS  Google Scholar 

  23. O’Garra A. Cytokines induce the development of functionally heterogenous T helper cell subsets Immunity 1998; 8:275–283.

    Article  PubMed  Google Scholar 

  24. Gilles JGG, Jacquemin MG, Saint-Remy JMR. Factor VIII inhibitors. Thromb Haemost 1997; 78:641–646.

    PubMed  CAS  Google Scholar 

  25. Hoyer LW, Scandella D, Factor VIII inhibitors: Structure and function in autoantibody and hemophilia A patients. Semin Hematol 1994; 31(suppl 4):1–5.

    PubMed  CAS  Google Scholar 

  26. Wu H, Krampf M, Karachunski PI, Okita DK, Reding MT, Lollar P, Hoyer LW, Conti-Fine BM Hemophilia A mice treated with human factor VIII as a model system for formation of inhibitors. (manuscript in preparation)

    Google Scholar 

  27. Matzinger P. Tolerance, danger, and the extended family Ann Rev Immunol 1994; 12:991–1045.

    Article  CAS  Google Scholar 

  28. Nossal G. Choices following antigen entry: antibody formation or immunologic tolerance? Ann Rev Immunol 1995; 13:1–27.

    Article  CAS  Google Scholar 

  29. Jacquemin MG, Saint-Remy JMR. Factor VIII immunogenicity. Haemophilia 1998; 4:552–557.

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo V, Weiner H. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature1995; 376:177–180.

    Article  CAS  Google Scholar 

  31. Chen Y, Inobe J, Kuchroo V, Baron J, Janeway CJ, Weiner H. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 1996; 93:388–391.

    Article  PubMed  CAS  Google Scholar 

  32. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994; 91:6688–6692.

    Article  PubMed  CAS  Google Scholar 

  33. Gregerson D, Obritsch W, Donoso L. Oral tolerance in experimental autoimmune uveoretinitis. Distinct mechanisms of resistance are induced by low dose vs. high dose feeding protocols. J Immunol 1993; 151:5751–5761.

    PubMed  CAS  Google Scholar 

  34. Weiner HL, Friedman A, Miller A, Khoury Si, M-Sabbagh, A, Santos L, Sayegh M, Nussenblatt RB, Trenthan DE, Haller AD. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 1994; 12:809–837.

    Article  CAS  Google Scholar 

  35. Critchfreld JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Rainse CS, Goverman J, Lenardo M. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 1994; 263:1139–1143.

    Article  Google Scholar 

  36. Vardhachary AS, Perdow SN, Hu C, Ramanarayanan M, Salgame P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc Natl Acad Sci USA 1997; 94:5778–5783.

    Article  Google Scholar 

  37. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JD, Green D, Swain SL. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 1997; 185:1837–1849.

    Article  PubMed  CAS  Google Scholar 

  38. Neutra M, Pringult E, Kraehenbuhl J. Antigen sampling across epithelial barriers and induction of mucosal immune response. Ann Rev Inrmunol 1996; 14:275–300.

    Article  CAS  Google Scholar 

  39. Genain CP, Abel K, Belmar N, Villinger F, Rosenberg DP, Linington C, Raine CS, Hauser SL. Late complications of immune deviation therapy in a non-human primate. Science 1996; 274:2054–2057.

    Article  PubMed  CAS  Google Scholar 

  40. Liu L, MacPherson GG. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naïve T-cells in vivo. J Exp Med 1993; 177:1299–1307.

    Article  Google Scholar 

  41. Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson C. Oral tolerance in humans: T-cell but not B-cell tolerance after antigen feeding. J Immunol 1994; 152:4663–4670.

    PubMed  CAS  Google Scholar 

  42. Karachunski P, Ostlie N, Okita D, Conti-Fine BM Protection from experimental myasthenia gravis in C57B1/6 mice by sniffing of synthetic CD4+ T cells epitopes. J Clin Invest 1997; 100:3027–3035.

    Article  PubMed  CAS  Google Scholar 

  43. Karachunski PI, Ostlie NS, Okita DK, Garman R, Conti-Fine BM Subcutaneous administration of T-epitope sequences of the acetylcholine receptor prevents experimental myasthenia gravis. J Neuroimmunol 1999; 93:108–121.

    Article  PubMed  CAS  Google Scholar 

  44. Karachunski PI, Ostlie NS, Okita DK, Conti-Fine BM. Interleukin-4 deficiency facilitates developmemt of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor. J Neuroimmunol 1999; 95:73–84.

    Article  PubMed  CAS  Google Scholar 

  45. Conti-Fine BM, McLane KE, Lei S. Antibodies as tools to study the structure of membrane proteins: the case of the nicotinic acetylcholine receptor. Ann Rev Biophys Biomol Struct 1996; 25:197–229.

    Article  CAS  Google Scholar 

  46. Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 1989; 19:2237–2242.

    Article  PubMed  CAS  Google Scholar 

  47. Ho PC, Mutch DA, Winkel KD, Saul M, Jones GL, Doran, TJ, Rzepczyk CM. Identification of two promiscuous T cell epitopes from tetanus toxin. Eur J Immunol 1990; 20:477–483.

    Article  PubMed  CAS  Google Scholar 

  48. Reece JC, Geysen HM, Rodda SJ. Mapping the major human T helper epitopes of tetanus toxin. The emerging picture. J Immunol 1993; 151:6175–6184.

    PubMed  CAS  Google Scholar 

  49. Protti MP, Manfredi AA, Horton BM, Bellone M, Conti-Tronconi BM Myasthenia Gravis: recognition of a human autoantigen at the molecular level. Immunol Today 1993; 14:363–368.

    Article  PubMed  CAS  Google Scholar 

  50. Raju R, Navaneethan D, Okita DK, Diethelm-Okita B, McCormick D, Conti-Fine BM. Epitopes for human CD4+ T cells on diphtheria toxin: structural features of sequence segments forming epitopes recognized by most subjects. Eur J Immunol 1995; 25:3207–3214.

    Article  PubMed  CAS  Google Scholar 

  51. Diethelm B, Raju R, Okita DK, Conti-Fine BM Epitope repertoire of human CD4+ T cells on tetanus toxoid: identification of immunodominant sequence segments. J Infect Dis 1997; 175:382–391.

    Article  Google Scholar 

  52. Diethelm-Okita BM, Okita DK, Banaszak L, Conti-Fine BM. Universal epitopes for human CD4+ cells on tetanus and diphtheria toxin. (submitted)

    Google Scholar 

  53. Reding MT, Wu H, Krampf M, Okita DK, Diethelm-Okita BM, Christie BA, Key NS, Conti-Fine BM. CD4+ T cell response to coagulation factor VIII in congenital and acquired hemophilia, and in healthy subjects. (submitted)

    Google Scholar 

  54. Moudgil KD, Sercarz EE, Grewal IS. Modulation of the immunogenicity of antigenic determinants by their flanking residues. Immunol Today 1998; 19:217–220.

    Article  PubMed  CAS  Google Scholar 

  55. Landry SJ. Local protein instability predictive of helper T-cell epitopes. Immunol Today 1997; 11:527–523.

    Article  Google Scholar 

  56. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Ann Rev Immunol 1997; 15:821–850.

    Article  CAS  Google Scholar 

  57. Madden DR. The three-dimensional structure of peptide-MHC complexes. Ann Rev Immunol 1995; 13:587–622.

    Article  CAS  Google Scholar 

  58. Cresswell P. Assembly, transport, and function of MHC class II molecules. Ann Rev Immunol 1994; 12:259–294.

    Article  CAS  Google Scholar 

  59. Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D. The crystal structure of diphtheria toxin. Nature 1992; 357:216.

    Article  PubMed  CAS  Google Scholar 

  60. Umland TC, Wingert LM, Swaminathan S, Furey WF, Schmidt JJ, Sax M. Srtucture of the receptor binding fragment He of tetanus neurotoxin. Nature Struct Biol 1997; 4:788–792.

    Article  PubMed  CAS  Google Scholar 

  61. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct Biol 1998; 5:898–902.

    Article  PubMed  CAS  Google Scholar 

  62. Pellequer JL, Gale AJ, Griffin J11, Getzoff ED. Homology models of the C domains of blood coagulation factors V and VIII: a proposed membrane binding mode for FV and FVIII C2 domains. Blood Cells Mol Dis 1998; 24:448–461.

    Article  PubMed  CAS  Google Scholar 

  63. Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EG, Kemball-Cook G: A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood 1997; 89:2413–2421.

    PubMed  CAS  Google Scholar 

  64. Kuhn R, Rajewsky K, Muller W. Generation and analysis of interleukin-4 deficient mice. Science 1991; 254:707–710.

    Article  PubMed  CAS  Google Scholar 

  65. Tian J, Lehmann PV, Kaufman D. Determinant spreading of T helper cell 2 (Th2) responses to pancreatic islet autoantigens. J Exp Med 1997; 186:2039–2043.

    Article  PubMed  CAS  Google Scholar 

  66. Bray GL, Kroner BL, Arkin S, Aledort LW, Hilgartner MW, Etster ME, Ragni MV, Goedert JJ. Loss of high-responder inhibitors in patients with severe hemophilia A and human immunodeficiency virus type 1 infection: A report from the multi-center hemophilia cohort study. Am J Hematol 1993; 42:375–379.

    Article  PubMed  CAS  Google Scholar 

  67. Madhok R, Smith J, Jenkins A, Lowe GDO. T cell sensitization to factor VIII in hemophilia A? Br J Haematol 1991; 79:235–238.

    Article  PubMed  CAS  Google Scholar 

  68. Singer ST, Addiego Jr. JE, Reason DC, Lucas AH. T lymphocyte proliferative responses induced by recombinant factor VIII in hemophilia A patients with inhibitors. Thromb Haemost 1996; 76:17–22.

    PubMed  CAS  Google Scholar 

  69. Newton-Nash DK, Gill JC, Foster PA: Cellular immune responses to coagulant factor VIII in F.VIII inhibitor patients, in Aledort LM, Hoyer LW, Lusher JM, Reimer HM, White GC, (eds): Inhibitors to Coagulation Factors. Adv Exp Med Biol 1995; 386:285.

    Google Scholar 

  70. Qian J, Collins M, Hoyer LW. Prevention of factor VIII inhibitors in murine hemophilia. Blood 1998 (abstr); 92(10):709a.

    Google Scholar 

  71. Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ. Structure of human factor VIII. Nature 1894; 312:337–342.

    Article  Google Scholar 

  72. Rudensky AY, Preston-Hurburt P, Hong SC, Barlow A, Janeway CA Jr. Sequence analysis of peptide bound to MHC class II molecules. Nature 1991; 353:622–627.

    Article  PubMed  CAS  Google Scholar 

  73. Hunt DF, Michel H, Dickison TA, Shabanowitz J, Cox AL, Sakaguchi K, Appella E, Grey HM, Sette A. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992; 256:1817–1820.

    Article  PubMed  CAS  Google Scholar 

  74. Stem LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368:215–221.

    Article  Google Scholar 

  75. Scandella D, Gilbert GE, Shima M, Nakai H, Eagleson C, Felch M, Prescott R, Rajalakshmi KJ, Hoyer LW, Saenko E: Some factor VIII inhibitor antibodies recognize a common epitope corresponding to C2 domain amino acids 2248 through 2312, which overlap a phospholipid-binding site. Blood 1995; 86:1811–1819.

    PubMed  CAS  Google Scholar 

  76. Shims M, Nakai H, Scandella D, Tanaka I, Sawamoto Y, Kamisue S, Morichika S, Murakami T, Yoshioka A: Common inhibitory effects of human anti-C2 domain inhibitor alloantibodies on factor VIII binding to von Willebrand factor. Br J Haematol 1995; 91:714–721.

    Article  Google Scholar 

  77. Healey JF, Lubin IM, Nakai H, Saenko E, Hoyer LW, Scandella D, Lollar P: Residues 484508 contain a major determinant of the inhibitory epitope in the A2 domain of human factor VIII. J Biol Chem 1995; 270:14505–14509.

    Article  PubMed  CAS  Google Scholar 

  78. Zhong D, Saenko EL, Shima M, Felch M, Scandella D: Some human inhibitor antibodies interfere with factor VIII binding to factor IX. Blood 1998; 92:136–142.

    PubMed  CAS  Google Scholar 

  79. Davies DR, Cohen GH: Interactions of protein antigens with antibodies. Proc Natl Acad Sci USA 1996; 93:7–12.

    Article  PubMed  CAS  Google Scholar 

  80. Engelhard VH: Structure of peptides associated with class I and class II molecules. Annu Rev Immunol 1994; 12:181–207.

    Article  PubMed  CAS  Google Scholar 

  81. Garcia KC, Teyton L, Wilson IA: Structural basis of T cell recognition. Annu Rev Immunol 1999; 17:369–397.

    Article  PubMed  CAS  Google Scholar 

  82. Nilsson IM, Bemtorp E, Zettervall O, Dahlback B: Noncoagulation inhibitory factor VIII Ab after induction of tolerance to factor VIII in hemophilia A patients. Blood 1990; 75:378–383.

    PubMed  CAS  Google Scholar 

  83. Gilles JGG, Arnout J, Vermylen J, Saint-Remy J-MR: Anti-factor VIII Ab of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 1993; 82:2452–2461.

    PubMed  CAS  Google Scholar 

  84. Bathe J, Gomez E, Rendal E, Torea J, Loures E, Couselo M, Vila P, Sedano C, Tusell X, Magallon M, Quintana M, Gonzalez-Boullosa R, Lopez-Fernandez MF: Ab to factor VIII in plasma of patients with hemophilia A and normal subjects. Ann Hematol 1996; 72:321–326.

    Article  Google Scholar 

  85. Gilles JG, Saint-Remy J-MR: Healthy subjects produce both anti-factor VIII and specific antiidiotypic antibodies. J Clin Invest 1994; 94:1496–1505.

    Article  PubMed  CAS  Google Scholar 

  86. Algiman M, Dietrich G, Nydegger UE, Boieldieu D, Sultan Y, Kazatchkine MD: Natural Ab to factor VIII (anti-hemophilic factor) in healthy individuals. Proc Natl Acad Sci USA 1992; 89:3795–3799.

    Article  PubMed  CAS  Google Scholar 

  87. Moiola L, Karachunski P, Protti M, Howard J, Conti-Tronconi BM. Epitopes on the ß suounit of muscle acetylcholine receptor recognized by CD4+ cells of myasthenia patients and healthy subjects. J Clin Invest 1994; 93:1020–1028.

    Article  PubMed  CAS  Google Scholar 

  88. Kellerman S, McCormick D, Freeman S, Moms J, Conti-Fine BM. TSH receptor sequences recognized by CD4+ cells in Graves’ disease patients and in healthy controls. J Autoimmunity 1995; 8:685–698.

    Article  Google Scholar 

  89. Bums J, Rosenzweig A, Zweiman B, Lisak RP. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 1983; 81:435–440.

    Article  Google Scholar 

  90. Pene M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, Hinkkanen A, Epplen JT, Kappos L, Wekerle H. Myelin autoreactivity in multiple sclerosis: Recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA 1990; 87:7968–7972.

    Article  Google Scholar 

  91. Ota K, Matusi M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346:183–187.

    Article  PubMed  CAS  Google Scholar 

  92. Kuwana M, Medsger TA Jr, Wright TM. T cell proliferative response induced by DNA topoisomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest 1995; 96:586–596.

    Article  PubMed  CAS  Google Scholar 

  93. Ito Y, Nieda M, Uchigata Y, Nishimura M, Tokunaga K, Kuwata S, Obata F, Tadokoro K, Hirata Y, Omori Y, Juji T. Recognition of human insulin in the context of HLA-DRB1’0406 products by T cells of insulin autoimmune syndrome patients and healthy donors. J Immunol 1993; 151:5770–5776.

    PubMed  CAS  Google Scholar 

  94. Hoffman RW, Takeda Y, Sharp GC, Lee DR, Hill DL, Kaneoka H, Caldwell CW. Human T cell clones reactive against U-small nuclear ribonucleoprotein autoantigens from connective tissue disease patients and healthy individuals. J Immunol 1993; 151:6460–6469.

    PubMed  CAS  Google Scholar 

  95. Chicz RM, Urban RG, Gorga JC, Vignali DAA, Lane WS, Strominger JL: Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993; 178:27–47.

    Article  PubMed  CAS  Google Scholar 

  96. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LR, Lin RY, Strober W, Lenardo MJ, Puck JM: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81:935–946.

    Article  PubMed  CAS  Google Scholar 

  97. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IR, Debatin KM, Fisher A, de Villartay JP: Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268:1347–1349.

    Article  PubMed  CAS  Google Scholar 

  98. Johnson JG, Jenkins MK: The role of anergy in peripheral T cell unresponsiveness. Life Sci 1994; 55:1767–1780.

    Article  PubMed  CAS  Google Scholar 

  99. Schwartz RH: Models of T cell anergy: Is there a common molecular mechanism? J Exp Med 1996; 184:1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reding, M.T. et al. (2001). CD4+ T Cells Specific for Factor VIII as a Target for Specific Suppression of Inhibitor Production. In: Monroe, D.M., Hedner, U., Hoffman, M.R., Negrier, C., Savidge, G.F., White, G.C. (eds) Hemophilia Care in the New Millennium. Advances in Experimental Medicine and Biology, vol 489. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1277-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1277-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5474-1

  • Online ISBN: 978-1-4615-1277-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics