bcl-2 Protects SK-N-SH Cells From 6-Hydroxydopamine Induced Apoptosis by Inhibition of Cytochrome c Redistribution

  • Richard C. Dodel
  • Kelly R. Bales
  • Mark Bender
  • Gabriel Nunez
  • Paul Hyslop
  • Wolfgang H. Oertel
  • Steven M. Paul
  • Yansheng Du


Neurotoxicity induced by 6-hydroxydopamine (6-OHDA) is, in part, due to the production of reactive oxygen/nitrogen species (RNOS) and/or an inhibition of mitochondrial function. However, little is known about the ensuing intracellular events which ultimately result in cell death. Here we show that exposure to relatively low concentrations of 6-OHDA induce apoptosis of SK-N-SH cells. Western blots of cytosolic extracts from 6-OHDA treated cells reveal a translocation of cytochrome c from mitochondria into the cytosol. To further delineate the pathway by which 6-OHDA causes apoptosis, we investigated the effects on cell survival in bcl-2 overexpressing SK-N-SH cells and the relation to translocation of cytochrome c and free radical production. Overexpressing bcl-2 in SK-N-SH cells shifted the toxicity as well as the release of cytochrome c to higher concentrations of 6-OHDA. At concentrations of 6-OHDA in SK-N-SH-bcl-2 cells where a release of cytochrome c and subsequent cell death occurs, an increase of the oxidation of the fluorescent dye dihydrorhodamine-123 was detectable. This RNOS production paralleled the release of cytochrome c and was inhibited by bcl-2 as well. Prom these experiments, we hypothesize that cytochrome c might interact with 6-OHDA to promote an oxidative burst, which can be inhibited by bcl-2.


Cell Death Cerebellar Granule Neuron Fluorescein Diacetate Subsequent Cell Death Initiate Lipid Peroxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.M., and Cory, S., 1998, The Bcl-2 protein family: arbiters of cell survival, Science 281: 1322.PubMedCrossRefGoogle Scholar
  2. Asanuma, M., Hirata, H., and Cadet, J.L., 1998, Attenuation of 6-hydroxy dopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice, Neurosci. 85: 907.CrossRefGoogle Scholar
  3. Bandy, B., and Davison, A.J., 1987, Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase, Arch. Biochem. Biophys. 259: 305.PubMedCrossRefGoogle Scholar
  4. Barr, D.P., Gunther, M.R., Deterding, L.J., Tomer, K.B., and Mason, R.P., 1996, ESR spintrapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogenperoxide, J. Biol. Chem. 271: 15498.PubMedCrossRefGoogle Scholar
  5. Behl, C., Davis, J.B., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid beta protein toxicity, Cell 77: 817.PubMedCrossRefGoogle Scholar
  6. Bojes, H.K., Datta, K., Xu, J., Chin, A., Simonian, P., Nunez, G., and Kehrer, J.P., 1997, Bc1xl overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal, Biochem J. 325: 315.PubMedGoogle Scholar
  7. Cai, J., and Jones, D.P., 1998, Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem. 273: 11401.PubMedCrossRefGoogle Scholar
  8. Cai, J., Yang, J., and Jones, D.P., 1998, Mitochondrial control of apoptosis: the role of cytochrome c, Biochim. Biophys. Acta 1366: 139.PubMedCrossRefGoogle Scholar
  9. Cassarino, D.S., Parks, J.K., Parker, W.D., Jr., and Bennett, J.P., Jr., 1999, The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism, Biochim. Biophys. Acta 1453: 49.PubMedCrossRefGoogle Scholar
  10. Davison, A.J., and Gee, P., 1984, Redox state of cytochrome c in the presence of the 6-hydroxydopamine/oxygen couple: oscillations dependent on the presence of hydrogen peroxide or superoxide, Arch. Biochem. Biophys. 233: 761.PubMedCrossRefGoogle Scholar
  11. Deshmukh, M., and Johnson, E.M., Jr., 1997, Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons, Mol. Pharmacol. 51: 897.PubMedGoogle Scholar
  12. Deterding, L.J., Barr, D.P., Mason, R.P., and Tomer, K.B., 1998, Characterization of cytochrome c free radical reactions with peptides by mass spectrometry, J. Biol. Chem. 273: 12863.PubMedCrossRefGoogle Scholar
  13. Dodel, R.C., Du, Y., Bales, K.R., Ling, Z., Carvey, P.M., and Paul, S.M., 1999, Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death, Mol. Brain Res. 64: 141.PubMedCrossRefGoogle Scholar
  14. Dole, M., Nunez, G., Merchant, A.K., Maybaum, J., Rode, C.K., Bloch, C.A., and Castle, V.P., 1994, Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma, Cancer Res. 54: 3253.PubMedGoogle Scholar
  15. Ellerby, L.M., Ellerby, H.M., Park, S.M., Holleran, A.L., Murphy, A.N., Fiskum, G., Kane, D.J., Testa, M.P., Kayalar, C., and Bredesen, D.E., 1996, Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2, J. Neurochem. 67: 1259.PubMedCrossRefGoogle Scholar
  16. Gee, P., and Davison, A.J., 1989, Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions, Free Rad. Biol. Med. 6: 271.PubMedCrossRefGoogle Scholar
  17. Gleichmann, M., Beinroth, S., Reed, J.C., Krajewski, S., Schulz, J.B., Wullner, U., Klockgether, T., and Weller, M., 1998, Potassium deprivation-induced apoptosis of cerebellar granule neurons: cytochrome c release in the absence of altered expression of Bcl-2 family proteins, Cell Physiol Biochem. 8: 194.PubMedCrossRefGoogle Scholar
  18. Glinka, Y., Gassen, M., and Youdim, M.B., 1997, Mechanism of 6-hydroxydopamine neurotoxicity, J. Neural Transm. Suppl. 50: 55.PubMedCrossRefGoogle Scholar
  19. Glinka, Y., Tipton, K.F., and Youdim, M.B., 1998, Mechanism of inhibition of mitochondrial respiratory complex I by 6- hydroxydopamine and its prevention by desferrioxamine, Eur. J. Pharmacol. 351: 121.PubMedCrossRefGoogle Scholar
  20. Green, D.R., and Reed, J.C., 1998, Mitochondria and apoptosis, Science 281: 1309.PubMedCrossRefGoogle Scholar
  21. Hampton, M.B., Fadeel, B., and Orrenius, S., 1998, Redox regulation of the caspases during apoptosis, Ann. N. Y. Acad. Sci. 854: 328.PubMedCrossRefGoogle Scholar
  22. Hampton, M.B., Zhivotovsky, B., Slater, A.F., Burgess, D.H., and Orrenius, S., 1998, Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts, Biochem. J. 329: 95.PubMedGoogle Scholar
  23. Hansen, M.B., Nielsen, S.E., and Berg, K., 1989, Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill, J. Immunol Meth. 119:203.CrossRefGoogle Scholar
  24. Herrmann, M., Lorenz, H.M., Voll, R., Grunke, M., Woith, W., and Kalden, J.R., 1994, A rapid and simple method for the isolation of apoptotic DNA fragments, Nucleic Acids Res. 22:5506.PubMedCrossRefGoogle Scholar
  25. Hirsch, T., Susin, S.A., Marzo, I., Marchetti, P., Zamzami, N., and Kroemer, G., 1998, Mitochondrial permeability transition in apoptosis and necrosis, Cell. Biol. Toxicol. 14: 141.PubMedCrossRefGoogle Scholar
  26. Hockenberry, D.M., Oltval, Z.N., Yin, X.-M., Millman, C.L., and Korsmeyer, S.J., 1993, Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell 75: 241.CrossRefGoogle Scholar
  27. Jia, W.W., Wang, Y., Qiang, D., Tufaro, F., Remington, R., and Cynader, M., 1996, A bcl-2 expressing viral vector protects cortical neurons from excitotoxicity even when administered several hours after the toxic insult, Brain Res. Mol. Brain Res. 42: 350.PubMedCrossRefGoogle Scholar
  28. Jurgensmeier, J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J.C., 1998, Bax Ndirectly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci.USA 95: 4997.PubMedCrossRefGoogle Scholar
  29. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T., and Bredesen, D.E., 1993, Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species, Science 262: 1274.PubMedCrossRefGoogle Scholar
  30. Kluck, R.M., Bossy-Wetzel, E., Green, D.R., and Newmeyer, D.D., 1997, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science 275: 1132.PubMedCrossRefGoogle Scholar
  31. Kooy, N.W., Royall, J.A., Ischiropoulos, H., and Beckman, J.S., 1994, Peroxynitrite-mediated oxidation of dihydrorhodamine 123, Free Rad. Biol. Med. 16: 149.PubMedCrossRefGoogle Scholar
  32. Korsmeyer, S.J., 1999, BCL-2 gene family and the regulation of programmed cell death, Cancer Res. 59: 1693.Google Scholar
  33. Kostrzewa, R.M., and Jacobowitz, D.M., 1973, Pharmacological actions of 6-hydroxydopamine,Pharmacol. Rev. 26: 199.Google Scholar
  34. Krippner, A., Matsuno-Yagi, A., Gottlieb, R.A., and Babior, B.M., 1996, Loss of function of cytochrome c in Jurkat cells undergoing fas- mediated apoptosis, J. Biol. Chem. 271: 21629.PubMedCrossRefGoogle Scholar
  35. Kumar, R., Agarwal, A.K., and Seth, P.K., 1995, Free radical-generated neurotoxicity of 6-hydroxydopamine, J. Neurochem. 64: 1703.PubMedCrossRefGoogle Scholar
  36. Lawrence, M.S., Ho, D.Y., Sun, G.H., Steinberg, G.K., and Sapolsky, R.M., 1996, Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo, J. Neurosci. 16: 486.PubMedGoogle Scholar
  37. Li, H., Zhu, H., Xu, C.J., and Yuan, J., 1998, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell 94: 491.PubMedCrossRefGoogle Scholar
  38. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X.,1997, Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade, Cell 91: 479.PubMedCrossRefGoogle Scholar
  39. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell 86: 147.PubMedCrossRefGoogle Scholar
  40. Luo, X., Budihardjo, I., Zou, H., Slaughter, C, and Wang, X., 1998, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94: 481.PubMedCrossRefGoogle Scholar
  41. Manev, H., Favaron, M., Vicini, S., Guidotti, A., and Costa, E., 1990, Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids, J. Pharmacol. Exp. Ther. 252: 419.PubMedGoogle Scholar
  42. Margolin, N., Raybuck, S.A., Wilson, K.P., Chen, W., Fox, T., Gu, Y., and Livingston, D.J., 1997, Substrate and inhibitor specivity of Interleukin-l-ß-converting enzyme and related caspases., J. Biol. Chem. 272: 7223.PubMedCrossRefGoogle Scholar
  43. Michel, P.P., Dandapani, B.K., Knusel, B., Sanchez-Ramos, J., and Hefti, R., 1990,Toxicity of MPP+ to rat dopaminergic neurons in culture: selectivity and irreversibility,J.Neurochem. 54: 1102.PubMedCrossRefGoogle Scholar
  44. Mignotte, B., and Vayssiere, J.L., 1998, Mitochondria and apoptosis, Eur. J. Biochem. 252:1.PubMedCrossRefGoogle Scholar
  45. Miller, T.M., Moulder, K.L., Knudson, C.M., Creedon, D.J., Deshmukh, M., Korsmeyer, S.J., and Johnson, E.M., 1997, Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death, J. Cell. Biol. 139:205.PubMedCrossRefGoogle Scholar
  46. Padiglia, A., Medda, R., Lorrai, A., Biggio, G., Sanna, E., and Floris, G., 1997, Modulation of 6-hydroxydopamine oxidation by various proteins, Biochem. Pharmacol. 53: 1065.PubMedCrossRefGoogle Scholar
  47. Pezzella, A., d’Ischia, M., Napolitano, A., Misuraca, G., and Prota, G., 1997, Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease, J. Med. Chem. 40: 2211.PubMedCrossRefGoogle Scholar
  48. Pinkus, R., Weiner, L.M., and Daniel, V., 1996, Role of oxidants and antioxidants in the induction of AP-1, NF-κB, and glutathione S-transferase gene expression, J. Biol. Chem. 271: 13422.PubMedCrossRefGoogle Scholar
  49. Raffeld, M., Wright, J.J., Lipford, E., Cossman, J., Longo, D.L., Bakhshi, A., and Korsmeyer, S.J., 1987, Clonal evolution of t(14;18) follicular lymphomas demonstrated by immunoglobulin genes and the 18q21 major breakpoint region, Cancer Res. 47: 2537.PubMedGoogle Scholar
  50. Saraste, M., 1999, Oxidative phosphorylation at the fin de siecle, Science 283: 1488.PubMedCrossRefGoogle Scholar
  51. Sharpe, M.A., and Cooper, C.E., 1998, Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite, Biochem. J. 332: 9.PubMedGoogle Scholar
  52. Shimizu, S., Narita, M., and Tsujimoto, Y., 1999, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature 399: 483.PubMedCrossRefGoogle Scholar
  53. Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M., and Kroemer, G., 1999, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397: 441.PubMedCrossRefGoogle Scholar
  54. Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G., 1996, Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 184: 1331.PubMedCrossRefGoogle Scholar
  55. Thornberry, N., and Lazebnik, Y., 1998, Caspases: enemies within, Science 281: 1312.PubMedCrossRefGoogle Scholar
  56. Thomberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W., 1997, A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis, J. Biol. Chem. 272: 17907.CrossRefGoogle Scholar
  57. Wyllie, A.H., 1997, Apoptosis: an overview, Br. Med. Bull. 53: 451.PubMedCrossRefGoogle Scholar
  58. Yamada, M., Oligino, T., Mata, M., Goss, J.R., Glorioso, J.C., and Fink, D.J., 1999, Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo, Proc. Natl. Acad. Sci. USA 96: 4078.PubMedCrossRefGoogle Scholar
  59. Yan, G.M., Ni, B., Weller, M., Wood, K.A., and Paul, S.M., 1994, Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons, Brain Res. 656: 43.PubMedCrossRefGoogle Scholar
  60. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., and Wang, X., 1997, Prevention of apoptosis by Bcl-2: release of cytochromecfrom mitochondria blocked, Science 275: 1129.PubMedCrossRefGoogle Scholar
  61. Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S.A., Petit, P.X., Mignotte, B., and Kroemer, G., 1995, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J. Exp. Med. 182: 367.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Richard C. Dodel
    • 1
    • 4
  • Kelly R. Bales
    • 2
  • Mark Bender
    • 2
  • Gabriel Nunez
    • 3
  • Paul Hyslop
    • 2
  • Wolfgang H. Oertel
    • 4
  • Steven M. Paul
    • 1
    • 2
  • Yansheng Du
    • 1
  1. 1.Departments of Pharmacology, Toxicology, and PsychiatryIndiana University School of MedicineIndianapolisUSA
  2. 2.Neuroscience Discovery ResearchEli Lilly & Co.IndianapolisUSA
  3. 3.Department of Pathology and Comprehensive Cancer CenterThe University of Michigan Medical SchoolAnn ArborUSA
  4. 4.Department of NeurologyPhilipps-University MarburgMarburgGermany

Personalised recommendations