Skip to main content

Endogenous Brain Catechol Thioethers in Dopaminergic Neurodegeneration

  • Chapter
Book cover Neurotoxic Factors in Parkinson’s Disease and Related Disorders

Abstract

Pathological and biochemical studies have consistently associated endogenous catechol oxidation with dopaminergic neurodegeneration in Parkinson’s disease (PD). Recently it has been proposed that products of catechol oxidation, the catechol thioethers, may contribute to dopaminergic neurodegeneration. In other organ systems, thioether cytotoxicity is influenced profoundly by the mercapturic acid pathway. We have pursued the hypothesis that endogenous catechol thioethers produced in the mercapturic acid pathway contribute to dopaminergic neurodegeneration. Our results showed that in vitro metal-catalyzed oxidative damage by catechol thioethers varied with the structures of the parent catechol and thioether adduct. Catechol mercapturates were unique in producing more oxidative damage than their parent catechols. In dopaminergic cell cultures, dopamine induced apoptosis in a concentration-dependent manner from 5 to 50 µM. The apoptotic effect of dopamine was greatly enhanced by subcytotoxic concentrations of he mitochondrial inhibitor, N-methyl-4-phenylpyridinium (MPP+). Similarly, subcytotoxic levels of the mercapturate or homocysteine conjugate of dopamine significantly augmented dopamineinduced apoptosis. Finally, microsomal fractions of substantia nigra from PD patients and age-matched controls had comparable cysteine-S-conjugate N-acetyltransferase activity. These data indicate that the mercapturate conjugate of dopamine may augment dopaminergic neurodegeneration and that the mercapturate pathway exists in human substantia nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner, A., Jager, M., Pasternack, R., Weber, P., Wienke, D., and Wolf, S., 1996, Purification and characterization of cysteine-S-conjugate N-acetyltransferase from pig kidney, Biochem. J. 317: 213.

    PubMed  CAS  Google Scholar 

  • Alam, Z. I., Jenner, A., Daniel, S. E., Lees, A. J., Cairns, N., Marsden, C. D., Jenner, P., and Halliwell, B., 1997, Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanosine levels in the substantia nigra, J. Neurochem. 69:1196.

    Article  PubMed  CAS  Google Scholar 

  • Calne, D. B., 1993, Treatment of Parkinson’s disease, New Engl. J. Med. 329: 1021.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G. and Werner, P., 1994, Free radicals, oxidative stress, and neurodegeneration, in:Neurodegenerative Diseases, D. B. Calne, ed., Philadelphia, PA: W B Saunders, pp. 139.

    Google Scholar 

  • Corral-Debrinski, ML, Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C., 1992, Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age, Nat. Genetics 2: 324.

    Article  CAS  Google Scholar 

  • Coyle, J. T. and Puttfarcken, P., 1993, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262: 689.

    Article  PubMed  CAS  Google Scholar 

  • Damier, P., Hirsch, E. C., Zhang, P., Agid, Y., and Javoy-Agid, F., 1993, Glutathione peroxidase, glial cells and Parkinson’s disease, Neuroscience 52: 1.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C.D., 1989, Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem. 52: 381.

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S., 1991, An open trial of high-dose antioxidants in early Parkinson’s disease, Am. J. Clin. Nutr. 53: 380.

    Google Scholar 

  • Fornstedt, B., Pileblad, E., and Carlsson, A., 1990, In vivo autoxidation of dopamine in guinea pig striatum increases with age, J. Neurochem. 55: 655.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt, B., Rosengren, E., and Carlsson, A., 1986, Occurrence and distribution of 5-Scysteinyl derivatives of dopamine, dopa, and dopac in the brains of eight mammalian species, Neuropharmacology 25: 451.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt, B., Rosengren, E., and Carlsson, A., 1989, The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with degree of depigmentation of substantia nigra, J. Neural. Transm. 1: 279.

    Article  CAS  Google Scholar 

  • Globus, M. Y. T., Ginsberg, M. D., Harik, S. I., Busto, R., and Dietrich, W. D., 1987, Role of dopamine in ischemic striatal injury, Neurology 37: 1712.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D. G., 1978, Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol. 14: 633.

    PubMed  CAS  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell Jr, W. R., and Gutknecht, W. F., 1978, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14:644.

    PubMed  CAS  Google Scholar 

  • Green, D. R. and Reed, J. C., 1998, Mitochondria and apoptosis, Science 281: 1309.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., 1992, Reactive oxygen species and the central nervous system, J. Neurochem. 59:1609.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, T. G., Lewis, D. A., and Zigmond, M. J., 1996, Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections, Proc. Natl. Acad. Sci. 93: 1956.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E. C., 1992, Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson’s disease?, Ann. Neurol. 32: S88.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E., Graybiel, A. M., and Agid, Y. A., 1988, Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease, Nature 334: 345.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., and Marsden, C. D., 1992, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group, Ann. Neurol. 32: S82.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. J. and Olanow, C. W., 1998, Understanding cell death in Parkinson’s disease, Ann. Neurol. 44: S72.

    PubMed  CAS  Google Scholar 

  • Koller, W. C, 1998, Neuroprotection for Parkinson’s disease, Ann. Neurol. 44: S155.

    Article  PubMed  CAS  Google Scholar 

  • Kravtsov, V. D. and Fabian, I., 1996, Automated monitoring of apoptosis in suspension cell cultures, Lab. Invest. 74: 557.

    PubMed  CAS  Google Scholar 

  • Kravtsov, V. D., Greer, J. P., Whitlock, J. A., and Koury, M. J., 1998, Use of the microculture kinetic assay of apoptosis to determine chemosensitivities to leukemias, Blood 92: 968.

    PubMed  CAS  Google Scholar 

  • Lang, A. E. and Lozano, A. M., 1998, Parkinson’s disease, New Engl. J. Med. 339: 1044-1053 and 1130.

    Article  PubMed  CAS  Google Scholar 

  • Le, W.D., Colom, L.V., Xie, W.J., Smith, R.G., Alexianu, M., and Appel, S.H., 1995, Cell death induced by beta-amyloid 1-40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis, Brain Res. 686: 49.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Shen, X. M., and Dryhurst, G., 1998, Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson’s disease, J. Neurochem. 71: 2049.

    Article  PubMed  CAS  Google Scholar 

  • Li, H. and Dryhurst, G., 1997, Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease, J. Neurochem. 69: 1530.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D. M. A. and Yates, P. O., 1982, Pathogenesis of Parkinson’s disease, Arch. Neurol. 39:545.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D. M. A. and Yates, P. O., 1983, Possible role of neuromelanin in the pathogenesis of Parkinson’s disease, Mech. Aging and Develop. 21: 193.

    Article  CAS  Google Scholar 

  • Miller, R. T., Lau, S. S., and Monks, T. J., 1995, Metabolism of 5-(glutathion-S-y1)-α-methyl- dopamine following intracerebroventricular administration to male Sprague-Dawley rats, Chem. Res. Toxicol. 8: 634.

    CAS  Google Scholar 

  • Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D., and Graham, D. G., 1992, Quinone chemistry and toxicology, Toxicol. Appl. Pharmacol. 112: 2.

    Article  CAS  Google Scholar 

  • Monks, T. J. and Lau, S. S., 1992, Toxicology of quinone-thioethers, Critical Rev. Toxicol. 22:243. Montine, T. J., Farris, D. B., and Graham, D. G., 1995, Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation, J.Neuropathol. Exp. Neurol. 54: 311.

    Google Scholar 

  • Montine, T. J., Picklo, M. J., Amarnath, V., Whetsell, W. O., and Graham, D. G., 1997, Neurotoxicity of endogenous cysteinylcatechols, Exp. Neurol. 148: 26.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Underhill, T. M., Linney, E., and Graham, D. G., 1994, Fibroblasts that express aromatic amino acid decarboxylase have increased sensitivity to the synergistic cytotoxicity of L-dopa and manganese, Toxicol. Appl. Pharmacol. 128: 116.

    Article  PubMed  CAS  Google Scholar 

  • Olanow, C. W., 1990, Oxidative reactions in Parkinson’s disease, Neurology 40: S32.

    Google Scholar 

  • Parkinson’s Disease Study Group, 1989, Effect of depreny1 on the progression of disability in early Parkinson’s disease, N. Engl. J. Med. 321: 1364.

    Article  Google Scholar 

  • Picklo, M. J., Amaranth, V., Graham, D. G., and Montine, T. J., 1999, Endogenous catechol thioethers may be pro-oxidant or anti-oxidant, Free Radicals Biol. Med. 27: 271.

    Article  CAS  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Muthane, U., Jiang, H., Ferreira, M., Naini, A. B., and Fahn, S., 1993, Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity, Neurology 34: 715.

    CAS  Google Scholar 

  • Shen, X. M., Xia, B., Wrona, M. Z., and Dryhurst, G., 1996a, Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine:possible metabolites of relevance to Parkinson’s disease, Chem. Res. Toxicol. 9: 1117.

    Article  PubMed  CAS  Google Scholar 

  • Shen, X. M. and Dryhurst, G., 1996b, Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson’s disease, Chem. Res. Toxicol. 9: 751.

    CAS  Google Scholar 

  • Sian, J., Dexter, D. T., and Lees, A. J., 1994, Glutathione related enzymes in brain in Parkinson’s disease, Ann. Neurol. 36: 356.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J. P. E., Jenner, P., Daniel, S. E., Lees, A. J., Marsden, D. C., and Halliwell, B., 1998, Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species, J. Neurochem. 71: 2112.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. and Ballatori, N., 1998, Endogenous glutathione conjugates: occurrence and biological functions, Pharmacol. Rev. 50: 335.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Price, J. O., Graham, D. G., and Montine, T. J., 1998, Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures, Biochem. Biophys. Res. Comm. 248: 812.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montine, T.J., Amarnath, V., Picklo, M.J., Sidell, K.R., Zhang, J., Graham, D.G. (2000). Endogenous Brain Catechol Thioethers in Dopaminergic Neurodegeneration. In: Storch, A., Collins, M.A. (eds) Neurotoxic Factors in Parkinson’s Disease and Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1269-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1269-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5470-3

  • Online ISBN: 978-1-4615-1269-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics