‘Glyco-Epitope’ Assignments for the Selectins: Advances Enabled By the Neoglycolipid (Ngl) Technology in Conjunction with Synthetic Carbohydrate Chemistry’

  • Ten Feizi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 491)

Abstract

The neoglycolipid (NGL) technology involving the preparation of lipid-linked oligosaccharide probes for binding experiments with carbohydrate-recognizing proteins, and their analysis by mass spectrometry, is a unique and powerful means of discovering oligosaccharide ligands for carbohydrate-binding proteins, and assigning details of their specificities. The key feature is that it enables the pinpointing and sequence determination of bioactive oligosaccharides within highly heterogeneous mixtures derived from natural glycoconjugates. A new generation of NGLs incorporating a fluorescent label now establishes the principles for a streamlined technology whereby oligosaccharide populations are carried through ligand detection and isolation steps, and sequence determination.

Advances in selectin research made through applications of the NGL technology include (i) demonstration of the importance of density of selectin expression, and of oligosaccharide ligands, in the magnitude and the specificity of the binding signals; (ii) demonstration of the efficacy of lipid-linked oligosaccharides in supporting selectinmediated cell interactions; (iii) the discovery of 3-sulphated Lea/Le“ as selectin ligands; (iv) the isolation and sequencing of carbohydrate ligands for E-selectin on murine myeloid cells and kidney; (v) the finding that sulphation at position 6 of the penultimate Nacetylglucosamine confers superior L-selectin binding signals not only to 3-sialyl-Lex but also to 3’-sulpho-Lex; and (vi) the finding that sialic acid de-N-acetylation, or further modification with formation of an intra-molecular amide bond in the carboxyl group, enhances or virtually abolishes, respectively, the potency of the 6’-sulfo-sialyl-Lex ligand.

Working with biotinylated forms of the oligosaccharide ligands, we have observed that their presentation on a streptavidin matrix influences differentially the efficacy of interactions of the L- and P-selectins (but not E-selectin) with the sialylated and sulphated ligands.

Keywords

Carbohydrate Sponge Integrin Galactose Monosaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.P. Bevilacqua and R.M. Nelson, Selectins., J.Clin.Invest. 91:379 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    B.K. Brandley, S.J. Swiedler, and P.W. Robbins, Carbohydrate ligands of the LEC cell adhesion molecules., Cell 63:861 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    H.C. Gooi, S.J. Thorpe, E.F. Hounsell, H. Rumpold, D. Kraft, O. Forster, and T. Feizi, Marker of peripheral blood granulocytes and monocytes of man recognized by two monoclonal antibodies VEP8 and VEP9 involves the trisaccharide 3-fucosyl-N-acetyllactosamine, Eur.J.Immunol. 13:306 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    S.J. Thorpe and T. Feizi, Species differences in the expression of carbohydrate differentiation antigens on mammalian blood cells revealed by immunofluorescence with monoclonal antibodies, Biosci.Reps. 4:673 (1984).CrossRefGoogle Scholar
  5. 5.
    T. Feizi, Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens, Nature 314:53 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Fukuda, N. Hiraoka, and J.C. Yeh, C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell-cell interaction, J.CeIl.Biol. 147:467 (1999).CrossRefGoogle Scholar
  7. 7.
    R.P. McEver, K.L. Moore, and R.D.C ummings, Leukocyte trafficking mediated by selectin-carbohydrate interactions, J.Biol.Chem. 270:11025 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    S.D. Rosen and C.R. Bertozzi, Leukocyte adhesion: Two selectins converge on sulphate, Current Biology 6:261 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    P.R. Crocker and T. Feizi, Carbohydrate recognition systems: functional triads in cell-cell interactions, Curr.Opin.Struct.Biol. 6:679 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Feizi, M.S. Stoll, W. Chai, and A.M. Lawson, Neoglycolipids: probes of oligosaccharide structure, antigenicity and function, Methods Enzymol. 230:484 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    A.M. Lawson, W. Chai, C.-T. Yuen, and T. Feizi, Mass spectrometry in carbohydrate recognition studies, in. “Mass Spectrometry in Biological Sciences”, A.L. Burlingame and S.A. Carr, eds., Humana Press, Totowa, New Jersey (1996).Google Scholar
  12. 12.
    P.W. Tang, H.C. Gooi, M. Hardy, Y.C. Lee, and T. Feizi, Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins., Biochem.Biophys.Res. Commun. 132:474 (1985).Google Scholar
  13. 13.
    T.Feizi and R.A.Childs, Neoglycolipids: probes in structure/function assignments to oligosaccharides, Methods Enzymol. 242:205 (1994).CrossRefGoogle Scholar
  14. 14.
    T. Osanai, T. Feizi, W. Chai, A.M. Lawson, M.L. Gustaysson, K. Sudo, M. Araki, K. Araki, and C.-T. Yuen, Two families of murine carbohydrate ligands for E-selectin, Biochem.Biophys.Res.Commun. 218:610 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    A.M. Lawson, W. Chai, G.C. Cashmore, M.S. Stoll, E.F. Hounsell, and T. Feizi, High-sensitivity structural analyses of oligosaccharide probes (neoglycolipids) by liquid-secondary-ion mass spectrometry, Carbohydr.Res. 200:47 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    W. Chai, G.C. Cashmore, R.A. Carruthers, M.S. Stoll, and A.M. Lawson, Optimal procedure for combined high-performance thin-layer chromatography/high-sensitivity liquid secondary ion mass spectrometry, Biol.Mass Spectrom. 20:169 (1991).CrossRefGoogle Scholar
  17. 17.
    C.-T. Yuen, A.M. Lawson, W. Chai, M. Larkin, M.S. Stoll, A.C. Stuart, F.X. Sullivan, T.J. Ahern, and T. Feizi, Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among 0-linked oligosaccharides on an ovarian cystadenoma glycoprotein, Biochemistry 31:9126 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    D. Spillmann, K. Hard, O.J. Thomas, J.F.G. Vliegenthart, G. Misevic, M.M. Burger, and J. Finne, Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera, J.Biol.Chem. 268:13378 (1993).PubMedGoogle Scholar
  19. 19.
    W. Chai, T. Feizi, C.-T. Yuen, and A.M. Lawson, Nonreductive release of 0-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin, Glycobiology 7:861 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    C.-T. Yuen, W. Chai, R.W. Loveless, A.M. Lawson, R.U. Margolis, and T. Feizi, Brain contains HNK-1 immunoreactive 0-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose), J.Biol.Chem. 272:8924 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    W. Chai, C.T. Yuen, H. Kogelberg, R.A. Carruthers, R.U. Margolis, T. Feizi, and A.M. Lawson, High prevalence of 2-mono-and 2,6-di-substituted Manol-terminating sequences among 0-glycans released from brain glycopeptides by reductive alkaline hydrolysis, Eur.J.Biochem. 263:879 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    Stoll MS, Feizi T, R.W. Loveless, W. Chai, A.M. Lawson, and C.-T. Yuen, Fluorescent neoglycolipids: improved probes for oligosaccharide ligand discovery, Eur.J.Biochem. 267:1795 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Feizi, Oligosaccharides that mediate mammalian cell-cell adhesion: Curr.Opin.Struct.Biol. 3:701 (1993).CrossRefGoogle Scholar
  24. 24.
    M. Larkin, T.J. Ahern, M.S. Stoll, M. Shaffer, D. Sako, J. O’Brien, A.M. Lawson, R.A. Childs, K.M. Barone, P.R. Langer-Safer, A. Hasegawa, M. Kiso, G.R. Larsen, and T. Feizi, Spectrum of sialylated and nonsialylated fuco-oligosaccharides bound by the endothelial-leukocyte adhesion molecule E-selectin. Dependence of the carbohydrate binding activity on E-selectin density, J.Biol.Chem. 267:P3661 (1992).Google Scholar
  25. 25.
    N. Kojima, K. Handa, W. Newman, and S.-I. Hakomori, Multi-recognition capability of E-selectin in a dynamic flow system, as evidenced by differential effects of sialidases and anti-carbohydrate antibodies on selectin-mediated cell adhesion at low vs hgigh wall shear stress: A preliminary note., Biochem.Biophy.Res.Commun. 189:1686 (1992).CrossRefGoogle Scholar
  26. 26.
    T. Feizi, Blood group-related oligosaccharides are ligands in cell-adhesion events, Biochem.Soc.Trans. 20:274 (1992).PubMedGoogle Scholar
  27. 27.
    R. Alon, T. Feizi, C.-T. Yuen, R.C. Fuhlbrigge, and T.A. Springer, Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions, J.Immunol. 154:5356 (1995).PubMedGoogle Scholar
  28. 28.
    C.-T. Yuen, K. Bezouska, J. O’Brien, M.S. Stoll, R. Lemoine, A. Lubineau, M. Kiso, A. Hasegawa, N.J. Bockovich, K.C. Nicolaou, and T. Feizi, Sulfated blood group Lewisa A superior oligosaccharide ligand for human E-selectin, J.Biol.Chem. 269:1595 (1994).PubMedGoogle Scholar
  29. 29.
    H. Kogelberg, T.A. Frenkiel, S.W. Homans, A. Lubineau, and T. Feizi, Conformational studies on the selectin and natural killer cell receptor ligands sulfo-and sialyl-lacto-N-fucopentaoses (SuLNFPII and 76 SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII, Biochemistry 35:1954 (1996).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Tyrrell, P. James, N. Rao, C. Foxall, S. Abbas, F. Dasgupta, M. Nashed, A. Hasegawa, M. Kiso, D. Asa, and B.K. Brandley, Structural requirements for the carbohydrate ligand of E-selectin, Proc.Nat.Acad.Sci.USA 88:10372 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    P.L. Smith, K.M. Gersten, B. Petryniak, R.J. Kelly, C. Rogers, Y. Natsuka, J.A. Alford III, E.P. Scheidegger, S. Natsuka, and J.B. Lowe, Expression of the a(1–3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands, J.Biol.Chem. 271:8250 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Maly, A.D. Thall, B. Petryniak, C.E. Rogers, P.L. Smith, R.M. Marks, R.J. Kelly, K.M. Gersten, G. Cheng, T.L. Saunders, S.A. Camper, R.T. Camphausen, F.X. Sullivan, Y. Isogai, O. Hindsgaul, U.H. von Andrian, and J.B. Lowe, The alpha(I,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis, Cell 86:643 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Sekine, K. Nakamura, M. Suzuki, F. Inagaki, T. Yamakawa, and A. Suzuki, A single autosomal gene controlling the expression of the extended globoglycolipid carrying SSEA-1 determinant is responsible for the expression of two extended globogangliosides,.J.Biochem.Tokyo. 103:722 (1988).PubMedGoogle Scholar
  34. 34.
    S.D. Rosen, L-Selectin and its biological ligands., Histochemistry 100:185 (1993).PubMedCrossRefGoogle Scholar
  35. 35.
    E.L. Berg, J. Magnani, R.A. Warnock, M.K. Robinson, and E.C. Butcher, Comparison of L-selectin and Eselectin ligand specificities:the L-selectin can bind the E-selectin ligands sialyl-Lex and sialyl Lea, Biochemica Biophysica Research Communications 184:1048 (1992).CrossRefGoogle Scholar
  36. 36.
    C. Foxall, S.R. Watson, D. Dowbenko, C. Fennie, L.A. Lasky, M. Kiso, A. Hasegawa, D. Asa, and B.K. Brandley, The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide., J.Cell Biol. 117:895 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    K.E. Norgard, H. Han, L. Powell, M. Kriegler, A. Varki, and N.M. Varki, Enhanced interaction of Lselectin with the high enthelium venule ligand via selectively oxidized sialic acids, Proc.Natl.Acad.Sci.USA 90:1068 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Aruffo, W. Kolanus, G. Walz, F. Fredman, and B. Seed, CD62/P-Selectin recognition of myeloid and tumor cell sulfatides, Cell 67:35 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    P.J. Green, T. Tamatani, T. Watanabe, M. Miyasaka, A. Hasegawa, M. Kiso, M.S. Stoll, and T. Feizi, High affinity binding of the leucocyte adhesion molecule L-selectin to 3’-sulfated-Lea and -Lex oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides, Biochem.Biophys.Res.Commun. 188:244 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Suzuki, Y. Toda, T. Tamatani, T. Watanabe, T. Suzuki, T. Nakao, K. Murase, M. Kiso, A. Hasegawa, K. Tanado-Aritomi, L. Ishizuka, and M. Miyasaka, Glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM-1), binding epitope in sulfated sugar chain, Bio-chem.Biophys.Res.Commun. 190:426 (1993).CrossRefGoogle Scholar
  41. 41.
    R.M. Nelson, S. Dolich, A. Aruffo, O. Cecconi, and M.P. Bevilacqua, Higher-affinity oligosaccharide ligands for E-selectin, J.Clin.lnvest. 91:1157 (1993).CrossRefGoogle Scholar
  42. 42.
    L.K. Needham and R.L. Schnaar, The HNK-1 reactivity Sulfoglucuronyl Glycolipids are ligands for Lselectin and P-selectin but not E-selectin, Proc.Natl.Acad.Sci.USA 90:1359 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    P.J. Green, C.-T. Yuen, R.A. Childs, W. Chai, M. Miyasaka, R. Lemoine, A. Lubineau, B. Smith, H. Ueno, K.C. Nicolaou, and T. Feizi, Further studies of the binding specificity of the leukocyte adhesion molecule, L-selectin, towards sulfated oligosaccharides - Suggestion of a link between the selectin-and the integrin-mediated lymphocyte adhesion systems, Glycobiology 5:29 (1995).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Galustian, R.A. Childs, C.-T. Yuen, A. Hasegawa, M. Kiso, A. Lubineau, G. Shaw, and T. Feizi, Valency dependent patterns of reactivity of human L-selectin towards sialyl and sulfated oligosaccharides of Lea and Lea types: Relevance to anti-adhesion therapeutics, Biochemistry 36:5260 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    C. Galustian, A. Lubineau, Cie Narvor, M. Kiso, G. Brown, and T. Feizi, L-selectin interactions with novel mono-and multisulfated Lewis“ sequences in comparison with the potent ligand 3’-sulfated Lewisa, J Biol Chem 274:18213 (1999).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Hemmerich, H. Leffler, and S.D. Rosen, Structure of the O-glycans in GIyCAM-1, an endothelial-derived ligand for L-selectin, J.Biol.Chem. 270:12035 (1995).PubMedCrossRefGoogle Scholar
  47. 47.
    S. Komba, H. Ishida, M. Kiso, and A. Hasegawa, Synthesis and biological activities of three sulfated sialyl Lex ganglioside analogues for clarifying the real carbohydrate ligand structure of L-selectin, Bioorg.Med.Chem. 4:1833 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    Y. Yoshino, H. Ohmoto, N. Kondo, H. Tsujishita, Y. Hiramatsu, Y. Inoue, H. Kondo, H. Ishida, M. Kiso, and A. Hasegawa, Studies on selectin blockers. 4. Structure-function relationships of sulfated sialyl Lewisx hexasaccharide ceramides toward E-P, P-, and L-selectin binding, J.Med.Chem. 40:455 (1997).PubMedCrossRefGoogle Scholar
  49. 49.
    C. Galustian, A.M. Lawson, S. Komba, H. Ishida, M. Kiso, and T. Feizi, Sialyl-Lewisa sequence 6–0-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-Nacetylation of the sialic acid enhances the binding strength, Biochem.Biophys.Res.Comm 240:748 (1997).PubMedCrossRefGoogle Scholar
  50. 50.
    C. Mitsuoka, K.N. Kawakami, S.M. Kasugai, N. Hiraiwa, K. Toda, H. Ishida, M. Kiso, A. Hasegawa, and R. Kannagi, Sulfated sialyl Lewisx, the putative L-selectin ligand, detected on endothelial cells of high 77 endothelial venules by a distinct set of anti-sialyl Lewisx antibodies [published erratum appears in Biochem Biophys Res Commun 1997 Apr 17;233(2):576], Biochem.Biophys.Res.Commun. 230:546 (1997).Google Scholar
  51. 51.
    C. Mitsuoka, K.M. Sawada, F.K. Ando, M. Izawa, H. Nakanishi, S. Nakamura, H. Ishida, M. Kiso, and R. Kannagi, Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewisx, J.Biol.Chem. 273:11225 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    N. Kimura, C. Mitsuoka, A. Kanamori, N. Hiraiwa, K. Uchimura, T. Muramatsu, T. Tamatani, G.S. Kansas, and R. Kannagi, Reconstruction of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of al-+3 fucosyltransferase VII and newly cloned GlcNAcß:6-sulfotransferase cDNA, Proc.Nat.Acad.Sci.USA 96:4530 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Bistrup, S. Bhakta, J.K. Lee, Y.Y. Belov, M.D. Gunn, Z. Feng-Rong, C.C. Huang, R. Kannagi, S.D. Rosen, and S. Hemmerich, Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin, J.Cell.Biol 145:899 (1999).PubMedCrossRefGoogle Scholar
  54. 54.
    N. Hiraoka, B. Petryniak, J. Nakayama, S. Tsuboi, M. Suzuki, J.C. Yeh, D. Izawa, T. Tanaka, M. Miyasaka, J.B. Lowe, and M. Fukuda, A novel, high endothelial venule-specific sulfotransferase expresses 6- sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34, Immunity. 11:79 (1999).PubMedCrossRefGoogle Scholar
  55. 55.
    K. Tangemann, A. Bistrup, S. Hemmerich, and S.D. Rosen, Sulfation of a high endothelial venuleexpressed ligand for L-selectin. Effects on tethering and rolling of lymphocytes, J.Exp.Med. 190:935 (1999).PubMedCrossRefGoogle Scholar
  56. 56.
    C. Auge, F. Dagron, R. Lemoine, C.Le Narvor, and A. Lubineau, Syntheses of sulfated derivatives as sialyl Lewisa and sialyl Lewisa analogues, in: “Carbohydrate Mimics: Concepts and Methods”, Y. Chapleur, ed., Verlag Chemie, Weinheim (1997).Google Scholar
  57. 57.
    S. Komba, C. Galustian, H. Ishida, T. Feizi, R. Kannagi, and M. Kiso, The first total synthesis of 6-sulfode-N-acetylsialyl Lewisa ganglioside: A superior ligand for human L-selectin, Angew.Chem.Int.Ed. 38:1131 (1999).CrossRefGoogle Scholar
  58. 58.
    N. Hanai, T. Dohi, G.A. Nores, and S. Hakomori, A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth, J.Biol.Chem. 263:6296 (1988).PubMedGoogle Scholar
  59. 59.
    A.E. Manzi, E.R. Sjoberg, S. Diaz, and A. Varki, Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells, J.Biol.Chem. 265:13091 (1990).PubMedGoogle Scholar
  60. 60.
    E.R. Sjoberg, R. Chammas, H. Ozawa, I. Kawashima, K.H. Khoo, H.R. Morris, A. Dell, T. Tai, and A. Varki, Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole, J.Biol.Chem. 270:2921 (1995).PubMedCrossRefGoogle Scholar
  61. 61.
    C. Mitsuoka, K. Ohmori, N. Kimura, A. Kanamori, S. Komba, H. Ishida, M. Kiso, and R. Kannagi, Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes, Proceedings of the National Academy of Sciences, U.S.A. 96:1597 (1999).CrossRefGoogle Scholar
  62. 62.
    C.R. Bertozzi, S. Fukuda, and S.D. Rosen, Sulfated disaccharide inhibitors of L-selectin: Deriving structural leads from a physiological selectin ligand, Biochemistry 34:14271 (1995).PubMedCrossRefGoogle Scholar
  63. 63.
    K. Norgard-Sumnicht and A. Varki, Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups, J.Biol.Chem. 270:12012 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    Y. Tanaka, D.H. Adams, and S. Shaw, Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes, Immunol.Today 14:111 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    T. Feizi and C. Galustian, Novel oligosaccharide ligands and ligand-processing pathways for the selectins, Trends in Biochemical Sciences 24:369 (1999).PubMedCrossRefGoogle Scholar
  66. 66.
    C. Leteux, R.A. Childs, W. Chai, M.S. Stoll, H. Kogelberg, and T. Feizi, Biotinyl-L-3-(2-naphthyl)-alanine hydrazide derivatives of N-glycans: versatile solid-phase probes for carbohydrate-recognition studies, Glycobiology 8:227 (1998).PubMedCrossRefGoogle Scholar
  67. 67.
    K. Yamamoto, T. Tsuji, and T. Osawa, Requirement of the core structure of a complex-type glycopeptide for the binding to immobilized lectins, Carbohydr.Res. 110:283 (1982).PubMedCrossRefGoogle Scholar
  68. 68.
    C. Leteux, M.S. Stoll, R.A. Childs, W. Chai, M. Vorozhaikina, and T. Feizi, Influence of oligosaccharide presentation on the interactions of carbohydrate sequence-specific antibodies and the selectins. Observations with biotinylated oligosaccharides, Journal of Immunological Methods 227:109 (1999).PubMedCrossRefGoogle Scholar
  69. 69.
    D. Solis, T. Feizi, C.T. Yuen, A.M. Lawson, R.A. Harrison, and R.W. Loveless, Differential recognition by conglutinin and mannan-binding protein of N-glycans presented on neoglycolipids and glycoproteins with special reference to complement glycoprotein C3 and ribonuclease B, J.Biol.Chem. 269:11555 (1994).PubMedGoogle Scholar
  70. 70.
    F. Li, P.P. Wilkins, S. Crawley, J. Weinstein, R.D. Cummings, and R.P. McEver, Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin, J.Biol.Chem. 271:3255 (1996).PubMedCrossRefGoogle Scholar
  71. 71.
    A. Kameyama, H. Ishida, M. Kiso, and A. Hasegawa, Synthetic studies on sialoglycoconjugates 22: total synthesis of tumor-associated ganglioside, sialyl Lewis X, J.Carbohydr.Chem. 10:549 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ten Feizi
    • 1
  1. 1.The Glycosciences LaboratoryImperial College School of Medicine Northwick Park CampusHarrowUK

Personalised recommendations