Skip to main content

Classification of Plant Lectins in Families Of Structurally and Evolutionary Related Proteins

  • Chapter
The Molecular Immunology of Complex Carbohydrates —2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 491))

Abstract

The majority of plant lectins can be classified in seven families of structurally and lutionary related proteins. Within a given lectin family most but not necessarily all mbers are built up of protomers with a similar primary structure and overall 3-D fold. The rall structure of the native lectins is not only determined by the structure of the protomers depends also on the degree of oligomerization and in some cases on the post-nslational processing of the lectin precursors. In general, lectin families are fairly homogeneous for what concerns the overall cificity of the individuallectins, which illustrates that the 3-D structure of the binding site been conserved during evolution. In the case of the jacalin-related lectins the occurrence a mannose-and galactose-binding subfamily can be explained by the fact that a post-nslational cleavage of the protomers (of the galactose-binding subfamily) yields a slightly red binding site. Unlike the other families, the legume lectins display a wide range of cificites, which is clearly reflected in the occurrence of sugar-binding sites with a erent 3-D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Damme, E.J.M., Peumans, W.J., Pusztai, A., and Bardocz, S. (1998) Handbook of Plant Lectins: Properties and Biomedical Applications. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  2. Van Damme, E.J.M., Peumans, W.J., Barre, A., and Rougé, P. (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plt. Sci., 17: 575–692.

    Article  Google Scholar 

  3. Peumans, W.J., and Van Damme, E.J.M. (1995) The role of lectins in plant defense. Histochem. J., 27: 253–271.

    Article  CAS  PubMed  Google Scholar 

  4. Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive B chain from elderberry (Sambucus nigra) bark. J. Biol. Chem., 272: 8353–8360.

    Google Scholar 

  5. Barbieri, L., Batelli, G.B., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta, 1154: 237–282.

    CAS  Google Scholar 

  6. Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U., and Vad, K. (1993) Plant chitinases. Plant J., 3: 31–40.

    Article  CAS  PubMed  Google Scholar 

  7. Bird, G.W.G. (1954) Observations on the interactions of the erythrocytes of various species with certain seed agglutinins. Br. J. Exp. Pathol., 35: 252.

    CAS  PubMed  Google Scholar 

  8. Koeppe S.J., and Rupnov, J.H. (1988) Purification and characterization of a lectin from the seeds of amaranth (Amaranthus cruentus). J. Food Sc., 53: 1412–1417.

    Article  CAS  Google Scholar 

  9. Zenteno, E., and Ochoa, J.-L. (1988) Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochem., 27: 313–317.

    Article  CAS  Google Scholar 

  10. Transue, T.R., Smith, A.K., Mo, H., Goldstein, I.J., and Saper, M.A. (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus lectin. Nature Struct. Biol., 10: 779–783.

    Google Scholar 

  11. Rinderle, S.J., Goldstein, I.J., Matta, K.L., and Ratcliffe, R.M. (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J. Biol. Chem., 264: 16123–16131.

    CAS  PubMed  Google Scholar 

  12. Raina, A., and Data, A. (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA, 89: 11774–11778.

    Article  CAS  PubMed  Google Scholar 

  13. Hossaini, A. (1968) Hemolytic and hemagglutinating activities of 222 plants. Vox Sang., 15: 410–417.

    Article  CAS  PubMed  Google Scholar 

  14. Sabnis, D.D., and Hart, J.W. (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta, 142: 97–101.

    Article  CAS  Google Scholar 

  15. Allen, A.K. (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for β-1,4-linked N-acetylglucosamine oligosaccharides. Biochem. J., 183: 133–137.

    CAS  Google Scholar 

  16. Read, S.M., and Northcote, D.H. (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur. J. Biochem., 134: 561–569.

    Article  CAS  PubMed  Google Scholar 

  17. Bostwick, D.E., Dannehofer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., and Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell, 4: 1539–1548.

    CAS  PubMed  Google Scholar 

  18. Anantharam V., Patanjali, S.R., Swamy, M.J., Sanadi, A.R., Goldstein, I.J., and Surolia, A. (1986) Isolation, macromolecular properties, and combining site of a chito-oligosaccharidespecific lectin from the exudate of ridge gourd (Luffa acutangula). J. Biol. Chem., 261: 14621–14627.

    CAS  PubMed  Google Scholar 

  19. Wang, M.-B., Boulter, D., and Gatehouse, J.A. (1994) Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol. Biol., 24: 159–170.

    Article  CAS  PubMed  Google Scholar 

  20. Waljuno, K., Scholma, R. A., Beintema, J., Mariono, A., and Hahn, A. M. (1975) Amino acid sequence of hevein. Proc. Int. Rubber Conf., Kuala Lumpur, 2: 518–531.

    Google Scholar 

  21. Kocourek, J. (1986) Historical background. In The Lectins, Properties, Functions, and Applications in Biology and Medicine (Liener, I.E., Sharon, N. and Goldstein, I.J., eds.), pp 132 Academic Press, Orlando, USA.

    Google Scholar 

  22. Aub, J.C., Tieslau, C., and Lankester, A. (1963) Reactions of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc. Natl. Acad. Sci. USA, 50: 613–619.

    Article  CAS  Google Scholar 

  23. Burger, M.M., and Goldberg, A.R. (1967) Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc. Natl. Acad. Sci. USA, 57: 359–366.

    Article  CAS  PubMed  Google Scholar 

  24. Nagata, Y., and Burger, M.M. (1972) Wheat germ agglutinin. Isolation and crystallization. J. Biol. Chem., 247: 2248–2250.

    CAS  PubMed  Google Scholar 

  25. LeVine, D., Kaplan, M.J., and Greenaway, P.J. (1972) The purification and characterization of wheat-germ agglutinin. Biochem. J., 129: 847–856.

    CAS  PubMed  Google Scholar 

  26. Wright, C.S. (1977) The crystal structure of wheat germ agglutinin at 2.2 Å resolution. J. Mol. Biol., 111: 439–457.

    Article  CAS  PubMed  Google Scholar 

  27. Raikhel, N.V., and Wilkins, T.A. (1987) Isolation and characterization of a cDNA clone encoding wheat germ agglutinin. Proc. Natl. Acad. Sci. USA, 84: 6745–6749.

    Article  CAS  PubMed  Google Scholar 

  28. Van Parijs, J., Broekaert, W.F., Goldstein, I.J., and Peumans, W.J. (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183: 258–262.

    Article  Google Scholar 

  29. Linthorst, H.J.M. (1991) Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci., 10: 123–150.

    Article  CAS  Google Scholar 

  30. Broekaert, W.F., Marien, W., Terras, F.R.G., De Bolle, M.F.C., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S.B., Vanderleyden, J., and Cammue, B.P.A. (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry, 31: 4308–4314.

    Article  CAS  PubMed  Google Scholar 

  31. Beintema, J.J., and Peumans, W.J. (1992) The primary structure of stinging nettle (Urtica dioica) agglutinin: a two-domain member of the hevein family. FEBS Lett., 299: 131–134.

    Article  CAS  PubMed  Google Scholar 

  32. Peumans, W.J., Verhaert, P., Miller, U., and Van Damme, E.J.M. (1996) Isolation and partial characterization of a small chitin-binding lectin from mistletoe (Viscum album). FEBS Lett., 396: 261–265.

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi, K.I., Mori, A., and Funatsu, G. (1996) Amino acid sequence and some properties of lectin-D from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 60: 1380–1382.

    CAS  Google Scholar 

  34. Yamaguchi, K.I., Mori, A., and Funatsu, G. (1995) The complete amino acid sequence of lectin-C from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 59: 1384–1385.

    CAS  Google Scholar 

  35. Yamaguchi, K.I., Yurino, N., Kino, M., Ishiguro, M., and Funatsu, G. (1997) The amino acid sequence of mitogenic lectin-B from the roots of pokeweed (Phytolacca americana). Biosci. Biotechnol. Biochem., 61: 690–698.

    CAS  Google Scholar 

  36. Kieliszewski, M.J., Showalter, A.M., and Leykam, J.F. (1994) Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J., 5: 849–861.

    Article  CAS  PubMed  Google Scholar 

  37. Allen, A.K., Bolwell, G.P., Brown, D.S., Sidebottom, C., and Slabas, A.R. (1996) Potato lectin: a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin. Int. J. Biochem. Cell Biol., 28: 1285–1291.

    Article  CAS  PubMed  Google Scholar 

  38. Beintema, J.J. (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett., 350: 159–163.

    Article  CAS  PubMed  Google Scholar 

  39. Andersen, N.H., Cao, B., Rodriguez-Romero, A., and Arreguin, B. (1993) Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif. Biochemistry, 32: 1407–1422.

    Article  CAS  PubMed  Google Scholar 

  40. Asensio, J.L., Cañada, F.J., Bruix, M., Rodriguez-Romero, A., and Jimenez-Barbero, J. (1995) The interaction of hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose. Eur. J. Biochem., 230: 621–633.

    Article  CAS  PubMed  Google Scholar 

  41. Martins, J.C., Maes, D., Loris, R., Pepermans, H.A.M., Wyns, L., Willem, R., and Verheyden, P. (1996) 1H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J. Mol. Biol., 258: 322–333.

    Article  CAS  PubMed  Google Scholar 

  42. Goldstein, I.J., Hughes, R.C., Monsigny, M., Osawa, T., and Sharon, N. (1980) What should be called a lectin? Nature, 285: 66.

    Article  Google Scholar 

  43. Jones, J. M., Cawley, L.P., and Teresa, G.W. (1967) Hemagglutinins (lectins) extracted from Maclura pomifera. Vox Sang., 12: 211–214.

    Article  CAS  Google Scholar 

  44. Bausch, J.N., and Poretz, R.D. (1977) Purification and properties of the hemagglutinin from Maclura pomífera seeds. Biochemistry, 16: 5790–5794.

    Article  CAS  PubMed  Google Scholar 

  45. Moreira, R.A., and Ainouz, I.L. (1981) Lectins from seeds of jack fruit (Artocarpus integrifolia L.): Isolation and purification of two isolectins from the albumin fraction. Bio. Plant (Praha), 23: 186–192.

    Article  CAS  Google Scholar 

  46. Sarkar, M., Wu, A.M., and Kabat, E.A. (1981) Immunochemical studies on the carbohydrate specificity of Madura pomifera lectin. Arch. Biochem. Biophys., 209: 204–218.

    CAS  Google Scholar 

  47. Sastry, M.V.K., Banerjee, P., Patanjali, S.R., Swamy, M.J., Swarnalatha, G.V., and Surolia, A. (1986) Analysis of the saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1,3)D-Ga1NAc). J. Biol. Chem., 261: 11726–11733.

    CAS  PubMed  Google Scholar 

  48. Roque-Bareira, M.C., and Campos-Neto, A. (1985) Jacalin: an IgA-binding lectin. J. Immunol., 134: 1740–1743.

    Google Scholar 

  49. Kabir, S., and Daar, A.S. (1994) The composition and properties of jacalin, a lectin of diverse applications obtained from the jackfruit (Artocarpus heterophyllus)seeds. Immunol. Invest., 23: 167–188.

    CAS  Google Scholar 

  50. Czapla, T.H., and Lang, B.A. (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera:Chrysomelidae). J. Econ. Entomol., 83: 2480–2485.

    Google Scholar 

  51. Young, N.M., Johnston, R.A.Z., and Watson, D.C. (1991) The amino acid sequences of jacalin and the Maclura pomífera agglutinin. FEBS Lett., 282: 382–384.

    Article  CAS  PubMed  Google Scholar 

  52. Yang, H., and Czapla, T.H. (1993) Isolation and characterization of cDNA clones encoding jacalin isolectins. J. Biol. Chem., 268: 5905–5910.

    CAS  PubMed  Google Scholar 

  53. Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., and Vijayan, M. (1996) A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a (β-prism fold. Nature Struct. Biol., 3: 596–603.

    CAS  Google Scholar 

  54. Van Damme, E.J.M., Barre, A., Verhaert, P., Rougé, P., and Peumans, W.J. (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett., 397: 352–356.

    Article  PubMed  Google Scholar 

  55. Van Damme, E.J.M., Barre, A., Mazard, A.-M., Verhaert, P., Horman, A., Debray, H., Rougé, P., and Peumans, W.J., (1999) Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur. J. Biochem., 199: 135–142.

    Article  Google Scholar 

  56. Rosa, J.C., De Oliveira, P.S.L., Garratt, R., Beltramini, L., Resing, K., Roque-Barreira, M.-C., and Greene, L.J. (1999) KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the β-prism fold. Protein Sci., 8: 13–24

    Article  CAS  PubMed  Google Scholar 

  57. Peumans, W.J., Winter, H.C., Berner, V., Van Leuven, F., Goldstein, I.J., Truffa-Bachi, P., and, Van Damme, E.J.M. (1997) Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconjugate J., 14: 259–265.

    Article  CAS  Google Scholar 

  58. Landsteiner, K., and Raubitschek, H. (1907) Beobachtungen über Hämolyse und Hämagglutination. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt., 1: Orig., 45: 660–667.

    Google Scholar 

  59. Summer, J.B., and Howell, S.F. (1936) The identification of the hemagglutinin of the Jack bean with concanavalin A. J. Bacteriol., 32: 227–237.

    Google Scholar 

  60. Renkonen, K.O. (1948) Studies on hemagglutinins present in seeds of some representatives of Leguminoseae. Ann. Med. Exp. Biol. Fenn., 26: 66–72.

    Google Scholar 

  61. Boyd, W.C., and Reguera, R.M. (1949) Studies on haemagglutinins present in seeds of some representatives of the family Leguminoseae. J. Immunol., 62: 333–339.

    CAS  PubMed  Google Scholar 

  62. Nowell, P.C. (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res., 20: 462–466.

    CAS  PubMed  Google Scholar 

  63. Edelman, G.M., Cunningham, B.A., Reeke, G.N.Jr., Becker, J.W., Waxdal, M.J., and Wang, J.L. (1972) The covalent and three-dimensional structure of concanavalin A. Proc. Natl. Acad. Sci. U.S.A., 69: 2580–2584.

    Article  CAS  Google Scholar 

  64. Hardman, K.D., and Ainsworth, C.F. (1972) Structure of concanavalin A at 2.4 A resolution. Biochemistry, 11: 4910–4919.

    Article  CAS  PubMed  Google Scholar 

  65. Vodkin, L.O., Rhodes, P.R., and Goldberg, R.B. (1983) A lectin gene insertion has the structural features of a transposable element. Cell, 34: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  66. Sturm, A., and Chrispeels, M.J. (1986) The high mannose oligosaccharide of phytohemagglutinin is attached to Asn12 and the modified oligosaccharide to Asn60. Plant Physiol., 81: 320–322.

    Article  CAS  PubMed  Google Scholar 

  67. Sturm, A., Bergwerff, A.A., and Vliegenthart, F.G. (1992) 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur. J. Biochem., 204: 313–316.

    Article  PubMed  Google Scholar 

  68. Feldsted, R.L., Egorin, M.J., Leavitt, R.D., and Bachur, N.R. (1977) Recombinations of subunits of Phaseolus vulgaris isolectins. J. Biol. Chem., 252: 2967–2971.

    Google Scholar 

  69. Van Driessche, E. (1988) Structure and function of Leguminosae lectins. In Advances in Lectin Research. Vol. 1, pp. 73–134, Franz, H., Ed., VEB Verlag Volk und Gesundheit, Berlin, Germany.

    Google Scholar 

  70. Carrington, D.M., Auffret, A., and Hanke, D.A. (1985) Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature, 313: 64–67.

    Article  CAS  PubMed  Google Scholar 

  71. Bowles, D.J., Marcus, S.E., Pappin, D.J.C., Findlay, J.B.C., Eliopoulos, E., Maycox, P. R., and Burgess, J. (1986) Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J. Cell Biol., 102: 1284–1297.

    Article  CAS  PubMed  Google Scholar 

  72. Agrawal, B.B.L., and Goldstein, I.J. (1968) Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim. Biophys. Acta, 147: 262–271.

    Google Scholar 

  73. Shaanan, B., Lis, H., and Sharon, N. (1991) Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science 254: 862–866.

    Article  CAS  PubMed  Google Scholar 

  74. Banerjee, R., Mande, S. C., Ganesh, V., Das, K., Dhanaraj, V., Mahanta, S. K., Suguna, K., Surolia, A., and Vijayan, M. (1994) Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc. Natl. Acad. Sci. U.S.A., 91: 227–231.

    Article  CAS  PubMed  Google Scholar 

  75. Hamelryck, T.W., Dao, M.-H., Poortmans, F., Chrispeels, M.J., Wyns, L., and Loris, R. (1996) The crystallographic structure of phytohemagglutinin-L. J. Biol. Chem., 271: 20479–20485.

    Article  CAS  PubMed  Google Scholar 

  76. Drickamer, K. (1995) Multiplicity of carbohydrate interactions. Nature Struct. Biol., 2: 437–439.

    Article  CAS  PubMed  Google Scholar 

  77. Weis, W.I., and Drickamer, K. (1996) Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem., 65: 441–473.

    Article  CAS  Google Scholar 

  78. Debray, H., Decout, D., Strecker, G., Spik, G., and Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem., 117: 41–55.

    Article  CAS  PubMed  Google Scholar 

  79. Kornfeld, K., Reitman, M.L., and Kornfeld, R. (1981) The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem., 256: 6633–6640.

    Google Scholar 

  80. Young, N.M., and Oomen, R.P. (1992) Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J. Mol. Biol., 228: 924–934.

    Article  CAS  PubMed  Google Scholar 

  81. Sharma, V., and Surolia, A. (1997) Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol., 267: 433–445.

    Article  CAS  PubMed  Google Scholar 

  82. Nachbar, M.S., and Oppenheim, J.D. (1980) Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr., 33: 2338–2345.

    CAS  PubMed  Google Scholar 

  83. Van Damme, E.J.M., Allen, A.K., and Peumans, W.J. (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett., 215: 140–144.

    Article  Google Scholar 

  84. Van Damme, E.J.M., Kaku, H., Perini, F., Goldstein, I.J., Peeters, B., Yagi, F., Decock, B., and Peumans, W.J. (1991) Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur. J. Biochem., 202: 23–30.

    Article  PubMed  Google Scholar 

  85. Van Damme, E.J.M., Allen, A.K., and Peumans, W.J. (1988) Related mannose-specific lectins from different species of the family Amaryllidaceae. Physiol. Plant., 73: 52–57.

    Article  Google Scholar 

  86. Van Damme, E.J.M., Goldstein, I.J., and Peumans, W.J. (1991) A comparative study of related mannose-binding lectins from the Amaryllidaceae and Alliaceae. Phytochem., 30: 509–514.

    Article  Google Scholar 

  87. Van Damme, E.J.M., Smeets, K., Balzarini, J., Pusztai, A., Van Leuven, F., Goldstein, I. J., and Peumans, W.J. (1993) Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol. Biol., 23: 365–376.

    Google Scholar 

  88. Van Damme, E.J.M., Balzarini, J., Smeets, K., Van Leuven, F., and Peumans, W.J. (1994) The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconjugate J., 11: 321–332.

    Article  Google Scholar 

  89. Van Damme, E.J.M., Smeets, K., and Peumans, W.J. (1995) The mannose-binding monocot lectins and their genes. In Lectins: Biomedical Perspectives (Pusztai, A. and Bardocz, S., eds.), pp. 59–80. Taylor and Francis, London, UK.

    Google Scholar 

  90. Van Damme, E.J.M., Goossens, K., Smeets, K., Van Leuven, F., Verhaert, P., and Peumans, W.J. (1995) The major tuber storage protein of Araceae species is a lectin: Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol., 107: 1147–1158.

    Article  PubMed  Google Scholar 

  91. Yagi, F., Hidaka, M., Minami, Y., and Tadera, K. (1996) A lectin from leaves of Neoregelia flandria recognizes D-glucose, D-mannose and N-acetylglucosamine, differing from the mannose-specific lectins from other monocotyledonous species. Plant Cell Physiol., 37: 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  92. Xu, Q., Liu, Y., Wang, X., Gu, H., and Chen, Z. (1998) Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol. Biochem., 36: 899–905.

    CAS  Google Scholar 

  93. Van Damme, E.J.M., Smeets, K., Torrekens S., Van Leuven, F., and Peumans, W.J. (1993) The mannose-specific lectins from ramsons (Album ursinum L.) are encoded by three sets of genes. Eur. J. Biochem., 217: 123–129.

    Article  PubMed  Google Scholar 

  94. Van Damme, E.J.M., Smeets, K., Torrekens, S., Van Leuven, F., Goldstein, I.J., and Peumans, W.J. (1992) The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur. J. Biochem., 206: 413–420.

    Article  PubMed  Google Scholar 

  95. Van Damme, E.J.M., Briké, F., Winter, H. C., Van Leuven, F., Goldstein, I.J., and Peumans, W.J. (1996) Molecular cloning of two different mannose-binding lectins from tulip bulbs. Eur. J. Biochem., 236: 419–427.

    Article  PubMed  Google Scholar 

  96. Wright, C.S., Kaku, H., and Goldstein, I.J. (1990) Crystallization and preliminary X-ray diffraction results of snowdrop (Galanthus nivalis) lectin. J. Biol. Chem., 265: 1676–1677.

    CAS  PubMed  Google Scholar 

  97. Hester, G., Kaku, H., Goldstein, I.J., and Wright, C.S. (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nature Struct. Biol., 2: 472–479.

    CAS  Google Scholar 

  98. Barre, A., Van Damme, E.J.M., Peumans, W.J., and Rougé, P. (1996) Structure-function relationship of monocot mannose-binding lectins. Plant Physiol., 112: 1531–1540.

    Article  CAS  PubMed  Google Scholar 

  99. Wright, C.S., and Hester, G. (1996) The 2.0 Å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure, 11: 1339–1352.

    Article  Google Scholar 

  100. Shibuya, N., Goldstein, I.J., Van Damme, E.J.M., and Peumans, W.J. (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. Biol. Chem., 263: 728–734.

    CAS  PubMed  Google Scholar 

  101. Kaku, H., Van Damme, E.J.M., Peumans, W.J., and Goldstein, I.J. (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys., 279: 298–304.

    CAS  Google Scholar 

  102. Saito, K., Komae, A., Kakuta, M., Van Damme, E.J.M., Peumans, W.J., Goldstein, I.J., and Misaki, A. (1993) The alpha-mannosyl-binding lectin from leaves of the orchid twayblade (Listera ovata). Application to separation of a-D-mannans from a-D-glucans. Eur. J. Biochem., 217: 677–681.

    Article  CAS  PubMed  Google Scholar 

  103. Stillmark, H. (1888) Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L. und einige anderen Euphorbiaceen. Inaugural Dissertation Dorpat, Tartu.

    Google Scholar 

  104. Lin, J.-Y., Tserng, K.-Y., Chen, C.-C., Lin, L.-T., and Tung, T.-C. (1970) Abrin and ricin: new anti-tumour substances. Nature, 227: 292–293.

    Article  CAS  PubMed  Google Scholar 

  105. Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J. Biol. Chem., 262: 5908–5912.

    CAS  PubMed  Google Scholar 

  106. Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) The NeuAc (a-2,6)-Gal/GalNAc binding lectin from elderberry (Sambucus nigra) bark, a type 2 ribosome inactivating protein with an unusual specificity and structure. Eur. J. Biochem., 235: 128–137.

    Article  PubMed  Google Scholar 

  107. Van Damme, E.J.M., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J. (1996) Characterization and molecular cloning of SNAV (nigrin b), a GalNAc-specific type 2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem., 237:505–513.

    Article  PubMed  Google Scholar 

  108. Van Damme, E.J.M., Roy, S., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W.J., (1997) The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J., 12: 1251–1260.

    Article  PubMed  Google Scholar 

  109. Peumans, W.J., Roy, S., Barre, A., Rougé, P., Van Leuven, F., and Van Damme, E.J.M., (1998) Elderberry (Sambucus nigra) contains truncated Neu5Ac(α-2,6)Gal/Ga1NAc-binding type 2 ribosome-inactivating proteins. FEBS Lett., 425: 35–39.

    Article  CAS  PubMed  Google Scholar 

  110. Rutenber, E., Katzin, B.J., Collins, E.J., Mlsna, D., Ready, M.P., and Robertus, J.D. (1991) Crystallographic refinement of Ricin to 2.5 Å. Proteins Struct. Funct. Genet.,10: 240–250.

    CAS  Google Scholar 

  111. Katzin, B.J., Collins, E.J., and Robertus, J.D. (1991) Structure of Ricin A-chain at 2.5 Å. Proteins Struct. Funct. Genet., 10: 251–259.

    CAS  Google Scholar 

  112. Rutenber, E., and Robertus, J.D. (1991) Structure of Ricin B-chain at 2.5 Å resolution. Proteins Struct. Funct. Genet., 10: 260–269.

    CAS  Google Scholar 

  113. Kim, Y., and Robertus, J.D. (1992) Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography. Protein Engin., 5: 775–779.

    Article  CAS  Google Scholar 

  114. Chaddock, J.A., and Roberts, L.M. (1993) Mutagenesis and kinetic analysis of the active site G1u177 of ricin A-chain. Protein Engin., 6: 425–431.

    Article  CAS  Google Scholar 

  115. Murzin, A.G., Lesk, A.M., and Chothia, C. (1992) ß-trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1ß and la and fibroblast growth factors. J. Mol. Biol., 223: 531–543.

    Article  CAS  PubMed  Google Scholar 

  116. Tahirov, T.H., Lu. T.H., Liaw, Y.C., Chen, Y.L., and Lin, J.Y. (1995) Crystal structure of abrin-a at 2.14 Å. J. Mol. Biol., 25: 354–367.

    Article  Google Scholar 

  117. Yamasaki, N., Hatakeyama, T., and Funatsu, G. (1985) Ricin D-saccharide interaction as studied by ultraviolet difference spectroscopy. J. Biochem., 98: 1555–1560.

    CAS  PubMed  Google Scholar 

  118. Hatakeyama, T., Yamasaki, N., and Funatsu, G. (1986) Identification of the tryptophan residue located at the low-affinity saccharide binding site of ricin D. J. Biochem., 100: 781–788.

    CAS  PubMed  Google Scholar 

  119. Fu, T., Burbage, C., Tagge, E.P., Brothers, T., Willingham, M.C., and Frankel, A.E. (1996) Ricin toxin contains three lectin sites which contribute to its in vivo toxicity. Int. J. Immunopharmacol., 18: 685–692.

    Article  CAS  PubMed  Google Scholar 

  120. Frankel, A.E., Burbage, C., Fu, T., Tagge, E., Chandler, J., and Willingham, M.C. (1996) Ricin toxin contains at least three galactose-binding sites located in B chain subdomains 1 alpha, 1 beta and 2 gamma. Biochemistry, 35: 14749–14756.

    Article  CAS  PubMed  Google Scholar 

  121. Venkatesh, Y.P., and Lambert, J.M. (1997) Galactose-induced dimerization of blocked ricin at acidic pH: evidence for a third galactose-binding site in ricin B-chain. Glycobiology, 7: 329–335.

    Article  CAS  PubMed  Google Scholar 

  122. Kraulis, P.J. (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24: 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peumans, W.J., van Damme, J.M., Barre, A., Rougé, P. (2001). Classification of Plant Lectins in Families Of Structurally and Evolutionary Related Proteins. In: Wu, A.M. (eds) The Molecular Immunology of Complex Carbohydrates —2. Advances in Experimental Medicine and Biology, vol 491. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1267-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1267-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5469-7

  • Online ISBN: 978-1-4615-1267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics