Advertisement

Mitochondrial Dysfunction in Neurodegenerative Disorders and Ageing

  • Christopher Turner
  • Anthony H. V. Schapira
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 487)

Abstract

In eukaryotic cells, mitochondria are the organelles that produce the majority of adenosine triphosphate (ATP) required for normal neuronal function and survival. ATP is generated by oxidative phosphorylation (OXPHOS) within mitochondria from intermediates, such as NADH and FADH2which are produced by ß-oxidation and the Kreb’s cycle.

Keywords

Mitochondrial Dysfunction Multiple System Atrophy Inclusion Body Myositis Hereditary Spastic Paraplegia Respiratory Chain Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 41: 233–357.CrossRefGoogle Scholar
  2. 2.
    Galper JB, Darnell JE (1969) The presence of N-formyl-methionyl-tRNA in HeLa cell mitochondria. Biochem Biophys Res Commun 34: 205–214.PubMedCrossRefGoogle Scholar
  3. 3.
    Epler JL, Shugart LR, Barnett WE (1970) N-formylmethionyl transfer ribonucleic acid in mitochondria from Neurospora. Biochemistry 9: 3575–3579.PubMedCrossRefGoogle Scholar
  4. 4.
    Beal MF, Howell N, Bodis-Wollner I (1997) Mitochondria and free radicals in neurodegenerative diseases. Wiley-Liss, New York.Google Scholar
  5. 5.
    Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organisation of the human mitochondrial genome. Nature 290: 457–465.PubMedCrossRefGoogle Scholar
  6. 6.
    Taanman JW (1999) The human mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410: 103–123.PubMedCrossRefGoogle Scholar
  7. 7.
    Chinnery F, Howell N, Andrews RA (1999) Clinical mitochondrial genetics. J Med Genet 36: 425–436.PubMedGoogle Scholar
  8. 8.
    Lightowlers RN, Chinnery PF, Turnbull DM et al. (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13: 450–455.PubMedCrossRefGoogle Scholar
  9. 9.
    Leonard JV, Schapira AHV (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355: 299–304.PubMedCrossRefGoogle Scholar
  10. 10.
    Leonard JV, Schapira AHV (2000) Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 355: 389–394.PubMedCrossRefGoogle Scholar
  11. 11.
    Schapira Ally, Cooper JM, Dexter D et al. (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269.Google Scholar
  12. 12.
    Schapira AHV, Mann VM, Cooper JM et al. (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145.PubMedCrossRefGoogle Scholar
  13. 13.
    Gu M, Gash MT, Cooper JM et al. (1997) Mitochondrial respiratory chain function in multiple system atrophy. Mov Disord 12: 418–422.PubMedCrossRefGoogle Scholar
  14. 14.
    Gu M, Owen AD, Toffa SEK et al. (1998) Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 158: 24–29.PubMedCrossRefGoogle Scholar
  15. 15.
    DiMauro S (1993) Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 43: 2170–2172.PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor DJ, Krige D, Barnes PRJ et al. (1994) A31P magnetic resonance spectroscopy study of mitochondria] function in skeletal muscle of patients with Parkinson’s disease. J Neurol Sci 125: 77–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Penn AMW, Roberts T, Hodder J etal. (1995) Generalised mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 45: 2097–2099.PubMedCrossRefGoogle Scholar
  18. 18.
    Schapira AHV (1994) Evidence for mitochondrial dysfunction in Parkinson’s disease - a critical appraisal. Mov Disord 9: 125–138.PubMedCrossRefGoogle Scholar
  19. 19.
    Gu M, Cooper JM, Taanman JW et al. (1998) Mitochondrial DNA transmission of the mitochondria) defect of Parkinson’s disease. Ann Neurol 44: 177–186.PubMedCrossRefGoogle Scholar
  20. 20.
    Swerdlow RH, Parks JK, Miller SW et al. (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40: 663–671.PubMedCrossRefGoogle Scholar
  21. 21.
    Davis GC, Williams AC, Markey SP et al. (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254.PubMedCrossRefGoogle Scholar
  22. 22.
    Vingerhoets FJG, Snow BJ, Tetrud JJ et al. (1994) Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann Neurol 36: 765–770.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramsay RR, Krueger MJ, Youngster SK et al. (1991) Interaction of 1-methyl-4phenylpyridinium ion (MPP+) and its analogs with rotenone/piericidin binding site of NADH dehydrogenase. J Neurochem 56: 1184–1190.PubMedCrossRefGoogle Scholar
  24. 24.
    Cleeter MJW, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789.PubMedCrossRefGoogle Scholar
  25. 25.
    Adams JD, Klaidman LK, Odunze IN (1989) Oxidative effects of MPTP in the midbrain. Res Commun Subst Abuse 10: 169–180.Google Scholar
  26. 26.
    Hasegawa E, Takeshige K, Oishi T et al. (1990) 1-methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170: 1049–1055.PubMedCrossRefGoogle Scholar
  27. 27.
    Hantraye P, Brouillet E, Ferrante R et al. (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Med 1017–1021.Google Scholar
  28. 28.
    Przedborski S, Jackson-Lewis V, Yokoyama R et al. (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 93: 4565–4571.PubMedCrossRefGoogle Scholar
  29. 29.
    Di Monte DA, Royland JE, Anderson A et al. (1997) Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J Neurochem 69: 1771–1773.PubMedCrossRefGoogle Scholar
  30. 30.
    Niwa T, Takeda N, Sasaoka T et al. (1989) Detection of tetrahydroisoquinoline in parkinsonian brain as an endogenous amine by use of gas chromatography-mass spectrometry. J Chromatogr 491: 397–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Niwa T, Takeda N, Kaneda N et al. (1987) Presence of tetrahydroisoquinoline and 2methyl-tetrahydroquinoline in parkinsonian and normal human brains. Biochem Biophys Res Commun 144: 1084–1089.PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki K, Mizuno Y, Yoshida M (1989) Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline. Biochem Biophys Res Commun 162: 1541–1545.PubMedCrossRefGoogle Scholar
  33. 33.
    The Huntington’s Disease Collaborative Research Group (HDCRG) (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983.CrossRefGoogle Scholar
  34. 34.
    Vonsattel JP, Myers RH, Stevens TJ et al. (1985) Neuropathological classification of Huntington’s disease. J Neuropath Exp Neurol 44: 559–577.PubMedCrossRefGoogle Scholar
  35. 35.
    Jenkins BG, Koroshetz WJ, Beal MF (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localised1H NMR spectroscopy. Neurology 43: 2689–2695.PubMedCrossRefGoogle Scholar
  36. 36.
    Davie CA, Barker GC, Quinn N et al. (1994) Proton MRS in Huntington’s disease. Lancet 343: 1580.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin WRW, Clark C, Ammann W etal. (1992) Cortical glucose metabolism in Huntington’s disease. Neurology 42: 223–229.PubMedCrossRefGoogle Scholar
  38. 38.
    Jenkins BG, Rosas HD, Chen YCI et al. (1998)1H NMR spectroscopy studies of Huntington’s disease. Correlations with CAG repeat numbers. Neurology 50: 1357–1365.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoang TQ, Blum S, Dubowitz DJ et al. (1998) Quantitative proton-decoupled 31P MRS and1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 50: 1033–1040.PubMedCrossRefGoogle Scholar
  40. 40.
    Koroshetz WJ, Jenkins BG, Rosen BR et al. (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10.. Ann Neurol 41: 160–165.PubMedCrossRefGoogle Scholar
  41. 41.
    Gu M, Gash MT, Mann VM et al. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39: 385–389.PubMedCrossRefGoogle Scholar
  42. 42.
    Browne SE, Bowling AC, MacGarvey U et al. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41: 646–653.PubMedCrossRefGoogle Scholar
  43. 43.
    Tabrizi SJ, Cleeter MWJ, Xuereb J et al. (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45: 25–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405–29408.PubMedGoogle Scholar
  45. 45.
    Gardner PR, Nguyen DH, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 91: 12248–12252.PubMedCrossRefGoogle Scholar
  46. 46.
    Patel M, Day BJ, Crapo JD et al. (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16: 345–355.PubMedCrossRefGoogle Scholar
  47. 47.
    Parker WD, Boyson SJ, Luder AS et al. (1990). Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40: 1231–1234.CrossRefGoogle Scholar
  48. 48.
    Arenas J, Campos Y, Ribacoba R et al. (1998) Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 43: 397–400.PubMedCrossRefGoogle Scholar
  49. 49.
    Schapira AHV (1997) Mitochondrial function in Huntington’s disease: clues for the pathogenesis and prospects for treatment. Ann Neurol 41: 141–142.PubMedCrossRefGoogle Scholar
  50. 50.
    Schapira AHV (1999) Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia, and Friedreich’s ataxia. Biochim Biophys Acta 1210: 159–170.Google Scholar
  51. 51.
    Beal MF, Brouillet E, Jenkins BG et al. (1993) Neurochemical and histological characterisation of striatal excitotoxic lesions produced by the mitochondria) toxin 3nitropropionic acid. J Neurosci 13: 4181–4192.PubMedGoogle Scholar
  52. 52.
    Mangiarini L, Sathasivam K, Seller M et al. (1996) Exon I of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506.PubMedCrossRefGoogle Scholar
  53. 53.
    Tabrizi SJ, Workman J. Hart P et al. (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47: 80–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Cha JHJ, Kosinski CM, Kerner JA et al. (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc Natl Acad Sci USA 95: 6480–6485.PubMedCrossRefGoogle Scholar
  55. 55.
    Levine MS, Chesselet MF, Koppel A et al. (1998) Enhanced sensitivity to glutamate receptor activation in mouse models of Huntington’s disease. J Neurosci 24: 972.Google Scholar
  56. 56.
    Bogdanov M, Ferrante RJ, Kuemmerle S et al. (1998) Increased vulnerability to 3nitropropionic acid in an animal model of Huntington’s disease. J Neurochem 71: 2642–2644.PubMedCrossRefGoogle Scholar
  57. 57.
    De Michele G, De Fusco M, Cavalcanti F et al. (1998) A new locus for autosomal recessive hereditary spastic paraplegia. Am J Hum Genet 63: 135–139.PubMedCrossRefGoogle Scholar
  58. 58.
    Campuzano V, Montermini L, Molto MD et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 217: 1423–1427.CrossRefGoogle Scholar
  59. 59.
    Campuzano V, Montermini L, Lutz Y et al. (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6: 1771–1780.PubMedCrossRefGoogle Scholar
  60. 60.
    Koutnikova H, Campuzano V, Foury F et al. (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nature Genet 16: 345–351.PubMedCrossRefGoogle Scholar
  61. 61.
    Priller J, Scherzer CR, Faber PW et al. (1997) Frataxin gene of Friedreich’s ataxia is targeted to mitochondria. Ann Neurol 42: 265–269.PubMedCrossRefGoogle Scholar
  62. 62.
    Wilson RB, Roof DM (1997) Respiratory deficiency due to a loss of mitochondria) DNA in yeast lacking frataxin homologue. Nature Genet 16: 352–357.PubMedCrossRefGoogle Scholar
  63. 63.
    Sanyal A, Harrington A, Herbert CJ et al. (1995) Heat shock protein HSP60 can alleviate the phenotype of mitochondrial RNA-deficient temperature-sensitive mna2 pet mutants. Mol Gen Genet 246: 56–64.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanchez-Casis G, Cote M, Barbeau A (1976) Pathology of the heart in Friedreich’s ataxia. Can J Neurol Sci 3: 349–354.PubMedGoogle Scholar
  65. 65.
    Thomas PK, Cooper JM, King RI IM et al. (1993) Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondria) function. J Anat 183: 451–461.PubMedGoogle Scholar
  66. 66.
    Finocchiaro G, Baio G, Micossi P et al. (1988) Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38: 1292–1296.PubMedCrossRefGoogle Scholar
  67. 67.
    Rotig A, De Lonlay P, Cluetien D et al. (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich’s ataxia. Nature Genet 17: 215–217.PubMedCrossRefGoogle Scholar
  68. 68.
    Bradley JL, Blake J, Chamberlain S et al. (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 9: 275–282.PubMedCrossRefGoogle Scholar
  69. 69.
    Lodi R, Cooper JM, Bradley JL et al. (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich’s ataxia. Proc Natl Acad Sci USA 96: 11492–11495.PubMedCrossRefGoogle Scholar
  70. 70.
    Katzman R (1986) Alzheimer’s disease. New Engl J Med 314: 457–465.CrossRefGoogle Scholar
  71. 71.
    Duara R, Lopez-Alberola RF, Barker WW et al. (1993) A comparison of familial and sporadic Alzheimer’s disease. Neurology 43: 1377–1384.PubMedCrossRefGoogle Scholar
  72. 72.
    Mielke R, Herholz K, Grond M et al. (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36–41.PubMedGoogle Scholar
  73. 73.
    Friedland RP, Budinger TF, Koss E et al. (1985) Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 33: 235–240.CrossRefGoogle Scholar
  74. 74.
    Parker WD, Parks JK, Filley CM et al. (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44: 1090–1096.PubMedCrossRefGoogle Scholar
  75. 75.
    Parker WD, Parks JK (1995) Cytochrome c oxidase in Alzheimer’s disease brain: Neurology 45: 482–486.PubMedCrossRefGoogle Scholar
  76. 76.
    Kish SJ, Bergeran C, Rajput A et al. (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59: 776–779.PubMedCrossRefGoogle Scholar
  77. 77.
    Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63: 2179–2184.PubMedCrossRefGoogle Scholar
  78. 78.
    Chagnon P, Betard C, Robitaille Yet al. (1995) Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. Mol Neurosci 6: 711–715.Google Scholar
  79. 79.
    Simonian NA, Hyman BT (1993) Functional alterations in Alzheimer’s disease: diminution of cytochrome oxidase in the hippocampal formation. J Neuropathol Exp Neurol 52: 580–585.PubMedCrossRefGoogle Scholar
  80. 80.
    Simonian NA, Hyman BT (1994) Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in hippocampal formation. J Neuropathol Exp Neurol 53: 508–512.PubMedCrossRefGoogle Scholar
  81. 81.
    Bonilla E, Tanji K, Hirano M et al. (1999) Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1410: 171–182.PubMedCrossRefGoogle Scholar
  82. 82.
    Hevner RF, Wong-Riley MTT (1993) Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons. J Neurosci 13: 1805–1819.PubMedGoogle Scholar
  83. 83.
    Corral-Debrinski M, Horton T, Lott MT et al. (1994) Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23: 471–476.PubMedCrossRefGoogle Scholar
  84. 84.
    Blanchard BJ, Park T, Fripp WJ et al. (1993) A mitochondrial DNA deletion in normally aging and Alzheimer brain tissue. Neuroreport 4: 799–802.PubMedCrossRefGoogle Scholar
  85. 85.
    Chandrasekaran K, Hatanpaa K, Brady DR et al. (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease. Exp Neurol 142: 80–88.PubMedCrossRefGoogle Scholar
  86. 86.
    Edland SD, Silverman JM, Peskind ER et al. (1996) Increased risk of dementia in mothers of Alzheimer’s disease cases:evidence for maternal inheritance. Neurology 47: 254–256.PubMedCrossRefGoogle Scholar
  87. 87.
    Shoffner JM, Brown MD, Torroni A et al. (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson’s disease patients. Genomics 17: 171–184.PubMedCrossRefGoogle Scholar
  88. 88.
    Wragg MA, Talbot CJ, Morris JC et al. (1995) No association found between Alzheimer’s disease and a mitochondrial tRNA glutamine gene variant. Neurosci Lett 201: 107–110.PubMedCrossRefGoogle Scholar
  89. 89.
    Hutchin T, Cortopassi G (1995) A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc Natl Acad Sci USA 92: 6892–6895.PubMedCrossRefGoogle Scholar
  90. 90.
    Davis RE, Miller S, Herrnstadt C et al. (1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94:4526–4531.PubMedCrossRefGoogle Scholar
  91. 91.
    Swerdlow RH, Parks JK, Cassarino DS et al. (1997) Cybrids in Alzheimer’s disease: a cellular model of disease? Neurology 49: 918–925.PubMedCrossRefGoogle Scholar
  92. 92.
    Schon EA, Shoubridge EA, Moraes CT (1998) Cybrids in Alzheimer’s disease: a cellular model of disease? Neurology 51: 326–327.PubMedCrossRefGoogle Scholar
  93. 93.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262: 689–695.PubMedCrossRefGoogle Scholar
  94. 94.
    Hensley K, Hall N, Subramanian R et al. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65: 2146–2156.PubMedCrossRefGoogle Scholar
  95. 95.
    Lovell MA, Ehman WD, Butler SM et al. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45: 1594–1601.PubMedCrossRefGoogle Scholar
  96. 96.
    Good PF, Werner P, Hsu A et al. (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 149: 21–28.PubMedGoogle Scholar
  97. 97.
    Smith MA, Perry G, Richey PL et al. (1996) Oxidative damage in Alzheimer’s. Nature 382: 120–121.PubMedCrossRefGoogle Scholar
  98. 98.
    Ledesma MD, Boney P, Colaco C et al. (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269: 21614–21619.PubMedGoogle Scholar
  99. 99.
    Vitek MP, Bhattacharya K, Glendening JM (1994) Advanced glycation end-products contribute to amyloidosis in Alzheimer’s disease. Proc Natl Acad Sci USA 91: 4766–4770.PubMedCrossRefGoogle Scholar
  100. 100.
    Gsell W, Conrad R, Hickethier M et al. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 64: 1216–1223.PubMedCrossRefGoogle Scholar
  101. 101.
    Griggs RC, Askanas V, DiMauro S et al. (1995) Inclusion body myositis and myopathies. Ann Neurol 38: 705–713.PubMedCrossRefGoogle Scholar
  102. 102.
    Mecocci P, MacGarvey U, Kaufman AE et al. (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34: 609–616.PubMedCrossRefGoogle Scholar
  103. 103.
    Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36: 747–751.PubMedCrossRefGoogle Scholar
  104. 104.
    Morley AA (1995) The somatic mutation theory of ageing. Mutat Res 338: 19–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Brennan JA, Boyle JO, Koch WM et al. (1995) Association between cigarette smoking and mutation of the p53 gene in squamous cell carcinoma of the head and neck. New Engl J Med 332: 712–717.PubMedCrossRefGoogle Scholar
  106. 106.
    Harman D (1972) The biologic clock: the mitochondria? J Am Ger Soc 20: 145–147.Google Scholar
  107. 107.
    Corral-Debrinski M, Horton T, Lott MT et al. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet 2: 324–329.PubMedCrossRefGoogle Scholar
  108. 108.
    Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative disease? Science 256: 628–632.PubMedCrossRefGoogle Scholar
  109. 109.
    Cortopassi GA, Shibata D, Soong NW et al. (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89: 7370–7374.PubMedCrossRefGoogle Scholar
  110. 110.
    Soong NW, Hinton DR, Cortopassi G et al. (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 2: 1075–1078.Google Scholar
  111. 111.
    Holt I.J, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondria) myopathies. Nature 331: 717–719.PubMedCrossRefGoogle Scholar
  112. 112.
    Schon EA, Rizzuto R, Moraes CT et al. (1989) A direct repeat is a hotspot for large-scale deletions of human mitochondrial DNA. Science 244: 346–349.PubMedCrossRefGoogle Scholar
  113. 113.
    Mita S, Rizzuto R, Moraes CT et al. (1990) Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 18: 561–567.PubMedCrossRefGoogle Scholar
  114. 114.
    Nakase H, Moraes CT, Rizzuto R et al. (1990) Transcription and translation of deleted mitochondrial genomes in Kearns-Sayre syndrome:implications for pathogenesis. Am J Hum Genet 46: 418–427.PubMedGoogle Scholar
  115. 115.
    Simonetti S, Chen X, DiMauro S et al. (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180: 113–122.PubMedCrossRefGoogle Scholar
  116. 116.
    Lee CM, Weindruch R, Aiken JM (1997) Age-associated alterations of the mitochondrial genome. Free Rad Biol Med 22: 1259–1269.PubMedCrossRefGoogle Scholar
  117. 117.
    Liu VW, Zhang C, Linnane AW et al. (1997) Quantitative allele-specific PCR: demonstration of age-associated accumulation in human tissues of the A-G mutation at nucleotide 3243 in mitochondrial DNA. Hum Mutat 9: 265–271.PubMedCrossRefGoogle Scholar
  118. 118.
    Pallotti F, Chen X, Bonilla E et al. (1996) Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging. Am J Hum Genet 59: 591–602.PubMedGoogle Scholar
  119. 119.
    Kadenbach B, Munscher C, Frank V et al. (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338: 161–172.PubMedCrossRefGoogle Scholar
  120. 120.
    Brierly EJ, Johnson MA, James OF et al. (1996) Effects of physical activity and age on mitochondrial function. Q J Med 89: 251–258.CrossRefGoogle Scholar
  121. 121.
    Papa S (1996) Mitochondria) oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophy Acta 1276: 87–105.CrossRefGoogle Scholar
  122. 122.
    Barrientos A, Casademont J, Rotig A et al. (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229: 536–539.PubMedCrossRefGoogle Scholar
  123. 123.
    Linnane AW, Degli Esposti M, Generowicz M et al. (1995) The universality of bioenergetic disease and amelioration with redox therapy. Biochim Biophys Acta 1271: 191–194.PubMedCrossRefGoogle Scholar
  124. 124.
    Hagen TM, Yowe DL, Bartholomew JC et al. (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94: 3064–3069.PubMedCrossRefGoogle Scholar
  125. 125.
    Talton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410; 195–213.CrossRefGoogle Scholar
  126. 126.
    Leist M, Single B, Castoldi AF et al. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486.PubMedCrossRefGoogle Scholar
  127. 127.
    Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366: 151–156.PubMedCrossRefGoogle Scholar
  128. 128.
    Shimizu S, Narita M, Tsujimoto Y (1999) Bc1–2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1366: 139–149.Google Scholar
  129. 129.
    Liu P, Kim CN, Yang J et al. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.PubMedCrossRefGoogle Scholar
  130. 130.
    Li P, Nijhawan D, Budihardo I et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.PubMedCrossRefGoogle Scholar
  131. 131.
    Susin SA, Zamzami N, Castedo M et al. (1996) Bcl-2 inhibits the mitochondrial release of an apoptotic protease. J Exp Med 184: 1331–1341.PubMedCrossRefGoogle Scholar
  132. 132.
    Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667–672.PubMedCrossRefGoogle Scholar
  133. 133.
    Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28: 131–138.PubMedCrossRefGoogle Scholar
  134. 134.
    Hansson O, Petersen A, Leist M et al. (1999) Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 96: 8727–8732.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Christopher Turner
    • 1
  • Anthony H. V. Schapira
    • 1
  1. 1.University Department of Clinical NeurosciencesRoyal Free and University College Medical School and lnstitute of Neurology University College LondonLondon NW3 2PFUK

Personalised recommendations