Skip to main content

Abstract

Quantum computers promise extremely fast computation through massive parallelism based on the quantum-mechanical superposition principle. Only two quantum logic gates, a quantum controlled-NOT gate and a rotation gate, are sufficient for any arbitrary quantum computation [1]. The elementary unit of quantum logic gates is a quantum bit, or qubit, which is produced by the quantum-mechanical superposition of two states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A52, 3457 (1995).

    ADS  Google Scholar 

  2. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Phys. Rev. Lett.754710 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett.75, 4714 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. N. Gelshenfeld and I. Chuang, Science275350 (1997).

    Article  MathSciNet  Google Scholar 

  5. B. Kane, Nature,393, 133 (1998).

    Article  ADS  Google Scholar 

  6. D. Loss and D. DiVincenzo, Phys. Rev. A57, 120 (1998).

    Article  ADS  Google Scholar 

  7. A. Shnirman, G. Schon, and Z. Hermon, Phys. Rev. Lett.79, 2371 (1997).

    Article  ADS  Google Scholar 

  8. D. V. Averin, Solid State Commun.105, 659 (1998).

    Article  ADS  Google Scholar 

  9. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchere, and G. Blatter, Nature398679 (1999).

    Article  ADS  Google Scholar 

  10. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, S. Lloyd, Sicence2851036 (1999).

    Article  Google Scholar 

  11. Y. Nakamura, Yu. A. Pashkin, J. S. Tsai, Nature398, 786 (1999).

    Article  ADS  Google Scholar 

  12. N. Hatakenaka, Phys. Rev. E 48 4033 (1993).

    Article  ADS  Google Scholar 

  13. T. Sakuma and Y. Kawanami, Phys. Rev. B29, 869 (1984).

    Article  ADS  Google Scholar 

  14. T. Sakuma and N. Nishiguchi, Jpn. J. Appl. Phys. 30 Supplement 30–1 137–139 (1991).

    Google Scholar 

  15. J. S. Zmuidzinas, Phys. Rev. B17 3919–3925 (1978).

    ADS  Google Scholar 

  16. I. B. Talanina and M. A. Collins, Phys. Rev. B49, 1517 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hatakenaka, N., Takayanagi, H. (2001). Soliton Quantum Bit. In: Averin, D.V., Ruggiero, B., Silvestrini, P. (eds) Macroscopic Quantum Coherence and Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1245-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1245-5_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5459-8

  • Online ISBN: 978-1-4615-1245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics