Skip to main content

Abstract

We report an experiment performed on a few-electron quantum dot in which the quantum numbers of the occupied electron states can be precisely identified. Besides the usual Kondo behavior for spin=l/2 and odd electron number, an unexpected Kondo effect is observed for an even electron number. This effect, which is actually very strong, occurs at a spin-singlet/spin-triplet transition, tuned by a magnetic field. An essentially new Kondo phenomenon is proposed to explain our finding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  2. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  3. D. L. Cox and M. B. Maple, Physics Today 48, 32-40 (1995).

    Article  Google Scholar 

  4. G. A. Prinz, Science 282, 1660-1663 (1998).

    Article  Google Scholar 

  5. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120-126 (1998).

    Article  ADS  Google Scholar 

  6. V. Madhavan et al., Science 280, 567-569 (1998).

    Article  ADS  Google Scholar 

  7. J. Li et al., Phys. Rev. Lett. 80, 2893-2896 (1998).

    Article  ADS  Google Scholar 

  8. D. D. Awschalom and D. P. DiVincenzo, Physics Today 48, 43-48 (1995).

    Article  Google Scholar 

  9. S. Tarucha et al., Phys. Rev. Lett. 84, 2485-2488 (2000).

    Article  ADS  Google Scholar 

  10. D. Goldhaber-Gordon et al., Nature 391, 156-159 (1998).

    Article  ADS  Google Scholar 

  11. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540-544 (1998).

    Article  ADS  Google Scholar 

  12. J. Schmid et al., Physica B 256-258, 182-185 (1998).

    Article  ADS  Google Scholar 

  13. F. Simmel et al., Phys. Rev. Lett. 83, 804-807 (1999).

    Article  ADS  Google Scholar 

  14. L. P. Kouwenhoven et al., in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schon, (Kluwer, Series E 345, 1997), p.105-214.

    Google Scholar 

  15. L. I. Glazman, and M. E. Raikh, JETP Lett. 47, 452-455 (1988).

    ADS  Google Scholar 

  16. T. K. Ng, and P. A. Lee, Phys. Rev. Lett. 61, 1768-1771 (1988).

    Article  ADS  Google Scholar 

  17. T. Inoshita et al., Phys. Rev. B 48, 14725-14728 (1993).

    Article  ADS  Google Scholar 

  18. D. V. Averin and Y. V. Nazarov, in Proceedings of a NATO Advanced Study Institute, Grabert, H. & Devoret, M. H. Eds., Les Houches, France, 5 March to 15 March, 1991

    Google Scholar 

  19. D. V. Averin and Y. V. Nazarov, in Proceedings of a NATO Advanced Study Institute, Series B, 294, 217, Plenum Press, New York, 1991).

    Google Scholar 

  20. D. C. Mattis, Phys. Rev. Lett. 19, 1478-1481 (1967).

    Article  ADS  Google Scholar 

  21. P. Nozières and A. Blandin, J. Physique 41, 193-211 (1980).

    Google Scholar 

  22. Y. Wan, P. Phillips, and Q. Li, Phys. Rev. B 51, 14782-14785 (1995).

    Article  ADS  Google Scholar 

  23. W. Izumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn. 67, 2444-2454 (1998).

    Article  ADS  Google Scholar 

  24. S. M. Maurer et al., Phys. Rev. Lett. 83, 1403-1406 (1999).

    Article  ADS  Google Scholar 

  25. J. Schmid et al., preprint.

    Google Scholar 

  26. M. Eto and Yu. V. Nazarov, cond-mat/0002010.

    Google Scholar 

  27. D.G. Austing et al., Phys. Rev. B 60, 11514-11523 (1999).

    Article  ADS  Google Scholar 

  28. M. Pustilnik, Y. Avishai, and K. Kikoin, Phys. Rev. Lett. 84, 1756-1759 (2000).

    Article  ADS  Google Scholar 

  29. D. Giuliano and A. Tagliacozzo, Phys. Rev. Lett. 84, 4677-4680 (2000).

    Article  ADS  Google Scholar 

  30. Y. Funabashi et al., Jpn. J. Appl. Phys. 38, 388-391 (1999).

    Article  ADS  Google Scholar 

  31. N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040-11052 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Franceschi, S., Sasaki, S., Elzerman, J.M., van der Wiel, W.G., Tarucha, S., Kouwenhoven, L.P. (2001). Transport Through Artificial Kondo Impurities. In: Averin, D.V., Ruggiero, B., Silvestrini, P. (eds) Macroscopic Quantum Coherence and Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1245-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1245-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5459-8

  • Online ISBN: 978-1-4615-1245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics