Quantum Gates and Networks with Cavity QED Systems

  • D. Vitali
  • V. Giovannetti
  • P. Tombesi

Abstract

We show how to implement quantum gates and networks using high-Q cavities in which the qubits are represented by single cavity modes restricted in the space spanned by the two lowest Fock states. The operations can be efficiently implemented using atoms sequentially crossing the cavities.

Keywords

Microwave Coherence Cond Berman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. H. Bennett and D. P. DiVincenzo, Nature (London) 404, 247 (2000).ADSCrossRefGoogle Scholar
  2. [2]
    C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    I. L. Chuang et al. Nature (London) 393, 143 (1998);ADSCrossRefGoogle Scholar
  4. [3]a
    J.A. Jones et al. Nature (London) 393, 344 (1998).ADSCrossRefGoogle Scholar
  5. [4]
    Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    A. Rauschenbeutel et al., Phys. Rev. Lett. 83, 5166 (1999).ADSCrossRefGoogle Scholar
  7. [6]
    A. Barenco et al., Phys. Rev. Lett. 74, 4083 (1995).ADSCrossRefGoogle Scholar
  8. [7]
    T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  9. [8]
    P. Domokos et al., Phys. Rev. A 52, 3554 (1995).ADSCrossRefGoogle Scholar
  10. [9]
    G. Nogues, et al., Nature (London) 400, 239 (1999).ADSCrossRefGoogle Scholar
  11. [10]
    S. Haroche and J.M. Raimond, in Cavity Quantum Electrodynamics, edited by P. Berman (Academic Press, New York, 1994), p. 123.Google Scholar
  12. [11]
    A. Messiah, Quantum Mechanics (North Holland, Amsterdam, 1962).MATHGoogle Scholar
  13. [12]
    X. Maitre et al., Phys. Rev. Lett. 79, 769 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. Vitali
    • 1
  • V. Giovannetti
    • 1
  • P. Tombesi
    • 1
  1. 1.Dipartimento di Matematica e FisicaUniversità di Camerino, INFM, Unità di CamerinoCamerinoItaly

Personalised recommendations