Skip to main content

Quantum Coherence and Decoherence in Magnetic Nanostructures

  • Chapter
Macroscopic Quantum Coherence and Quantum Computing
  • 670 Accesses

Abstract

The prospect of developing magnetic qubits is discussed. The first part of the article makes suggestions on how to achieve the coherent quantum superposition of spin states in small ferromagnetic clusters, weakly uncompensated antiferromagnetic clusters, and magnetic molecules. The second part of the article deals with mechanisms of decoherence expected in magnetic systems. Main decohering effects are coming from nuclear spins and magnetic fields. They can be reduced by isotopic purification and superconducting shielding. In that case the time reversal symmetry of spin Hamiltonians makes spin-phonon coupling ineffective in destroying quantum coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-K. Lo, S. Popescu, and T. P. Spiller,Introduction to Quantum Computation and Information(World Scientific, 1998).

    Book  Google Scholar 

  2. E. M. Chudnovsky and J. Tejada,Macroscopic Quantum Tunneling of the Magnetic Moment(Cambridge University Press, 1998).

    Book  Google Scholar 

  3. W. Wernsdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, and D. Mailly, Phys. Rev. Lett.78, 1791 (1997)

    Article  ADS  Google Scholar 

  4. E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, and A. Thiaville, Phys. Rev. Lett.83, 4188 (1999).

    Article  ADS  Google Scholar 

  5. J. R. Friedman, ME. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett.70, 3830 (1996).

    Article  ADS  Google Scholar 

  6. W. Wernsdorfer and R. Sessoli, Science284, 133 (1999).

    Article  ADS  Google Scholar 

  7. W. Wersasdorfer, E. Bonet Orozco, K. Hasselbach, A. Benoit, D. Mailly, 0. Ktibo, H. Nakano, and B. Barbara, Phys. Rev. Lett.79, 4014 (1997).

    Article  ADS  Google Scholar 

  8. D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo, and D. Loss, Phys. Rev. Lett.68, 3092 (1992).

    Article  ADS  Google Scholar 

  9. E. del Barco, N. Vernier, J. M. Hernandez, J. Tejada, E. M. Chudnovsky, E. Molins, and G. Bellessa, Europhys. Lett.47, 722 (1999).

    Article  ADS  Google Scholar 

  10. W. Wernsdorfer, private communication.

    Google Scholar 

  11. D. A. Gaxanin, J. Phys. A: Math. Gen.24, L61 (1991).

    Article  ADS  Google Scholar 

  12. M. Enz and R. Schilling, J. Phys.C19, 1765 (1986).

    ADS  Google Scholar 

  13. E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett,60, 611 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. L. van Hemmen and A. Sütö, PhysicaB141, 37 (1986).

    Google Scholar 

  15. 0. B. Zaslavsky, Phys. Lett.A145, 471 (1990).

    MathSciNet  ADS  Google Scholar 

  16. E. M. Chudnovsky and J. Friedman, Phys. Rev. Lett., to appear.

    Google Scholar 

  17. D. A. Garanin, E. M. Chudnovsky, and R. Schilling, Phys. Rev.B61, 12204 (2000).

    ADS  Google Scholar 

  18. B. Barbara and E. M. Chudnovsky, Phys. Lett.A145, 205 (1990).

    ADS  Google Scholar 

  19. E. M. Chudnovsky, J. Magn. Magn. Mat.140–144, 1821 (1995).

    Article  Google Scholar 

  20. A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions(Clarendon-Oxford, 1970).

    Google Scholar 

  21. E. M. Chudnovsky, Phys. Rev. Lett.72, 3433 (1994).

    Article  ADS  Google Scholar 

  22. Anupam Garg, Phys. Rev. Lett.70, 1541 (1993)

    Article  ADS  Google Scholar 

  23. Anupam Garg,J. Appl. Phys.76, 6168 (1994).

    Article  ADS  Google Scholar 

  24. N. V. Prokof’ev and P. C. E. Stamp, J. Phys.: Condens. Matter5, L663 (1993)

    Article  ADS  Google Scholar 

  25. N. V. Prokof’ev and P. C. E. Stamp,Rep. Prog. Phys.63, 669 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chudnovsky, E.M. (2001). Quantum Coherence and Decoherence in Magnetic Nanostructures. In: Averin, D.V., Ruggiero, B., Silvestrini, P. (eds) Macroscopic Quantum Coherence and Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1245-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1245-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5459-8

  • Online ISBN: 978-1-4615-1245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics