Functional Organization of Brainstem-Basal Ganglia Interactions as Viewed from the Pedunculopontine Region

  • Glenda L. Keating
  • David B. Rye


Basal ganglia pathways to the brainstem pedunculopontine (PPN) region have been implicated in the pathophysiology of abnormal waking and nocturnal movement. This region may influence movement either via its output to basal ganglia nuclei, or by relay of basal ganglia influences to medullary and/or spinal motor systems. Many details concerning the normal anatomy and physiology of these pathways are yet to be elucidated. Degeneration of these pathways occurs in Parkinson’s disease (PD) (Hirsch et al., 1987; Zweig et al., 1987; Jellinger, 1988; Gai et al., 1991), progressive supranuclear palsy (Zweig et al., 1987), and torsion dystonia (Zweig et al., 1988), yet it is not clear what significance this has to the symptomatology of these disorders.


Basal Ganglion Globus Pallidus Progressive Supranuclear Palsy Paradoxical Sleep Pedunculopontine Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R., Young, A., and Penney, J., 1989, The functional anatomy of basal ganglia disorders,Trends. Neurosci. 12:366.PubMedCrossRefGoogle Scholar
  2. Aldrich, M., Hollingsworth, Z., and Penney, J., 1992, Dopamine-receptor autoradiography of human narcoleptic brain,Neurology, 42:410.PubMedCrossRefGoogle Scholar
  3. Alexander, G. E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex,Annu. Rev. Neurosci. 9:357.PubMedCrossRefGoogle Scholar
  4. Allen, L., and Winn, P., 1995, Excitotoxic lesions of the pedunculopontine tegmental nucleus disinhibit orofacial behaviours stimulated by microinjections of d-amphetamine into rat ventrolateral caudate- putamen,Exp. Brain Res. 104:262.PubMedCrossRefGoogle Scholar
  5. Bachus, S., and Gale, K., 1986, Muscimol microinfused into the nigrotegmental target area blocks selected components of behavior elicited by amphetamine or cocaine,Arch. Pharmacol. 333:143.CrossRefGoogle Scholar
  6. Baker, T., Guilleminault, C., Nino-Murcia, G., and Dement, W., 1986, Comparative polysomnographic study of narcolepsy and idiopathic central nervous system hypersomnia,Sleep, 9:232.PubMedGoogle Scholar
  7. Beresovskii, V. K., and Bayev, K.V., 1988, New locomotor regions of the brainstem revealed by means of electrical stimulation,Neuroscience, 3:863.CrossRefGoogle Scholar
  8. Bergstrom, D., and Walters, J., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus,Brain Res. 310:23.PubMedCrossRefGoogle Scholar
  9. Bevan, M., and Bolam, J., 1995, Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat,J. Neurosci. 15:7105.PubMedGoogle Scholar
  10. Blaha, C, and Winn, P., 1993, Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats.J. Neurosci. 13:1035.PubMedGoogle Scholar
  11. Bringmann, A., and Klingberg, F., 1989, Electrical stimulation of the basal forebrain and the nucleus cuneiformic differently modulate behavioral activation of freely moving rat, Biomed.Biochim. Acta. 48:781.Google Scholar
  12. Brudzynski, S., Wu, M., and Mogenson, G., 1988, Modulation of locomotor activity induced by injections of carbachol into the tegmental pedunculopontine nucleus and adjacent areas in the rat,Brain Res. 451:119.PubMedCrossRefGoogle Scholar
  13. Carpenter, M. B., and Jayaraman, A., 1990, Subthalamic nucleus of the monkey: Connections and immunocytochemical features of afferents,J. Hirnforsch. 31:653.PubMedGoogle Scholar
  14. Chase, M., and Morales, F., 1994, The control of motoneurons during sleep, in:Principles and Practice of Sleep Medicine, M. Kryger, T. Roth, and W. Dement, eds., WB Saunders Company, Philadelphia.Google Scholar
  15. Clarke, P., Hommer, D., Pert, A., and Skirboll, L., 1987, Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: Neuroanatomical and electrophysiological evidence,J. Neurosci. 23:1011.CrossRefGoogle Scholar
  16. Crossman, A., 1989, Neural mechanisms in disorders of movement,Comp. Biochem. Physiol. 93A:141.CrossRefGoogle Scholar
  17. Crutcher, M., Turner, R., Perez, J., and Rye, D., 1994, Relationship of the primate pedunculopontine nucleus (PPN) to tegmental connections with the internal pallidum (GPi),Soc. Neurosci. Abstr. 20:334.Google Scholar
  18. Culebras, A., and Moore, J., 1989, Magnetic resonance findings in REM sleep behavior disorder,Neurology, 39:1519.PubMedCrossRefGoogle Scholar
  19. Daley, J., Perez, J., Bakay, R., and Rye, D., 1997, Dopamine responsive mesopontine tegmental circuits in non-human primates,Soc. Neurosci. Abstr. 23:192.Google Scholar
  20. Datta, S., Dossi, R.C., Pare, D., Oakson, G., and Steriade, M., 1991, Substantia nigra reticulata neurons during sleep - waking states: Relation with ponto-geniculo-occipital waves,Brain Res. 566:344.PubMedCrossRefGoogle Scholar
  21. DeLong, M., 1969, Activity of pallidal neurons in the monkey during movement and sleep,The Physiologist (Abstr), 12:201.Google Scholar
  22. DeLong, M. R., 1990, Primate models of movement disorders of basal ganglia origin,Trends Neurosci. 13:281.PubMedCrossRefGoogle Scholar
  23. Delwaide, P., Pepin, J., and Noordhout, A.M., 1991, Short-latency autogenic inhibition in patients with parkinsonian ridigity,Ann. Neurol 30:83.PubMedCrossRefGoogle Scholar
  24. Delwaide, P., Pepin, J., and Noordhout, A.M., 1993, The audiospinal reaction in parkinsonian patients reflects functional changes in reticular nuclei,Ann. Neurol. 33:63.PubMedCrossRefGoogle Scholar
  25. Gai, W., Halliday, G., Blumbergs, P., Geffen, L., and Blessing, W., 1991, Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s Disease,Brain, 114:2253.PubMedCrossRefGoogle Scholar
  26. Garcia-Rill, E., 1983, Connections of the mesencephalic locomotor region (MLR). III. Intracellular recordings,Brain Res. Bull. 10:73.PubMedCrossRefGoogle Scholar
  27. Garcia-Rill, E., Kinjo, N., Atsuta, Y., Ishikawa, Y., Webber, M., and Skinner, R., 1990, Posterior midbrain induced locomotion,Brain Res. Bull. 24:499.PubMedCrossRefGoogle Scholar
  28. Garcia-Rill, E., Skinner, R., Gilmore, S., and Owings, R., 1983a, Connections of the mesencephalic locomotor region (MLR). II. Afferents and efferents,Brain Res. Bull. 10:63.PubMedCrossRefGoogle Scholar
  29. Garcia-Rill, E., Skinner, R.D., Jackson, M.B., and Smith, M.M., 1983b, Connections of the mesencephalic locomotor region (MLR) I. substantia nigra afferents,Brain Res. Bull. 10:57.PubMedCrossRefGoogle Scholar
  30. Gerfen, C. R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J. Jr., and Sibley, D.R., 1990, Dl and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons,Science, 250:1429.PubMedCrossRefGoogle Scholar
  31. Gerfen, C. R., McGinty, J.F., and Young, W.S. Ill, 1991, Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: In situ hybridization histochemical analysis,J. Neurosci. 11:1016.PubMedGoogle Scholar
  32. Gonya-Magee, T., and Anderson, M., 1983, An electrophysiological characterization of projections from the pedunculopontine area to entopeduncular nucleus and globus pallidus in the cat,Exp. Brain Res. 49:269.PubMedCrossRefGoogle Scholar
  33. Granata, A., and Kitai, S., 1991, Inhibitory substantia nigra inputs to the pedunculopontine neurons,Exp. Brain Res. 86:459.PubMedCrossRefGoogle Scholar
  34. Graybiel, A. M., 1990, Neurotransmitters and neuromodulators in the basal ganglia,Trends Neurosci. 13:244.PubMedCrossRefGoogle Scholar
  35. Grofova, I., and Zhou, M., 1993, Nigral innervation of cholinergic and non-cholinergic cells in the rat mesopontine tegmentum: A double label EM study,Soc. Neurosci. Abstr. 19:1433.Google Scholar
  36. Grofova, I., and Zhou, M, 1998, Nigral innervation of cholinergic and glutamatergic cells in the rat mesopontine tegmentum: light and electron microscopic anterograde tracing and immunohistochemical studies,J. Comp. Neurol. 395:359.PubMedCrossRefGoogle Scholar
  37. Gunne, L.-M., Bachus, S. and Gale, K., 1988, Oral movements induced by interference with nigral GABA neurotransmission: Relationship to tardive dyskinesias,Exp. Neurol. 100:459.PubMedCrossRefGoogle Scholar
  38. Hallanger, A. E., Levey, A.I., Lee, H.J., Rye, D.B., and Wainer, B.H., 1987, The origins of cholinergic and other subcortical afferents to the thalamus in the rat,J. Comp. Neurol. 262:105.PubMedCrossRefGoogle Scholar
  39. Harnois, C, and Filion, M., 1982, Pallidofiigal projections to thalamus and midbrain: A quantitative antidromic activation study in monkeys and cats,Exp. Brain Res. 47:277.PubMedCrossRefGoogle Scholar
  40. Hartmann-von Monakow, K., Akert, K., and Kunzle, H., 1979, Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in macaca fasicularis,Exp. Brain Res. 34:91.Google Scholar
  41. Hazrati, L.-N., and Parent, A., 1991, Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study,Brain Res. 567:212.PubMedCrossRefGoogle Scholar
  42. Hirsch, E., Graybiel, A., Duyckaerts, C, and Jovoy-Agid, F., 1987, Neuronal loss in Parkinson’s disease and in progressive supranucleur palsy,Proc. Natl. Acad. Sci. USA, 84:5976.PubMedCrossRefGoogle Scholar
  43. Iacono, R., Lonser, R., Mandybur, G., Morenski, J., Yamada, S., and Shima, F., 1994, Stereotactic pallidotomy results for Parkinson’s exceed those of fetal graft,The American Surgeon, 60:111.Google Scholar
  44. Inglis, W., Allen, L., Whitelaw, R., Latimer, M., Brace, H., and Winn, P., 1994a, An investigation into the role of the pedunculopontine tegmental nucleus in the mediation of locomotion and orofacial sterotypy induced by d-amphetamine and apomorphine in the rat,Neuroscience, 58:817.PubMedCrossRefGoogle Scholar
  45. Inglis, W., Dunbar, J., and Winn, P., 1994b, Outflow from the nucleus accumbens to the pedunculopontine tegmental nucleus: a dissociation between locomotor activity and the acquisition of responding for conditioned reinforcement stimulated by d-amphetamine,Neuroscience, 62:51.PubMedCrossRefGoogle Scholar
  46. Jellinger, K., 1988, The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease,J. Neurol. Neurosurg. Psychiatr. 51:540.PubMedCrossRefGoogle Scholar
  47. Jones, B., and Webster, H., 1988, Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum- cholinergic cell area in the cat. I. Effects upon the cholinergic innervation of the brain,Brain Res. 451:13.PubMedCrossRefGoogle Scholar
  48. Jones, B. E., 1991, Paradoxical sleep and its chemical/structural substrates in the brain,Neuroscience, 40:637.PubMedCrossRefGoogle Scholar
  49. Jones, B. E., and Cuello, A.C., 1989, Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons,Neuroscience, 31:37.PubMedCrossRefGoogle Scholar
  50. Kang, Y., and Kitai, S., 1990, Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata,Brain Res. 535:79–95.PubMedCrossRefGoogle Scholar
  51. Keating, G.L., and Rye, D.B., 1999, Pathways descending from the pedunculopontine region in the rat,Soc. Neurosci. Abstr. 25:1924.Google Scholar
  52. Kelland, M., and Asdourian, D., 1989, Pedunculopontine tegmental nucleus-induced inhibition of muscle activity in the rat, Behav.Brain Res. 34:213–234.PubMedCrossRefGoogle Scholar
  53. Kimura, J., 1973, Disorder of interneurons in parkinsonism. The orbicularis oculi reflex to paired stimuli,Brain, 96:87.PubMedCrossRefGoogle Scholar
  54. Koch, M., Kungel, M., and Herbert, H., 1993, Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat, Exp.Brain Res. 97:71.PubMedCrossRefGoogle Scholar
  55. Kojima, J., Yamaji, Y., Matsumura, M., Nambu, A., Inase, M., Tokuno, H., Takada, M., and Imai, H., 1997, Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey,Neurosci. Lett. 226:111.PubMedCrossRefGoogle Scholar
  56. Lai, Y., Clements, J., and Siegel, J., 1993, Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry,J. Comp. Neurol. 336:321.PubMedCrossRefGoogle Scholar
  57. Lai, Y., and Siegel, J., 1990, Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation,J. Neurosci. 10:2727.PubMedGoogle Scholar
  58. Lavoie, B., Smith, Y., and Parent, A., 1989, Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry,J. Comp. Neurol. 289:36.PubMedCrossRefGoogle Scholar
  59. Lee, H. J., Rye, D.B., Hallanger, A.E., Levey, A.I., and Wainer, B.H., 1988, Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei,J. Comp. Neurol. 275:469.PubMedCrossRefGoogle Scholar
  60. Leonard, C, and Llinas, R., 1994, Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: An in vitro electrophysiological study,Neuroscience, 59:309.PubMedCrossRefGoogle Scholar
  61. Lingenhohl, K., and Friauf, E., 1994, Giant neurons in the rat reticular formation: A sensorimotor interface in the elementary acoustic startle circuit,J. Neurosci. 14:1176.PubMedGoogle Scholar
  62. Luebke, J., Greene, R., Semba, K., Kamondi, A., McCarley, R., and Reiner, P., 1992, Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleusin vitro, Proc. Natl. Acad Sci. 89:743.PubMedCrossRefGoogle Scholar
  63. Mahowald, M., and Schenck, C, 1994, REM sleep behavior disorder, in:Principles and Practices of Sleep Medicine, M. Kryger, T. Roth, and W. Dement, eds., WB Saunders Company, Philadelphia.Google Scholar
  64. Malin, A., Ciliax, B., and Rye, D., 1993, Organization of the mesopontine tegmental-striatal pathway in therat, Soc. Neurosci. Abstr. 19:557.Google Scholar
  65. Matsumura, M., Watanabe, K., and Ohye, C, 1997, Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement,Neurosci. Res.28;155.PubMedCrossRefGoogle Scholar
  66. Mesulam, M.-M., Mufson, E.J., Levey, A.I., and Wainer, B.H., 1984, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry,Neuroscience, 12:669.PubMedCrossRefGoogle Scholar
  67. Mesulam, M.-M., Mufson, E. J., Wainer, B.H., and Levey, A.I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chl-Ch6),Neuroscience, 10:1185.PubMedCrossRefGoogle Scholar
  68. Milner, K., and Mogenson, G., 1988, Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats,Brain Res. 452:273.PubMedCrossRefGoogle Scholar
  69. Mitchell, I., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A, and Crossman, A.R., 1989, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2- deoxyglucose in monkeys exposed to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine,Neuroscience, 32:213.PubMedCrossRefGoogle Scholar
  70. Mogenson, G. J., and Wu, M., 1988, Differential effects on locomotor activity of injections of procaine into mediodorsal thalamus and pedunculopontine nucleus,Brain Res. Bull. 20:241.PubMedCrossRefGoogle Scholar
  71. Montplaisir, J., Bodbout, R., Poirier, G., and Bedard, M., 1986, Restless legs syndrome and periodic movements in sleep: Physiopathology and treament with L-Dopa, Clin.Neuropharmacol. 9:456.CrossRefGoogle Scholar
  72. Montplaisir, J., and Godbout, R., 1994, Restless legs syndrome and periodic movements during sleep, in:Principles and Practice of Sleep Medicine, M. Kryger, T. Roth, and W. Dement, eds., WB Saunders Company, Philadelphia.Google Scholar
  73. Montplaisir, J., Godbout, R., Boghen, D., DeChamplain, J., Young, S., and Lapierre, G., 1985, Familial restless legs with periodic movements in sleep: electrophysiologic, biochemical, and pharmacologic study,Neuro. 35:130.Google Scholar
  74. Mori, S., Sakamoto, T., Ohta, Y., Takakusaki, K., and Matsuyama, K., 1989, Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem,Brain Res. 505:66.PubMedCrossRefGoogle Scholar
  75. Morilak, D., and Ciaranello, R., 1993, 5-HT2 receptor immunoreactivity on cholinergic neurons of the pontomesencephalic tegmentum shown by double immunofluorescence,Brain Res. 627:49.PubMedCrossRefGoogle Scholar
  76. Morilak, D.A., Garlow, S.J., and Ciaranello, R.D., 1993, Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain,Neuroscience, 54:701.PubMedCrossRefGoogle Scholar
  77. Mrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R. and Goldman-Rakic, P., 1996, Localization of dopamine D4 receptors in GABAergic neurons of the primate brain,Nature, 381:245.PubMedCrossRefGoogle Scholar
  78. Muhlethaler, M., Khateb, A., and Serafín, M., 1990, Effects of monoamines and opiates on pedunculopontine neurones, in:The Diencephalon and Sleep, M. Mancia and G. Marini, eds.. Raven Press, New York.Google Scholar
  79. Nakamura, Y., Tokuno, H., Moriizumi, T., Kitao, Y., and Kudo, M., 1989, Monosynpatic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat,Neurosci. Lett. 103:145.PubMedCrossRefGoogle Scholar
  80. Nakashima, K., Shimoyama, R., Yokoyama, Y., and Takahashi, K., 1993, Auditory effects on the electrically elicited blink reflex in patients with Parkinson’s disease, Electroenceph Clin.Neurophysiol. 89:108.Google Scholar
  81. Narabayashi, H., 1990, Surgical treatment in the levodopa era, in:Parkinson’s Disease, G. Stem, ed., Chapman & Hall, London.Google Scholar
  82. Noda, T., and Oka, H., 1986, Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: An intracellular HRP study,J. Comp. Neurol. 244:254.PubMedCrossRefGoogle Scholar
  83. Olszewski, J., and Baxter, D., 1954,Cytoarchitecture of the Human Brain Stem, JB Lippincott, Philadelphia.Google Scholar
  84. Olszewski, J., and Baxter, D., 1982,Cytoarchitecture of the Human Brain Stem, S. Karger AG, Basel.Google Scholar
  85. Parent, A., 1990, Extrinsic connections of the basal ganglia,Trends Neurosci. 13:254.PubMedCrossRefGoogle Scholar
  86. Parent, A., and DeBellefeuille, L., 1982, Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method,Brain Res. 245:201.PubMedCrossRefGoogle Scholar
  87. Parent, A., Pare, D., Smith, Y., and Steriade, M., 1988, Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys,J. Comp. Neurol. 277:281.PubMedCrossRefGoogle Scholar
  88. Paxinos, G., and Watson, C., 1986,The Rat Brain in Stereotaxic Coordinates, Academic Press, Orlando.Google Scholar
  89. Penders, C., and Delwaide, P., 1971, Blink reflex studies in patients with parkinsonism before and during therapy,J. Neurol. Neurosurg. Psychiat. 34:674.PubMedCrossRefGoogle Scholar
  90. Rye, D., 1997, Contributions of the pedunculopontine region to normal and altered REM sleep,Sleep, 20:757.PubMedGoogle Scholar
  91. Rye, D., and Bliwise, D., 1997, Movement disorders specific to sleep and the nocturnal manifestations of waking movement disorders, in:Movement Disorders: Neurologic Principles and Practice, R. Watts and W. Koller, eds., McGraw-Hill, New York.Google Scholar
  92. Rye, D., Lee, H., Saper, C., and Wainer, B., 1988, Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in therat, J. Comp. Neurol. 269:315.CrossRefGoogle Scholar
  93. Rye, D., Saper, C., Lee, H., and Wainer, B., 1987, Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and come extrapyramidal connections of the mesopontine tegmentum,J. Comp. Neurol. 259:483.PubMedCrossRefGoogle Scholar
  94. Rye, D., Thomas, J., and Levey, A., 1995a, Distribution of molecular muscarinic (ml-m4) receptor subtypes and choline acetyltransferase in the pontine reticular formation of man and non-human primates,Sleep Res. 24:59.Google Scholar
  95. Rye, D., Turner, R., Vitek, J., Bakay, R., Crutcher, M., and DeLong, M., 1996, Anatomical investigations of the pallidotegmental pathway in monkey and man, in:Basal Ganglia V, H. Ohye, M. Kimura, and J. McKenzie, eds., Plenum Press, New York.Google Scholar
  96. Rye, D., Vitek, J., Bakay, R., Kaneoke, Y., Hashimoto, T., Turner, R., Mirra, S., and DeLong, M., 1995b, Termination of pallidofugal pathways in man,Soc. Neurosci. Abstr. 21:676.Google Scholar
  97. Sakai, K., 1980, Some anatomical and physiological properties of ponto-mesencephalic tegmental neurons with special reference to the PGO waves and postural atonia during paradoxical sleep in the cat, in:The Reticular Formation Revisited: Specifying Function for a Nonspecific System: International Brain Research Organization Monograph Series, J. A. Hobson, and M. A. B. Brazier, eds.. Raven Press, New York.Google Scholar
  98. Sakai, K., 1985, Anatomical and physiological basis of paradoxical sleep, in:Brain Mechanisms of Sleep, D. J. McGinty, R. Drucker-Colin, A. Morrison, and P. L. Parmeggiani, eds., Raven Press, New York.Google Scholar
  99. Scarnati, E., Prioa, A., Loreto, S.D., and Pacitti, C., 1987, The reciprocal electrophysiological influence between the nucleus tegmenti pedunculopontinus and the substantia nigra in normal and decorticated rats,Brain Res. 423:116.PubMedCrossRefGoogle Scholar
  100. Schenck, C, Bundlie, S., Ettinger, M., and Mahowald, M., 1986, Chronic behavioral disorders of human REM sleep: A new category of parasomnia,Sleep, 9:293.PubMedGoogle Scholar
  101. Schenck, C, Bundlie, S., and Mahowald, M., 1996, Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder, Neurology, 46:388.PubMedCrossRefGoogle Scholar
  102. Schenck, C., Bundlie, S., Patterson, A., Ettinger, M., and Mahowald, M., 1987a, Five years of clinical experinece with 21 patients having chronic REM sleep behavior disorder (RBD),Sleep Res. 16:424.Google Scholar
  103. Schenck, C., Bundlie, S., Patterson, A., and Mahowald, M. 1987b, Rapid eye movement sleep behavior disorder,JAMA, 257:1786.PubMedCrossRefGoogle Scholar
  104. Schenck, C., Bundlie, S., Patterson, A., and Mahowald, M., 1987c, Rapid eye movement sleep behavior disorder: A treatable parasomnia affecting older adults,JAMA, 257:1786.PubMedCrossRefGoogle Scholar
  105. Schenck, C, Hopwood, J., Duncan, E., and Mahowald, M., 1992, Preservation and loss of REM-atonia in human idiopathic REM sleep behavior disorder (RBD): Quantitative polysomnographic (PSG) analyses in 17 patients,Sleep Res. 21:16.Google Scholar
  106. Schenck, C., and Mahowald, M., 1992, Motor dyscontrol in narcolepsy: Rapid-eye-movement (REM) sleep without atonia and REM sleep behavior disorder,Ann. Neurol. 32:3.PubMedCrossRefGoogle Scholar
  107. Shimizu, T., Inami, Y., Sugita, Y., Iijima, S., Teshima, Y., Matsuo, R., Yasoshima, A., Egawa, I., Okawa, M., Tashiro, T., and Hishikawa, Y., 1990, REM sleep without muscle atonia (stage 1-REM) and its relation to delirious behavior during sleep in patients with degenerative diseases involving the brain stem,Jap. J. Psychiatr. Neurol. 44:681.Google Scholar
  108. Shink, E., Sidibe, M., and Smith Y., 1997, Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptice organization of pallidal efferents to the pedunculopontine nucleus,J. Comp. Neurol. 382:348.PubMedCrossRefGoogle Scholar
  109. Smith, Y., and Shink, F., 1995, The pedunculopontine nucleus (PPN): A potential target for the convergence of information arising from different functional territories of the internal pallidum (GPi) in primates,Soc. Neurosci. Abstr. 21:677.Google Scholar
  110. Spann, B.M., and Grofova, I., 1992, Cholinergic and non-cholinergic neurons in the rat pedunculopontine tegmental nucleus,Anat.Embryol. 186:215.PubMedCrossRefGoogle Scholar
  111. Spooren, W., Cuypers, E., and Cools, S., 1989, Oro-facial dyskinesia and the subcommissural part of the globus pallidus in the cat: Role of acetylcholine and its interaction with GABA.Psychopharm. 99:381.CrossRefGoogle Scholar
  112. Staedt, J., Stoppe, G., Kogler, A., Munz, D., Riemann, H., Emrich, D., and Ruther, E., 1993, Dopamine D2 receptor alteration in patients with periodic movements in sleep (nocturnal myoclonus),J Neural Trans. [GenSect] 93:71.CrossRefGoogle Scholar
  113. Staedt, J., Stoppe, G., Kogler, A., Riemann, H., Hajak, G., Munz, D., Emrich, D., and Ruther, E., 1995, Nocturnal myoclonus syndrome (periodic movements in sleep) related to central dopamine D2-receptor alteration,Eur. Arch. Psychiatr. Clin. Neurosci. 245:8.CrossRefGoogle Scholar
  114. Steininger, T., Wainer, B., and Rye, D., 1997, Ultrastructural study of cholinergic and non-cholinergic neurons in the pars compacta of the rat pedunculopontine tegmental nucleus,J. Comp. Neurol. 382:285.PubMedCrossRefGoogle Scholar
  115. Steriade, M., 1992, Basic mechanisms of sleep generation,Neurology, 42:9.PubMedGoogle Scholar
  116. Steriade, M., Datta, S., Pare, D., Oakson, G., and Dossi, R.C., 1990a, Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems,J. Neurosci. 10:2541.PubMedGoogle Scholar
  117. Steriade, M., and McCarley, R., 1990,Brainstem Control of Wakefulness and Sleep, Plenum Press, New York.Google Scholar
  118. Steriade, M., Paré, D., Datta, S., Oakson, G., and Dossi, R.C., 1990b, Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves,J. Neurosci. 10:2560.PubMedGoogle Scholar
  119. Swerdlow, N., and Geyer, M., 1993, Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus,Behav. Neurosci. 107:104.PubMedCrossRefGoogle Scholar
  120. Vilaro, M. T., Palacios, J.M., and Mengod, G., 1994, Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain,Mol. Brain Res. 21:30.PubMedCrossRefGoogle Scholar
  121. Vincent, S. R., and Satoh, K., 1984, Corticotropin-releasing factor (CRF) immunoreactivity in the dorsolateral pontine tegmentum: further studies on the micturition reflex system,Brain Res. 308:387.PubMedCrossRefGoogle Scholar
  122. Vincent, S.R., Satoh, K., Armstrong, D.M., and Fibiger, H.C., 1983a, NADPH-diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation,Neurosci. Lett. 43:31.PubMedCrossRefGoogle Scholar
  123. Vincent, S. R., Satoh, K., Armstrong, D.M., and Fibiger, H.C., 1983b, Substance P in the ascending cholinergic reticular system,Nature, 306:688.PubMedCrossRefGoogle Scholar
  124. Vitek, J., Kaneoke, Y., Turner, R., Baron, M., Bakay, R., and DeLong, M., 1993, Neuronal activity in the internal (GPi) and external (GPe) segments of the globus pallidus (GP) of parkinsonian patients is similar to that in the MPTP-treated primate model of parkinsonism,Soc. Neurosci. Abstr. 19:1584.Google Scholar
  125. von Krosigk, M., Smith, Y., Bolam, J., and Smith, A., 1992, Synaptic organization of gabaergic inputs from the striatum and the globus pallidus onto neurons in the sustantia nigra and retrorubral field which project to the medullary reticular formation,Neuroscience, 50:531–549.CrossRefGoogle Scholar
  126. Wainer, B., and Mesulam, M.-M., 1990, Ascending cholinergic pathways in the rat brain, in:Brain Cholinergic Systems, M. Steriade, and D. Biesold, eds., Oxford University Press, New York.Google Scholar
  127. Webster, H., and Jones, B., 1988, Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum- cholinergic cell area in the cat. II. Effects upon sleep-waking states,Brain Res. 458:285.PubMedCrossRefGoogle Scholar
  128. Wirtshafter, D., 1994, FOS-like-immunoreactivity in basal ganglia outputs following administration of dopamine agonists,Soc. Neurosci. Abstr. 20:1190.Google Scholar
  129. Zweig, R., Hedreen, J., Jankel, W., Casanova, M., Whitehouse, P., and Price, D., 1988, Pathology in brainstem regions of individuals with primary dystonia,Neurol. 38:702.CrossRefGoogle Scholar
  130. Zweig, R., Whitehouse, P., Casanova, M., Walker, L., Jankel, W., and Price, D., 1987, Loss of pedunculopontine neurons in progressive supranuclear palsy,Ann. Neurol. 22:18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Glenda L. Keating
    • 1
  • David B. Rye
    • 1
  1. 1.Department of NeurologyEmory University School of MedicineAtlantaUSA

Personalised recommendations