Skip to main content
  • 196 Accesses

Abstract

The threat of attack on military and civilian targets with chemical and biological weapons is a growing national concern. The Defense Advanced Research Projects Agency (DARPA) is developing technologies for detecting biological materials in the natural environment. While several technologies show promise as broadband detectors, there is no “silver bullet” that detects all chemical and biological materials at the requisite levels of sensitivity and specificity. DARPA is developing a systems approach whereby several different advanced detection schemes (based on different physical phenomena) are being integrated into a biological detection suite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.R. & Hope, C.F.A. (1989). Rapid Methods in Food Microbiology. Elsevier, Amsterdam.

    Google Scholar 

  2. AOAC. 1990. Official Methods of Analysis of the AOAC (Association of Official Analytical Chemists). Vols. I and II. Association of Official Analytical Chemists, Arlington, VA.

    Google Scholar 

  3. APHA. 1992. Standard Methods for the Examination of Dairy Products. American Public Health Association, Washington, D.C.

    Google Scholar 

  4. Bailey, J.S., Cox, N.A., Thomson, J.E., and Fung, D.Y.C. 1985. Identification of Enterobacteriaceae in foods with the Automicrobic System. J. Food Protect. 48,147.

    Google Scholar 

  5. Bishop, J.R. and White, C.H. 1985. Estimation of potential shelf-life to cottage cheese utilizing bacterial numbers and metabolites. J. Food Protect. 48,663.

    CAS  Google Scholar 

  6. Bishop, J.R., White, C.R. & Firstenberg-Eden, R. 1984. A rapid impedimetric method for determining the potential shelf-life of pasteurized whole milk. J. Food Protect. 47,471.

    Google Scholar 

  7. Chain, V.S. & Fung, D.Y.C. 1991. Comparison of Redigel, Petrifilm, Spiral Plate System, ISOGRID and standard plate count for the aerobic count on selected foods. J. Food Protect. 54,208.

    Google Scholar 

  8. Chein, S.P. & Fung, D.Y.C. 1991. Acriflavin violet red bile agar for the isolation and enumeration of Klebsiella pneumoniae. Food Microbiol. 7,73.

    Google Scholar 

  9. Cox, N.A., McHan, F., and Fung, D.Y.C. 1977. Commercially available mini-kits for the identification of Enterobacteriaceae: A review. J. Food Protect. 40,866.

    Google Scholar 

  10. Cox, N.A., Fung, D.Y.C., Goldschmidt, M.S., Bailey, J.S., and Thomson, J.E. 1984. Selecting a miniaturized system for identification of Enterobacteriaceae. J. Food Protect. 47,74.

    Google Scholar 

  11. Cox, N.A., Fung, D.Y.C., Bailey, J.S., Hartman, P.A. & Vasavada, P.C. 1987. Miniaturized kits, imrnunoassays and DNA hybridization for recognition and identification of foodborne bacteria. Dairy Food Sanitat. 7,628.

    Google Scholar 

  12. Eckner, K.F., FLowers, R.S., Robinson, B.J., Mattingly, J.A., Gabis, D.A., and Silliker, J. A. 1987. Comparison of Salmonella Bio-EnzaBead immunoassay method and conventional culture procedure for detection of Salmonella in foods. J. Food Protect. 50,379.

    Google Scholar 

  13. Emswiler, B.S., Pierson, C.J., andKotula, A.W. 1977. Stomaching vs. blending. Food Technol. 31(10),40.

    Google Scholar 

  14. Evans, H.A.V. 1985. A note on the use of conductivity in brewery microbiology control. Food Microbiol. 2,19.

    Article  CAS  Google Scholar 

  15. FDA. 1996. Bacteriological Analytical Manual, 6th Ed. Association of Official Analytical Chemists. Food and Drug Administration. Arlington, Virginia.

    Google Scholar 

  16. Fung, D.Y.C. 1985. Procedures and methods for one-day analysis of microbial loads in foods. In: Rapid Methods and Automation in Microbiology and Immunology. Habermehl, K.-O. (Ed.), pp. 656–664, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  17. Fung, D.Y.C. 1991. Rapid methods and automation for food microbiology. In: Instrumental Methods for Quality Assurance in Foods. D.Y.C. Fung and R.F. Matthews (Eds.), Marcel Dekker, Inc., New York.

    Google Scholar 

  18. Fung, D.Y.C. 1992. Historical development of rapid methods and automation in microbiology. J. Rapid Methods Automation Microbiol. 1(1),1.

    Article  Google Scholar 

  19. Fung, D.Y.C. 1994. Rapid Methods and Automation in Food Microbiology: A Review. Food Reviews International 10(3):357–375.

    Article  CAS  Google Scholar 

  20. Fung, D.Y.C. 1995. What’s Needed in Rapid Detection of Food Borne Pathogens. Food Technology 44(6): 64.

    Google Scholar 

  21. Fung, D.Y.C. 1999. Prediction of the future of rapid methods in microbiology. Food Testing and Analyses. June issue, p. 18.

    Google Scholar 

  22. Fung, D.Y.C. and Cox, N.A. 1981. Rapid identification systems in the food industry: Present and future. J. Food Protect. 44,877.

    Google Scholar 

  23. Fung, D.Y.C. and Hartman, P.A. 1975. Miniaturized microbiology techniques for rapid characterization of bacteria. In: New Approaches to the Identification of Microorganisms. C.G. Heden and T. Illeni (Eds.), pp. 347–370, Wiley, New York.

    Google Scholar 

  24. Fung, D.Y.C. & Liang, C. 1989. A new fluorescent agar for the isolation of Candida albicans. Bulletin d’information des Laboraores des Service Veterinaries (France). No. 29/30. pp. 1–2.

    Google Scholar 

  25. Fung, D.Y.C. and Matthews, R.F., Eds. 1991. Instrumental Methods for Quality Assurance in Foods. Marcel Dekker, Inc., New York.

    Google Scholar 

  26. Fung, D.Y.C., Goldschmidt, M.C., and Cox, N.A. 1984. Evaluation of bacterial diagnostic kits and systems at an instructional workshop. J. Food Protect. 47,68.

    Google Scholar 

  27. Fung, D.Y.C., Hart, R.A., and Chain, V. 1987. Rapid methods and automated procedures for microbiological evaluation of seafood. In: Seafood Quality Determination. D.E. Kramer and J. Liston (Eds.), pp. 247–253, Elsevier, Amsterdam.

    Google Scholar 

  28. Fung, D.Y.C., Bennett, R., and Lehleitner, G.C. 1988. Rapid diagnosis in bacteriology: Contribution of polyclonal and monoclonal antibodies. In: Biologie Prospective, le Colloque de Pont-e-Mousson, Gaeteau, M.M., J. Henry and G. Siest (Eds.), pp. 2K26, London: John Libbey.

    Google Scholar 

  29. Fung, D.Y.C., Sharpe, A.N., hartm B.C. and Liu, Y. 1998. The Pulsifier. A new instrument for preparing food suspensions for microbiological analysis. J. Rapid Methods and Automation in Microbiology. 6(l):43.

    Article  Google Scholar 

  30. Fung, D.Y.C., Cox, N.A., Goldschmidt, M.C., and Bailey, J.S. 1989. Rapid methods and automation: A survey of professional microbiologists. J. Food Protect. 52,65.

    Google Scholar 

  31. Fung, D,Y,C Phebus, R., Kang, D.-H. and Kastner, C.L. 1995. Effect of alcohol flaming on meat cutting knives. J. Rapid Methods and Automation in Microbiol. 3:237.

    Article  Google Scholar 

  32. Gibson, D.M. and Hobbs, G. 1987. Some recent developments in microbiological methods in seafood quality. In: Seafood Quality Determination, D.F. Kramer and J. Listen, eds., pp. 283–298. Elsevier, Amsterdam.

    Google Scholar 

  33. Gibson, D.M. and Ogden, I.D. 1980. Assessing bacterial quality of fish by conductance measurement. J. Appl. Bacteriol., 49,12.

    Google Scholar 

  34. Ginn, R.E., Packard,V.S., & Fox, T.L. 1986. Enumeration of total bacteria and coliforms in milk by dry rehydratable film method: Collaborative study. J. Assoc. Off. Anal. Chem. 69,527.

    CAS  Google Scholar 

  35. Goldschmidt, M.C., D.Y.C. Fung, R. Grant, J. White, and T. Brown. 1991. New aniline blue dye medium for rapid identification and isolation of Candida albicans. J. Clinical Microbiol. 29(6): 1098–1099.

    Google Scholar 

  36. Hart, R.A. and Fung, D.Y.C. 1990. Evaluation of dye media selective for Aspergillus and/or Penicillium. In: Proc. Ann. Mtg. Am. Soc. Microbiol. Anaheim, California, May 13–17, p. 279.

    Google Scholar 

  37. Hart, R.A., Mo, O., Borius, F., and Fung, D.Y.C. 1991. Comparative analysis of Trypan blue agar and Congo red agar for the enumeration of yeast and mold using HGMF system. J. Food Safety, 11,227.

    Article  Google Scholar 

  38. Hartman, P.A., et al. 1992. Rapid Methods and Automation, In: Vanderzant, C. and Splittstoesser, D. (Ed.), 1992. Compendium of Methods for the Examinations of Foods. Amer. Public Health Association, Washington, D.C.

    Google Scholar 

  39. Jay, J.M. 2000. Modern Food Microbiology, 6th ed. Aspen, Gaithersberg, MD.

    Book  Google Scholar 

  40. Konuma, H.A. and Kurata, H. 1982. Improved Stomacher 400 bag applicable to the spiral plate system for counting bacteria. Appl. Environ. Microbiol. 44,765.

    CAS  Google Scholar 

  41. Lee, C.Y., Fung, D.Y.C., & Kastner, C.L. 1985. Computer-assisted identification of Microflora on hot-boned and conventionally processed beef: Effect of moderate and slow initial chilling rate. J. Food Sci. 50,553.

    Article  Google Scholar 

  42. Lin, CCS. and Fung, D.Y.C. 1985. Effect of dyes on growth of food yeast. J. Food Sci. 47,770.

    Google Scholar 

  43. Lin, CCS. & Fung, D.Y.C. 1987. Critical review of conventional and rapid methods for yeast identification. CRC Crit. Rev. In: Microbiol. l4(4),273.

    Google Scholar 

  44. Littel, K.J., Pikelis, S., and Spurgash, A. 1986. Bioluminescent ATP assay for rapid estimation of microbial numbers in fresh meat. J. Food Protect. 49,18.

    CAS  Google Scholar 

  45. Manninen, M.T. & Fung, D.Y.C 1992a. Use of the Gravimeter diluter in microbiological work. J. Food Protect. 55,59.

    Google Scholar 

  46. Manninen, M.T. & Fung, D.Y.C. 1992b. Estimation of microbial numbers from pure bacterial cultures and from minced beef samples by reflectance colorimetry with Omnispec 4000. J. Rapid Methods Automat. Microbiol. l(l),4l.

    Article  Google Scholar 

  47. McMurdo, I.H. and Whyward, S. 1984. Suitability of rapid microbiological methods for the hygiene management of spray drier plant. J. Soc. Dairy Technol. 34(1 ),4.

    Article  Google Scholar 

  48. Niroomand, F. and Fung, D.Y.C. 1994. Effect of oxygen reducing membrane fragments on growth of Capmylobacter ? J. Rapid Methods and Automation in Microbiology.2,247.

    Article  CAS  Google Scholar 

  49. Ogden, I.D. 1986. Use of conductance methods to predict bacterial counts in fish. J.Appl. Bacteriol., 61,36. 43.

    Google Scholar 

  50. Patel, P.D. 1994. Rapid analysis techniques in food microbiology. Chapman and Hall, N.Y.

    Google Scholar 

  51. Pettipher, G.L. 1989. The direct epifluorescent filter technique. In: Rapid Microbiological Methods, M.R. Adams and C.F.A. Hope, eds. Elsevier, New York.

    Google Scholar 

  52. Sharpe, A.W. 1991. Rapid Methods: Consideration to adoption by regulatory agencies. Proceed. 105 AOAC Annual International Meetings, Aug. 12-15, 1991, Phoenix, AZ.

    Google Scholar 

  53. Sharpe, A.W. and Jackson, A.K. 1975. Automation requirements in microbiological quality control of foods. In: Automation in Microbiology and Immunology. C.G. Heden and T. Illeni (Eds.), pp. 117–124, Wiley, New York.

    Google Scholar 

  54. Sharpe, A.W. and Peterkin, P.I. 1988. Membrane Filter Food Microbiology. Research Studies Press, Letchworth, UK.

    Google Scholar 

  55. Smith, L.B., Fox, T.L. and Busta, F.F. 1986. Comparison of a dry medium culture plate (Petrifilm SM plates) method to the aerobic plate count method for enumeration of mesophilic aerobic colony-forming units in fresh ground beef. J. Food Protect., 48,1044.

    Google Scholar 

  56. Swaminathan, B. and P. Feng. 1994. Rapid detection of food-borne pathogenic bacteria.Rev. Microbiol. 48,401.

    Article  CAS  Google Scholar 

  57. Tortorello, M. and Gendel, S.M. 1993. Fluorescent antibodies applied to direct epifluorescent filter techniques for microscopic enumeration of Escherichia coli OI57:H7 in milk and juice. J. Food Protect. 56,672.

    CAS  Google Scholar 

  58. Tuitemwong, K. 1993. Characteristics of Food Grade Membrane Bound Enzymes and Applications in Food Microbiology and Food Safety. Ph.D. Dissertation, Kansas State University Library, Manhattan, KS.

    Google Scholar 

  59. Tuitemwong, K., Fung, D.Y.C., and Tuitemwong, P. 1994. Acceleration of yoghurt fermentation by bacterial membrane fraction biocatalysis. J. Rapid Methods and Automation - Microbiology. 3,127,

    Article  CAS  Google Scholar 

  60. Vanderzant, C. and Splittstoesser, D., (Eds.) 1992. Compedium of Methods for the Examination of Foods. American Public Health Association, Washington, D.C.

    Google Scholar 

  61. Visser, I. J.R. and deGroote, J. 1984. Prospects for the use of conductivity as an aid in the bacteriological monitoring of pasteurized milk. Antonin van Leewenhoek. 50,202.

    Article  Google Scholar 

  62. Waes, G.M. and Bossuyt, R.G. 1984. Impedance measurements to detect bacteriophage problems in cheddar cheese. J. Food Protect. 47,349.

    Google Scholar 

  63. Ward, D.R., LaRocco, K.A., and Hopson, D.J. 1986. Adenosine triphosphate bioluminescent assay to enumerate bacterial numbers on fresh fish. J. Food Protect. 49,647.

    CAS  Google Scholar 

  64. Yu, L.S.L. & Fung, D.Y.C. 1991a. Oxyrase enzyme and motility enrichment Fung-Yu tube for rapid detection of Listeria monocytogenes and Listeria spp. J. Food Safety.11,149.

    Article  Google Scholar 

  65. Yu, L.S.L. & Fung, D.Y.C. 1991b. Effect of oxyrase enzyme in Listeria monocytogenes and other facultative anaerobes. J. Food Safety. 11,163.

    Article  CAS  Google Scholar 

  66. Yu, L.S.L. & Fung, D.Y.C. 1992. Growth kinetics of Listeria in the presence of oxyrase enzyme in a broth model system. J. Rapid Methods and Automation in Microbiol.I(l),l5.

    Google Scholar 

  67. Zindulis, J. 1984. A medium for the impedimetric detection of yeasts in foods. Food Microbiol. 1,159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Donlon, M.A. (2000). Revolutionary Technologies for Bio Detection. In: Liron, Z., Bromberg, A., Fisher, M. (eds) Novel Approaches in Biosensors and Rapid Diagnostic Assays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1231-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1231-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5452-9

  • Online ISBN: 978-1-4615-1231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics