Applications to Error Correction Codes

  • F. Marvasti
Part of the Information Technology: Transmission, Processing, and Storage book series (PSTE)


Sampling a band-limited signal above the Nyquist rate could be an alternative to error correction codes [1]–[2], and [33]–[34]. In fact we can show the equivalence of the sampling theorem and the fundamental theorem of information theory [1]. Essentially, over-sampling is equivalent to a convolutional code using fields of real numbers as opposed to finite Galois fields. The encoder is a simple interpolator (a low pass filter) as shown in Fig. 1.


Block Size Discrete Cosine Transform Speech Signal Discrete Fourier Transform Error Correction Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Marvasti and M. Nafie. Sampling Theorem: A Unified Outlook on Information Theory, Block and Convolutional Codes, Special Issue on Information Theory and its Applications. IEICE Trans. of Japan on Fundamentals of Electronics, Commun, and Computer Sciences, Section E, September 1993.Google Scholar
  2. [2]
    F. Marvasti and L. Chuande. Equivalence of the Sampling Theorem and the Fundamental Theorem of Information Theory. Proc. International Communication Conference, ICC ′92, Chicago, IL, June 1992.Google Scholar
  3. [3]
    F. Marvasti. Nonuniform Sampling. In Robert Marks II, Ed., Advanced Topics in Shannon Sampling and Interpolation Theory, Springer Verlag, New York, January 1993.Google Scholar
  4. [4]
    F. Marvasti. A Unified Approach to Zero-Crossings and Nonuniform Sampling of Single and Multidimensional Signals and Systems. Nonuniform Publication, Oak Park, IL, 1987.Google Scholar
  5. [5]
    J. K. Wolf. Redundancy, the Discrete Fourier Transform, and Impulse Noise Cancellation. IEEE Trans. of on Commun., 31(3):458–461, March 1983.CrossRefGoogle Scholar
  6. [6]
    R. E. Blahut. Transform Techniques for Error Control Codes COM-31 (3). IBM J. of Res. Develop., 23:299–315, May 1979.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    D. Mandelbaum. On Decoding of Reed-Solomon Codes. IEEE Trans. Info. Theory, IT-17:707–712, 1971.MathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Marvasti and M. Analoui. Recovery of Signals from Nonuniform Samples Using Iterative Methods. IEEE Proc. of International Conference on Circuits and Systems, Oregon (ISCAS’ 1989), vol 2, July, 1989, pp. 1021–1024.Google Scholar
  9. [9]
    M. Nafie and F. Marvasti. Implementation of Recovery of Speech with Missing Samples on a DSP Chip. Electronic Letters, 30(1):12–13, Jan 6, 1994.CrossRefGoogle Scholar
  10. [10]
    F. Marvasti, M. Hasan, M. Eckhart, and S. Talebi. Efficient Algorithms for Burst Error Recovery Using FFT and Other Transform Kernels. IEEE Trans. on Signal Processing, 47(4):1065–1075, April 1999.MATHCrossRefGoogle Scholar
  11. [11]
    J. B. Anderson and S. Mohan. Source and Channel Coding, Kluwer, 1991, pp. 171–174.Google Scholar
  12. [12]
    G. D. Forney, Jr. On Decoding BCH Codes. IEEE Trans. on Information Theory, IT-11:549–557, 1965.MathSciNetCrossRefGoogle Scholar
  13. [13]
    H. G. Feichtinger, K. Grochenig, and T. Strohmer. Efficient Numerical Methods in Non-Uniform Sampling Theory. Numerische Mathematik, 69:423–440, 1995.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    T. Strohmer. Computationally Attractive Reconstruction of Band-Limited Images from Irregular Samples. IEEE Trans. on Image Processing, 6(4):540–548, April 1997.MathSciNetCrossRefGoogle Scholar
  15. [15]
    C. Cenker, H. Feichtinger, and M. Hermann. Iterative Algorithms in Irregular Sampling: A First Comparison of Methods. Proc. of Phoenix Conference on Computers and Communications, Scottsdale, Arizona, March 1991.Google Scholar
  16. [16]
    F. Marvasti, P. Clarkson, M. Dokic, and L. Chuande. Reconstruction of Speech Signals from Lost Samples. IEEE Trans. on Acoustic, Speech, and Signal Processing, 40(12):2897–2903, December 1992.CrossRefGoogle Scholar
  17. [17]
    F. Marvasti, M. Analoui, and M. Gamshadzahi. Recovery of Signals from Nonuniform Samples Using Iterative Methods. IEEE Trans. ASSP, 39(4):872–878, April 1991.CrossRefGoogle Scholar
  18. [18]
    P. J. S. G. Ferreira. Interpolation and the Discrete Papoulis-Gerchberg Algorithm. IEEE Trans. on Signal Processing, 42(10):2596–2606, October 1994.CrossRefGoogle Scholar
  19. [19]
    P. J. S. G. Ferreira. Noniterative and Faster Iterative Methods for Interpolation and Extrapolation. IEEE Trans. on Signal Processing, 42(11):3278–3282, November 1994.CrossRefGoogle Scholar
  20. [20]
    P. J. S. G. Ferreira. The Stability of a Procedure for the Recovery of Lost Samples in Band-Limited Signals. IEEE Trans. on Signal Processing, 40(3):195–205, December 1994.MATHGoogle Scholar
  21. [21]
    P. J. S. G. Ferreira. The Eigenvalues of Matrices Which Occur in Certain Interpolation Problems. IEEE Trans. on Signal Processing, 45(8):2115–2120, August 1997.CrossRefGoogle Scholar
  22. [22]
    H. G. Feichtinger and T. Strohmer. Fast Iterative Reconstruction of Band-Limited Images from Irregular Sampling Values. Proc. Conf. CAIP, Computer Analysis of Images and Patterns, D. Chetverikov and W. Kropatsch, Eds., Budapest, 1993, pp. 82–91.Google Scholar
  23. [23]
    K. Gröchenig. Reconstruction Algorithms in Irregular Sampling. Math. Comput., 59:181–194, 1992.MATHGoogle Scholar
  24. [24]
    R. Gerchberg. Super-Resolution Through Error Energy Reduction. Optica Acta., 21(9):709–720, 1974.CrossRefGoogle Scholar
  25. [25]
    F. Marvasti. Fast Packet Network: Data Image, and Voice Signals Recovery. In F. Froehlich and A. Kent, Eds., The Encyclopaedia of Telecommunications, vol. 7, Marcel Dekker Inc., 1994, pp. 453–479.Google Scholar
  26. [26]
    C. K. W. Wong, F. Marvasti, and W. G. Chambers. Implementation of Recovery of Speech with Impulsive Noise on a DSP Chip. IEE Electronics Letters, 31(17):1412–1413, 17 August, 1995.CrossRefGoogle Scholar
  27. [27]
    Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, Inc., 1989.Google Scholar
  28. [28]
    A. M. Michelson and A. H. Levesque. Error Control Techniques for Digital Communication, John Wiley & Sons, Inc., 1985, pp. 191–199.Google Scholar
  29. [29]
    S. Talebi, F. Marvasti, and M. Hasan. Sensitivity of the Burst Error Recovery to Additive Noise. Proc. Communication Theory and Systems, the 7th Iranian Conference on Electrical Engineering, Tehran, Iran, May 1999, pp. 19–25.Google Scholar
  30. [30]
    F. Marvasti, H. Ng, and M. R. Nakhai. Application of Walsh Transform to Error Correction Codes. ICASSP′99. IEEE, March 1999.Google Scholar
  31. [31]
    T. G. Marshall, Jr. Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem. IEEE Trans. Select. Areas Commun., SAC-2, March 1984.Google Scholar
  32. [32]
    R. Redinbo. Decoding Real Block Codes: Activity Detection, Wiener estimation. IEEE Trans on IT, 46(2):609–623, March 2000.MATHCrossRefGoogle Scholar
  33. [33]
    F. Marvasti and C. Liu. Oversampling as an Alternative to Error Correction Codes in Digital Communication Systems. SIAM Annual Meeting, Chicago, IL, July 1990, p. A9.Google Scholar
  34. [34]
    F. Marvasti. FFT as an Alternative to Error Correction Codes. IEE Colloquium on DSP Applications in Communication Systems, March 22, 1993.Google Scholar
  35. [35]
    F. Marvasti and M. Hasan. Noise Sensitivity Analysis for Novel Error Correcting Codes. ISCAS′98, IEEE, Monterey, May 1998.Google Scholar
  36. [36]
    F. Marvasti, M. Hasan, and M. Eckhart. An Efficient Burst Error Recovery Technique. ICT′98, Porto Carras, Greece, June 1998.Google Scholar
  37. [37]
    J. L. Wu and J. Shiu. Discrete Cosine Transform in Error Control Coding. IEEE Trans. on Commun., 43(5):1857–1861, May 1995.MATHCrossRefGoogle Scholar
  38. [38]
    Jiun Shiu and Ja-Ling Wu. Classes of Majority Decodable Real-Number Codes. IEEE Trans. on Commun., 44(3):281–283, March 1996.MATHCrossRefGoogle Scholar
  39. [39]
    K. R. Rao and J. J. Hwang. Techniques & Standards for Image. Video & Audio Coding. Prentice Hall, 1996.Google Scholar
  40. [40]
    F. Marvasti. A Novel Technique for Error Control and Error Concealment for Speech Signals for GSM Environments. Lucent patent application, September 1998.Google Scholar
  41. [41]
    S. Talebi and F. Marvasti. A Novel Method for Burst Error Recovery of Images. SampTA 99, Loven, Norway, August 1999.Google Scholar
  42. [42]
    P. Livanos. Implementation of a Novel Error Correction Algorithm on a DSP Card. MSc Thesis. King’s College London, January 1997.Google Scholar
  43. [43]
    J. Massey. Shift Register Synthesis and BCH Decoding. IEEE Trans. on Information Theory, IT-15(7):122–127, January 1969.MathSciNetCrossRefGoogle Scholar
  44. [44]
    E. R. Berlekamp. The Nonbinary BCH Decoding. Abstract in the Proc. of the International Symposium on Information Theory, 1968.Google Scholar
  45. [45]
    D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing. Prentice-Hall, 1984.Google Scholar
  46. [46]
    R. Redinbo. Reliability Levels for Fault-Tolerant Linear Processing Using Real Number Error Correction. IEE Proc.-Comput. Digit. Tech, 143(6):355–363, November 1996.CrossRefGoogle Scholar
  47. [47]
    R. Redinbo. Decoding Real-Number Convolutional Codes: Change Detection, Kaiman Estimation. IEEE Trans. on IT, 43(6):1864–1876, November 1997.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • F. Marvasti
    • 1
  1. 1.Multimedia LaboratoryKing’s College LondonUK

Personalised recommendations