Advertisement

Combined Application of Radiochemical and Electrochemical Methods for the Investigation of Solid/Liquid Interfaces

  • Kálmán Varga
  • Gábor Hirschberg
  • Pál Baradlai
  • Melinda Nagy
Part of the Surface and Colloid Science book series (SACS, volume 16)

Abstract

The entire array of charged species and oriented dipoles existing at the electrode/electrolyte interface, i.e., the structure of the electrical double layer, can have predominant effects on electrode processes. Several, now classic, books (see e.g., Refs. 1–3) have presented a description and analysis of the structure of the electrical double layer, emphasizing the central role of two types of adsorption (such as specific and nonspecific) in the understanding and mechanistic interpretation of various interfacial phenomena. Owing to the potential relevance of this field, comprehensive investigations of the sorption processes occurring at electrode/electrolyte (especially at metal/solution) heterogeneous systems have comprised a substantial part of electrochemical studies for many decades. Extended fundamental and applied research has been carried out on various, more or less closely related topics. In addition to an examination of the adsorption, electrosorption, electrocata-lytic, etc., behavior of different metal (mainly noble metal) electrodes, studies into the kinetics and mechanisms of corrosion, corrosion inhibition, and radioactive contamination processes on metallic constructional materials of industrial importance have also entered the spotlight of scientific interest (see Refs. 3–8 and references cited therein).

Keywords

Duplex Stainless Steel Potential Dependence Real Surface Area Surface Excess Concentration Underpotential Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley and Sons, New York, 1980.Google Scholar
  2. 2.
    E. Gileadi, Electrode Kinetics, VCH Publishers, New York, 1993.Google Scholar
  3. 3.
    J. O’M. Bockris and S. U. M. Khan, Surface Electrochemistry, Plenum Press, New York, 1993.CrossRefGoogle Scholar
  4. J. Lipkowski and P. N. Ross (eds.), “Adsorption of Molecules at Metal Electrodes,” in Frontiers of Electrochemistry, Vol. 1, VCH Publishers, New York, 1992.Google Scholar
  5. 5.
    G. Horányi, in Catalysis, J. J. Spivey (ed.), Vol. 12, The Royal Society of Chemistry, Thomas Graham House, Cambridge, 1996, p. 254.Google Scholar
  6. 6.
    E. B. Budevski, G. T. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Growth, VCH Publishers, New York, 1996.CrossRefGoogle Scholar
  7. 7.
    P. Marcus and J. Oudar (eds.), Corrosion Mechanism in Theory and Practice, Marcel Dekker, New York, 1995.Google Scholar
  8. 8. a.
    D. H. Lister, “Activity transport and corrosion processes in PWRs,” in Water Chemistry of Nuclear Reactor Systems 6, BNES, London, 1992 p. 49.Google Scholar
  9. 8. b.
    A. P. Murray, Nucl Technol. 74, 324 (1986).Google Scholar
  10. 8. c.
    G. C. W. Comley, Prog. Nucl. Energy 16, 41 (1985).Google Scholar
  11. 9.
    V. E. Kazarinov and V. N. Andreev, in Comprehensive Treatise of Electrochemistry, E. Yeager, J. O’M. Bockris, B. Conway, and S. Sarangapani (eds.), Vol. 9, Plenum Press, New York, 1984, p. 393.Google Scholar
  12. 10.
    A. Wieckowski, in Modern Aspects of Electrochemistry, R. E. White, J. O’M. Bockris, and B. Conway (eds.), Vol. 21, Plenum Press, New York, 1990, p. 65.Google Scholar
  13. 11.
    E. K. Krauskopf and A. Wieckowski, in Frontiers of Electrochemistry, J. Lipkowski and R. P. Ross (eds.), Vol. 1, VCH Publishers, New York, 1992, p. 119.Google Scholar
  14. 12.
    P. Zelenay and A. Wieckowski, in Modern Techniques for In Situ Surface Characterization, H. D. Abruna (ed.), VCH Publishers, New York, 1991, p. 479.Google Scholar
  15. 13.
    G. Horányi, Electrochim. Acta 25, 43 (1980).CrossRefGoogle Scholar
  16. 14.
    G. Horányi, B. Electrochemistry 5, 235 (1989).Google Scholar
  17. 15.
    G. Reinhard, Isotopenpraxis, 18, 41 (1982); 18, 157 (1982).CrossRefGoogle Scholar
  18. 16.
    M. E. Gamboa-Aldeco, K. Franaszczuk, and A. Wieckowski, in The Handbook of Surface Imaging and Visualization, A. T. Hubbard (ed.), CRC Press, New York, 1995, p. 635.Google Scholar
  19. 17.
    G. Horányi, Rev. Anal. Chem. 14, 1 (1995).CrossRefGoogle Scholar
  20. 18.
    K. Varga, Kémiai Közlemények 83, 77 (1996) (Hungarian).Google Scholar
  21. 19. a.
    G. L. Horváth, P. Ormai, T. Pintér, and I. C. Szabó, Kémenergie 30, 38 (1987).Google Scholar
  22. 19. b.
    Von H. Hepp, H. Generlich, and E. Jaensch, Kraftwerkstechnik 59, 158 (1979).Google Scholar
  23. 19. c.
    Second International Seminar on Primary and Secondary Side Water Chemistry of Nuclear Power Plants, Proceedings, Balaton-fured, Hungary, Sept 19–23,1995.Google Scholar
  24. 19. d.
    Third International Seminar on Primary and Secondary Side Water Chemistry of Nuclear Power Plants, Proceedings, Balatonfured, Hungary, Sept 16–20, 1997.Google Scholar
  25. 20.
    F. P. Ford and P. L. Andresen, in Corrosion Mechanism in Theory and Practice, P. Marcus and J. Oudar (eds.), Marcel Dekker, New York, 1995, p. 501.Google Scholar
  26. 21.
    F. Joliot, J. Chim. Phys. Phys.-Chim. Biol. 27, 119 (1930).Google Scholar
  27. 22. a.
    R. A. Powers and N. Hackerman, J. Electrochem. Soc. 100, 314 (1953).CrossRefGoogle Scholar
  28. 22. b.
    N. Hackerman and S. Stephens, J. Phys. Chem 58, 904 (1954).CrossRefGoogle Scholar
  29. 23. a.
    K. Schwabe, Chem. Technol. 10, 469 (1958).Google Scholar
  30. 23. b.
    K. Schwabe and Ch. Weissmantel, Z. Phys. Chem. 215, 48 (1960).Google Scholar
  31. 23. c.
    K. Schwabe and W Schwenke, Electrochim. Acta 9, 1003 (1964).CrossRefGoogle Scholar
  32. 24.
    E. A. Bolmgren and J. O’M. Bockris, Nature 186, 305 (1960).CrossRefGoogle Scholar
  33. 25.
    N. A. Balashova and V. E. Kazarinov, in Electroanalytical Chemistry, A. Bard (ed.), Vol. 3, Marcel Dekker, New York, 1969, p. 135.Google Scholar
  34. 26. a.
    V. E. Kazarinov, Electrohimiya 2,1170 (1966).Google Scholar
  35. 26. b
    V. E. Kazarinov, G. J. Tysyachnaya, and V. N. Andreev, J. Electroanal. Chem. 65, 391 (1975).CrossRefGoogle Scholar
  36. 27. a.
    G. Horányi, J. Solt, and F. Nagy, J. Electroanal. Chem. 31, 87 (1971).CrossRefGoogle Scholar
  37. 27. b.
    J. Solt, G. Horányi, and F. Nagy, Acta Chim. Acad. Sci. Hung. 63, 385 (1970).Google Scholar
  38. 28. a.
    J. Sobkowski and A. Wieckowski, J. Electroanal. Chem. 34, 185 (1972).CrossRefGoogle Scholar
  39. 28. b.
    A. Wieckowski, J. Electreochem. Soc. 122, 252 (1975).CrossRefGoogle Scholar
  40. 29.
    E. K. Krauskopf, K. Chan, and A. Wieckowski, J. Phys. Chem. 91, 2327 (1987).CrossRefGoogle Scholar
  41. 30. a.
    Ming Li and J. B. Schlenoff, Anal. Chem. 66, 824 (1994).CrossRefGoogle Scholar
  42. 30. b.
    J. B. Schlenoff and Ming Li, Ber. Bunsenges Phys. Chem. 100, 943 (1996).CrossRefGoogle Scholar
  43. 31. a.
    P. Marcus, in Corrosion Mechanisms in Theory and Practice, P. Marcus and J. Oudar (eds.), Marcel Dekker, New York, 1995, p. 239.Google Scholar
  44. 31. b.
    J. M. Herbelin, N. Barbouth, and P. Marcus, J. Electrochem. Soc. 137, 3410 (1990).CrossRefGoogle Scholar
  45. 32.
    K. Varga, E. Maleczki, E. Házi, and G. Horányi, Electrochim. Acta 35, 817 (1990).CrossRefGoogle Scholar
  46. 33.
    A. Kolics, E. Maleczki, K. Varga, and G. Horányi, J. Radioanal. Nucl. Chem., Articles 158, 121 (1992).CrossRefGoogle Scholar
  47. 34.
    M. Nagy, P. Baradlai, L. Tomcsányi, and K. Varga, ACHModels in Chem. 132, 561 (1995).Google Scholar
  48. 35. a.
    G. Hirschberg, Z. Németh, and K. Varga, J. Electroanal. Chem. 456,171 (1998).CrossRefGoogle Scholar
  49. 35. b.
    G. Hirschberg and K. Varga, in Meeting Abstract Volume, Joint International Meeting of the ECS and ISE, Paris (France), August 30-September 5, 1997, pp. 1175–1176.Google Scholar
  50. 35. c.
    G. Hirschberg, K. Varga, P. Baradlai, Z. Németh, J. Schunk, and P. Tilky, in Proceedings of the Third International Seminar on Primary and Secondary Side Water Chemistry of Nuclear Power Plants, Proceedings, Balatonfüred, Hungary, Sept 16–20, 1997.Google Scholar
  51. 35. d.
    G. Hirschberg, P. Baradlai, K. Varga, G. Myburg, J. Schunk, and P. Tilky, J. Nucl. Mater. 265, 273 (1999).CrossRefGoogle Scholar
  52. 36. a.
    G. Tóth and J. Miller, Magy. Kém. Folyóirat 78, 282 (1972); 78, 523 (1972).Google Scholar
  53. 36. b.
    J. Miller and G. Tóth, Isotopenpraxis 3, 19 (1967).CrossRefGoogle Scholar
  54. 37. a.
    J. Kónya and A. Bába, J. Electroanal. Chem. 109, 125 (1980).CrossRefGoogle Scholar
  55. 37. b.
    L. Várallyai, J. Kónya, F. H. Kármán, E. Kálmán, and J. Telegdi, Electrochim. Acta 36,981 (1991).CrossRefGoogle Scholar
  56. 37. c.
    F. H. Kármán, E. Kálmán, L. Várallyai, and J. Kónya, Z. Naturforsch. 46a, 183 (1991).Google Scholar
  57. 37. d.
    L. Várallyai, J. Kónya, E. Kálmán, and F. H. Kármán, ACH—Models in Chem. 132, 551 (1995).Google Scholar
  58. 38. a.
    T. Drozda and E. Maleczki, J. Radioanal. Nucl. Chem., Letters 95, 339 (1985).CrossRefGoogle Scholar
  59. 38. b.
    T. Drozda and E. Maleczki, J. Radioanal. Nucl Chem., Articles 152, 321 (1991).CrossRefGoogle Scholar
  60. 39.
    G. Aniansson, J. Phys. Chem. 55, 1286 (1951).CrossRefGoogle Scholar
  61. 40.
    J. A. Kafalas and H. C. Gatos, Rev. Sci. Instrum. 29, 47 (1958).CrossRefGoogle Scholar
  62. 41.
    J. G. N. Thomas and A. D. Mercer, Mater. Chem. Phys. 10, 1 (1984).CrossRefGoogle Scholar
  63. 42.
    D. Poskus and G. Agafonovas, J. Electroanal. Chem. 393, 105 (1995).CrossRefGoogle Scholar
  64. 43.
    A. Kolics and G. Horányi, Appl. Radiat. Isot. 47, 551 (1996).CrossRefGoogle Scholar
  65. 44.
    A. Kolics and K. Varga, J. Colloid Interface Sci. 168, 451 (1994).CrossRefGoogle Scholar
  66. 45.
    A. Kolics and K. Varga, Electrochim. Acta 40, 1835 (1995).CrossRefGoogle Scholar
  67. 46.
    A. Kolics, K. Varga, E. Maleczki, and G. Horányi, J. Radioanal. Nucl. Chem., Articles, 170, 457 (1993).CrossRefGoogle Scholar
  68. 47. a.
    K. Varga and M. Nagy, Magy. Kém. Folyóirat 103, 297 (1997).Google Scholar
  69. 47. b.
    K. Varga, M. Nagy, and G. Hirschberg, J. Electroanal. Chem. (to be published).Google Scholar
  70. 48. a.
    G. Horányi, J. Electroanal. Chem. 354, 319 (1993).CrossRefGoogle Scholar
  71. 48. b.
    G. Horányi, J. Electroanal. Chem. 370, 67 (1994).CrossRefGoogle Scholar
  72. 48. c.
    A. Kolics and G. Horányi, J. Electroanal. Chem. 374, 101 (1994).CrossRefGoogle Scholar
  73. 49. a.
    A. Kolics and G. Horányi, J. Electroanal. Chem. 376, 167 (1994).CrossRefGoogle Scholar
  74. 49. b.
    A. Kolics and G. Horányi, Electrochim. Acta 40, 2465 (1995).CrossRefGoogle Scholar
  75. 50. a.
    A. Kolics and G. Horányi, J. Electroanal. Chem. 372, 261 (1994).CrossRefGoogle Scholar
  76. 50. b.
    A. Kolics, E. Maleczki, and G. Horányi, J. Radioanal. Nucl. Chem., Articles 170, 443 (1993).CrossRefGoogle Scholar
  77. 51.
    A. Kolics and G. Horányi, Electrochim. Acta 41, 791 (1996).CrossRefGoogle Scholar
  78. 52.
    K. Varga, Ph.D. thesis, Veszprém, 1990 (Hungarian).Google Scholar
  79. 53. a.
    M. Nagy and K. Varga, Magy Kém. Folyóirat 100, 174 (1994).Google Scholar
  80. 53. b.
    K. Varga, M. Nagy, and P. Baradlai, J. Electroanal. Chem. (to be published).Google Scholar
  81. 54.
    K. Varga, P. Baradlai, and A. Vértes, Electrochim. Acta 42, 1143 (1997).CrossRefGoogle Scholar
  82. 55.
    L. Tomcsányi, K. Varga, I. Bartik, G. Horányi, and E. Maleczki, Electrochim. Acta 34, 855 (1989).CrossRefGoogle Scholar
  83. 56.
    K. Varga, E. Maleczki, and G. Horányi, Electrochim. Acta 33, 25 (1988)CrossRefGoogle Scholar
  84. K. Varga, E. Maleczki, and G. Horányi, Electrochim. Acta 33, 1167 (1988)CrossRefGoogle Scholar
  85. K. Varga, E. Maleczki, and G. Horányi, Electrochim. Acta 33, 1775 (1988)CrossRefGoogle Scholar
  86. K. Varga, E. Maleczki, and G. Horányi, Electrochim. Acta 31, 1667(1986).CrossRefGoogle Scholar
  87. 57.
    K. Varga, P. Baradlai, W. O. Barnard, G. Myburg, P. Halmos, and J. H. Potgieter, Electrochim. Acta 42, 25 (1997).CrossRefGoogle Scholar
  88. 58.
    P. Baradlai, J. H. Potgieter, W. O. Barnard, L. Tomcsányi, and K. Varga, Mater. Sci. Forum 185–188, 759 (1995).CrossRefGoogle Scholar
  89. 59.
    J. H. Potgieter, W. O. Barnard, G. Myburg, K. Varga, P. Baradlai, and L. Tomcsányi, J. Appl. Electrochem. 26, 1103 (1996).CrossRefGoogle Scholar
  90. 60.
    K. Varga, P. Baradlai, D. Hanzel, W. Meisel, and A. Vértes, Electrochim. Acta 42, 1157 (1997).CrossRefGoogle Scholar
  91. 61.
    A. Kolics, K. Varga, and E. Maleczki, J. Radioanal. Nucl. Chem. Letters 175, 339 (1993).CrossRefGoogle Scholar
  92. 62.
    B. E. Conway, Prog. Surf. Sci. 49, 331 (1995).CrossRefGoogle Scholar
  93. 63.
    G. Horányi, E. M. Rizmayer, and P. Joo, J. Electroanal. Chem. 152, 211 (1983).CrossRefGoogle Scholar
  94. 64.
    P. Zelenay, L. M. Rice-Jackson, and A. Wieckowski, J. Electroanal. Chem. 283, 389 (1990).CrossRefGoogle Scholar
  95. 65.
    A. Kolics, A. E. Thomas, and A. Wieckowski, J. Chem. Soc, Faraday Trans. 92, 3727 (1996).CrossRefGoogle Scholar
  96. 66.
    T. Wilke, X. Gao, C. G. Takoudis, and M. J. Weaver, J. Catal. 130, 62 (1991).CrossRefGoogle Scholar
  97. 67.
    M. Szklarczyk, A. Czerwinski, and J. Sobkowski, J. Electroanal. Chem. 132, 263 (1982).CrossRefGoogle Scholar
  98. 68.
    P. Mrozek, Y. Sung, M. Han, M. Gamboa-Aldeco, A. Wieckowski, C. Chen, and A. A. Gewirth, Electrochim. Acta 40, 17 (1995).CrossRefGoogle Scholar
  99. 69.
    D. M. Kolb, in Advances in Electrochemistry and Electrochemical Engineering, H. Gerischer and C. W Tobias (eds.), Vol. 11, John Wiley and Sons, New York, 1978, p. 127.Google Scholar
  100. 70. a.
    S. Swathirajan and S. Bruckenstein, J. Electroanal. Chem. 146, 137 (1983).CrossRefGoogle Scholar
  101. 70. b.
    S. Swathirajan and S. Bruckenstein, Electrochim. Acta 28, 865 (1983).CrossRefGoogle Scholar
  102. 70. c.
    S. Swathirajan and S. Bruckenstein, J. Electrochem. Soc. 129, 1202 (1982).CrossRefGoogle Scholar
  103. 70. d.
    S. Swathirajan, H. Mizota, and S. Bruckenstein, J. Phys. Chem. 86, 2480 (1982).CrossRefGoogle Scholar
  104. 70. e.
    T. M. Riedhammer, L. S. Melnicki, and S. Bruckenstein, Z. Phys. Chem. NF111, 177 (1978).CrossRefGoogle Scholar
  105. 70. f.
    W. J. Lorenz, H. D. Hermann, N. Wűthrich, and F. Hilbert, J. Electrochem. Soc. 121, 1167(1974).CrossRefGoogle Scholar
  106. 71.
    C. H. Chen, S. M. Vesecky, and A. A. Gewirth, J. Am. Chem. Soc. 114, 451 (1992).CrossRefGoogle Scholar
  107. 72.
    G. Myburg, K. Varga, W. O. Barnard, P. Baradlai, L. Tomcsányi, J. H. Potgieter, C.W Louw, and M.J. van Staden, Appl. Surf. Sci. 136, 29 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kálmán Varga
    • 1
  • Gábor Hirschberg
    • 1
  • Pál Baradlai
    • 1
  • Melinda Nagy
    • 1
  1. 1.Department of RadiochemistryUniversity of VeszeprémVeszprémHungary

Personalised recommendations