Advertisement

Physical Chemistry of Cetyl Alcohol: Occurrence and Function of Liquid Crystals in O/W Creams

  • Shoji Fukushima
  • Michihiro Yamaguchi
Part of the Surface and Colloid Science book series (SACS, volume 16)

Abstract

Cetyl alcohol is one of the important components in various preparations, such as cosmetic creams or lotions, or pharmaceutical hydrophilic ointments. Sometime ago a curious phenomenon was observed, namely, the cream was unstable when prepared with 1-hexadecanol instead of cetyl alcohol. This finding triggered studies on the difference between 1-hexadecanol and cetyl alcohol by many workers, including the authors of this review.

Keywords

Ternary System Transition Point High Alcohol Interplanar Spacing Liquid Crystalline Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Merck Index,9th edn., Merck & Co., Rahway, New Jersey, 1976, p. 254.Google Scholar
  2. 2.
    M. E. Chevreul, Ann. Chim. Phys. 2, 155 (1817).Google Scholar
  3. 3.
    E. Andre and T. François, Compt. Rend. 183, 663 (1926).Google Scholar
  4. 4.
    F. Krafft, Ber. Dtsch. Chem. Ges. 17, 1627 (1884).Google Scholar
  5. 5.
    E. Ludwig, Z. Phys. Chem. 23, 38 (1892).Google Scholar
  6. 6.
    R. von Zeynek, Z. Phys. Chem. 23, 40 (1892).Google Scholar
  7. 7.
    F. Ameseder, Z. Phys. Chem. 52, 121 (1907).Google Scholar
  8. 8.
    S. Izumi, K. Yamada, and S. Murata, Juzen (J. Juzenkai Japan) 43, 309 (1938).Google Scholar
  9. 9.
    F. H. C. Stewart, Aust. J. Appl. Sci. 11, 157 (1960).Google Scholar
  10. 10.
    R. G. Vines and R. J. Meakins, Aust. J. Appl. Sci. 10, 190 (1959).Google Scholar
  11. 11.
    J. Kalish, Drug Cosmet. Ind. 37, 595 (1935).Google Scholar
  12. 12.
    H. S. Redgrove, Am. Perfumer 38(2), 32 (1939).Google Scholar
  13. 13.
    K. Tanaka, T. Seto, and T. Hayashida, Bull. Inst. Chem. Res. Kyoto Univ. 35, 123 (1957).Google Scholar
  14. 14.
    K. Tanaka, T. Seto, A. Watanabe, and T. Hayashida, Bull. Inst. Chem. Res. Kyoto Univ. 37, 281 (1959).Google Scholar
  15. 15.
    M. Tasumi, T. Shimanouchi, A. Watanabe, and R. Goto, Spectrochim. Acta 20, 629 (1964).Google Scholar
  16. 16.
    S. Abrahamsson, G. Larsson, and E. von Sydow, Acta Crystallogr. 13, 770 (1960).Google Scholar
  17. 17.
    T. Seto, Mem. Coll. Sci. Univ. Kyoto, Ser. A30, 89 (1962).Google Scholar
  18. 18.
    D. A. Wilson and E. Ott, J. Chem. Phys. 2, 231 (1934).Google Scholar
  19. 19.
    J. C. Smith, J. Chem. Soc. 1, 802 (1931).Google Scholar
  20. 20.
    J. D. Hoffman and C. P. Smyth, J. Am. Chem. Soc. 71, 431 (1948).Google Scholar
  21. 21.
    D. G. Kolp and E. S. Lutton, J. Am. Chem. Soc. 73, 5593 (1951).Google Scholar
  22. 22.
    D. Chapman, Proc. Colloq. Spectroscopicum Int. VI, Amsterdam, Pergamon Press, London, 1956, pp. 609–617.Google Scholar
  23. 23.
    R. G. Vines and R. J. Meakins, Aust. J. Appl. Sci. 10, 190 (1959).Google Scholar
  24. 24.
    F. H. C. Stewart, Aust. J. Appl. Sci. 11, 157 (1960).Google Scholar
  25. 25.
    E. J. Benton, in Retardation of Evaporation by Monolayers, V. LaMer (ed.), Academic Press, New York, 1962, pp. 235–244.Google Scholar
  26. 26.
    J. H. Brooks, in Retardation of Evaporation by Monolayers, V. LaMer (ed.), Academic Press, New York, 1962, pp. 255–258.Google Scholar
  27. 27.
    S. Fukushima and M. Yamaguchi, J. Jpn. Oil Chem. Soc. 29, 933 (1980).Google Scholar
  28. 28.
    L. Pauling, Phys. Rev. 36, 430 (1930).Google Scholar
  29. 29.
    J. D. Bernal, Z.Kristallogr. 83, 153 (1932).Google Scholar
  30. 30.
    J. D. Bernal, Nature 129, 870 (1932).Google Scholar
  31. 31.
    E. Frosch, Ann. Phy. 42, 254 (1942).Google Scholar
  32. 32.
    E. Ott, Z. Phys. Chem. 193, 218 (1944).Google Scholar
  33. 33.
    S. Fukushima, K. Yoshida, and M. Yamaguchi, J. Pharm. Soc. Jpn. 104, 986 (1984).Google Scholar
  34. 34.
    T. Malkin, J. Am. Chem. Soc. 52, 3739 (1930).Google Scholar
  35. 35.
    A. Watanabe, Bull. Chem. Soc. Jpn. 36, 336 (1963).Google Scholar
  36. 36.
    J. D. Meyer and E. E. Reid, J. Am. Chem. Soc. 55, 1574 (1933).Google Scholar
  37. 37.
    P. E. Vercade and J. Coops, Jr., Res. Trav. Chim. 46, 903 (1927).Google Scholar
  38. 38.
    A. S. C. Lawrence, M. A. A1-Mamun, and M. P. McDonald, Trans. Faraday Soc. 63, 2789 (1967).Google Scholar
  39. 39.
    A. Watanabe, Bull. Chem. Soc. Jpn. 34, 1728 (1961).Google Scholar
  40. 40.
    F. Krafft, Ber. Dtsch. Chem. Ges. 15, 1714 (1882).Google Scholar
  41. 41.
    L. Schon, Pharm. J. 168, 360 (1952).Google Scholar
  42. 42.
    A. Trapeznikov, Acta Physicochim. U.R.S.S. 20, 589 (1945).Google Scholar
  43. 43.
    W. O. Baker and C. P. Smyth, J. Am. Chem. Soc. 60, 1229 (1938).Google Scholar
  44. 44.
    A. Gascard, Compt. Rend. 170, 886, 1326 (1930).Google Scholar
  45. 45.
    H. M. Huffman, G. S. Parks, and M. Barmore, J. Am. Chem. Soc. 53, 3876 (1931).Google Scholar
  46. 46.
    J. W. C. Phillips and S. A. Mumford, J Chem. Soc., 1732 (1931).Google Scholar
  47. 47.
    K. Higasi, and M. Kubo, Sci. Papers Inst. Phys. Chem. Res., Tokyo 36, 286 (1939).Google Scholar
  48. 48.
    J. W C. Phillips and S. A. Mumford, J. Chem. Soc.,1657 (1934).Google Scholar
  49. 49.
    J. C. Smith, J. Chem. Soc.,802 (1931).Google Scholar
  50. 50.
    B. W. Barry and E. Shotton, J. Pharm. Pharmac. 19(S), 110S (1967).Google Scholar
  51. 51.
    Y. K. Kuchhal, R. N. Shukla, and A. B. Biswas, Indian J. Chem. 20A, 837 (1981).Google Scholar
  52. 52.
    A. Gascard, Ann. Chim. 15, 322 (1921).Google Scholar
  53. 53.
    W. Levene and van der Scheer, J. Biol. Chem. 20, 521 (1915).Google Scholar
  54. 54.
    P. A. Levene and F. A. Taylor, J. Biol. Chem. 59, 905 (1924).Google Scholar
  55. 55.
    F. Francis, F. J. E. Collins, and S. E. Piper, Proc. Roy. Soc. London A158, 691 (1937).Google Scholar
  56. 56.
    M. A. Al-Mamun, J. Am. Oil Chem. Soc. 51, 234 (1974).Google Scholar
  57. 57.
    L. Schon, Pharm. J. 168, 360 (1952).Google Scholar
  58. 58.
    R. G. Vines and R. J. Meakins, Aust. J. Appl. Sci. 10, 190 (1959).Google Scholar
  59. 59.
    F. H. C. Stewart, Aust. J. Appl. Sci. 11, 157 (1960).Google Scholar
  60. 60.
    T. P. Hilditch and J. A. Lovern, J. Soc. Chem. Ind. 48, 365 (1929).Google Scholar
  61. 61.
    S. Fukushima, in Physical Chemistry of Cetyl Alcohol, Fragrance Journal Ltd., Tokyo, 1992, pp. 31–34.Google Scholar
  62. 62.
    E. J. Benton, in Retardation of Evaporation by Monolayers, V. La Mer (ed.), Academic Press, New York, 1962, pp. 235–244.Google Scholar
  63. 63.
    M. A. Al-Mamun, J. Am. Oil Chem. Soc. 51, 234 (1974).Google Scholar
  64. 64.
    M. Yamaguchi, M. Takahashi, F. Harusawa, and S. Fukushima, J. Soc. Cosmet. Chem. Japan 12(2), 16 (1978).Google Scholar
  65. 65.
    K. Higasi and M. Kubo, Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 36, 286 (1939).Google Scholar
  66. 66.
    A. Trapeznikov, Acta Physicochim.U.R.S.S.20, 589 (1945).Google Scholar
  67. 67.
    F. H. C. Stewart, Aust. J. Appl. Sci. 11, 157 (1960).Google Scholar
  68. 68.
    J. H. Brooks, in Retardation of Evaporation by Monolayers, V. La Mer (ed.), Academic Press, New York, 1962, pp. 255–258.Google Scholar
  69. 69.
    J. H. Brooks and A. E. Alexander, J. Phys. Chem. 66, 1851 (1962).Google Scholar
  70. 70.
    W. Kauzmann and D. Eisenberg, in The Structure and Properties of Water, Oxford at the Clarendon Press, London, 1969.Google Scholar
  71. 71.
    A. S. C. Lawrence, A. Bingham, B. Capper, and K. Hume, J. Phys. Chem. 68, 3470 (1964).Google Scholar
  72. 72.
    A. S. C. Lawrence, M. A. Al-Mamun, and M. P. McDonald, Trans. Faraday Soc. 63, 2789 (1967).Google Scholar
  73. 73.
    S. Fukushima and M. Yamaguchi, J. Jpn. Oil Chem. Soc. 29, 933 (1980).Google Scholar
  74. 74.
    S. Fukushima, in Physical Chemistry of Cetyl Alcohol, Fragrance Journal Ltd., Tokyo, 1992, pp. 35–49.Google Scholar
  75. 75.
    Y K. Kuchhal, R. N. Shukla, and A. B. Biswas, Indian J. Chem. 20A, 837 (1981).Google Scholar
  76. 76.
    K. Pachler and M. von Stackelberg, Z. Krystal. 119, 15 (1963).Google Scholar
  77. 77.
    L. Mandell, in Surface Chemistry, P. Ekwall, K. Groth, and V. R. Runnstro (eds.), Proc. 2nd Scand. Symposium Surface Activity, Stockholm, 1964, Munksgaad, 1965, pp. 185–202.Google Scholar
  78. 78.
    P. Ekwall, L. Mandell, and K. Fontell, in Liquid Crystals, Proc. Int. Congress on Liquid Crystals, Gordon and Breach, London, 1965, pp. 325–381.Google Scholar
  79. 79.
    A. J. Hyde, D. M. Langbridge, and A. S. C. Lawrence, Disc. Faraday Soc. 18, 239 (1954).Google Scholar
  80. 80.
    P. Ekwall, L. Mandell, and K. Fontell, J. Colloid Interface Sci. 29, 542 (1969).Google Scholar
  81. 81.
    F. A. J. Talman, J. Pharm. Pharmacol. 22, 338 (1970).Google Scholar
  82. 82.
    H. Kasai and M. Nakagaki, Nippon Kagaku Zassi 91, 19 (1970).Google Scholar
  83. 83.
    J. S. Merland and B. A. Mulley, J. Pharm. Pharmacol. 24, 729 (1972).Google Scholar
  84. 84.
    P. Ekwall, I. Danielsson, and L. Mandell, Kolloid Z. 169, 113 (1960).Google Scholar
  85. 85.
    P. Ekwall, J. Colloid Interface Sci. 29, 16 (1969).Google Scholar
  86. 86.
    H. C. Kung, and E. D. Goddard, J. Phys. Chem. 67, 1965 (1963).Google Scholar
  87. 87.
    M. B. Epstein, A. Wilson, C. W. Jacob, L. E. Conroy, and Ross, J. Phys. Chem. 58, 860 (1954).Google Scholar
  88. 88.
    F. A. J. Talman, P. J. Davies, and E. M. Rowan, J. Pharm. Pharmacol. 20, 513 (1968).Google Scholar
  89. 89.
    A. M. Poskanzer and D. C. Goodrich, J. Phys. Chem. 79, 2122 (1975).Google Scholar
  90. 90.
    F. A. J. Talman, P. J. Davies, and E. M. Rowan, J. Pharm. Pharmacol. 19, 417 (1967).Google Scholar
  91. 91.
    M. B. Epstein, A. Wilson, J. Gershman, and J. Ross, J. Phys. Chem. 60, 1051 (1956).Google Scholar
  92. 92.
    M. Yamaguchi and A. Noda, A., Nippon Kagaku Kaishi 1632 (1987).Google Scholar
  93. 93.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19(S), 121S (1967).Google Scholar
  94. 94.
    B. W. Barry, J. Colloid Interface Sci. 28, 82 (1968).Google Scholar
  95. 95.
    M. Yamaguchi and A. Noda, A., Nippon Kagaku Kaishi, 26 (1989).Google Scholar
  96. 96.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 34, 300 (1970).Google Scholar
  97. 97.
    B. W. Barry and G. M. Saunders, J. Pharm. Pharmacol. Sci. 22(S), 139S (1967).Google Scholar
  98. 98.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 35, 689 (1971).Google Scholar
  99. 99.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 6, 130 (1971).Google Scholar
  100. 100.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 8, 616 (1972).Google Scholar
  101. 101.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 8, 62 (1972).Google Scholar
  102. 102.
    S. Fukushima, M. Yamaguchi, and F. Harusawa, J. Colloid Interface Sci. 59, 159 (1977).Google Scholar
  103. 103.
    S. Fukushima and M. Yamaguchi, J. Jpn. Oil Chem. Soc. 29, 106 (1989).Google Scholar
  104. 104.
    M. Yamaguchi, K. Yoshida, M. Tanaka, and S. Fukushima, J. Electron Micros. 31, 249 (1982).Google Scholar
  105. 105.
    S. Fukushima, K. Yoshida, and M. Yamaguchi, J. Pharm. Soc. Jpn. 104, 986 (1984).Google Scholar
  106. 106.
    B. W. Barry and G. M. Eccleston, J. Pharm. Pharmacol. 25, 244 (1973).Google Scholar
  107. 107.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19(S), 110S (1967).Google Scholar
  108. 108.
    S. Fukushima, in Physical Chemistry of Cetyl Alcohol, Fragrance Journal Ltd., Tokyo, 1992, p. 57.Google Scholar
  109. 109.
    S. Fukushima, M. Yamaguchi, and F. Harusawa, J. Colloid Interface Sci. 59, 159 (1977).Google Scholar
  110. 110.
    B. W. Barry, Rheol. Acta 10, 96 (1971).Google Scholar
  111. 111.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 34, 300 (1970).Google Scholar
  112. 112.
    B. M. Barry and G. M. Saunders, J. Colloid Interface Sci. 38, 626 (1972).Google Scholar
  113. 113.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19 (S), 110S (1967).Google Scholar
  114. 114.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19 (S), 121S (1967).Google Scholar
  115. 115.
    G. E. Mapstone, Aust. Chem. Process. Eng. 25(12), 18 (1972).Google Scholar
  116. 116.
    M. Yamaguchi, M. Takahashi, F. Harusawa, and S. Fukushima, J. Soc. Cosmet. Chem. Jpn 12(2), 16(1978).Google Scholar
  117. 117.
    S. Fukushima and M. Yamaguchi, J. Pharm. Soc. Jpn 101, 1010 (1981).Google Scholar
  118. 118.
    K. Larsson, Nature (London) 191, 383 (1967).Google Scholar
  119. 119.
    J. E. Bowcott and J. H. Schulman, Z. Elektrochem. 59, 283 (1955).Google Scholar
  120. 120.
    J. H. Schulman and M. Stenhagen, Proc. Roy. Soc. Ser. B 126, 356 (1938).Google Scholar
  121. 121.
    D. O. Shah and J. H. Schulman, Lipid Res. 8, 215 (1967).Google Scholar
  122. 122.
    A. J. Simko and R. G. Dressier, Ind. Eng. Chem., Prod. Res. Develop. 8(4), 446 (1969).Google Scholar
  123. 123.
    D. O. Shah, J. Colloid Interface Sci. 37, 744 (1971).Google Scholar
  124. 124.
    M. Yamaguchi and A. Noda, Nippon Kagaku Kaishi 26 (1989).Google Scholar
  125. 125.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19(9), 110s (1967).Google Scholar
  126. 126.
    M. Yamaguchi, K. Yoshida, M. Tanaka, and S. Fukushima, J. Electron Microsc. 31, 249 (1982).Google Scholar
  127. 127.
    S. Fukushima and M. Yamaguchi, J. Jpn Oil Chem. Soc. 29, 106 (1980).Google Scholar
  128. 128.
    S. Fukushima, in Physical Chemistry of Cetyl Alcohol, Fragrance Journal Ltd., Tokyo, 1992, pp. 95–96.Google Scholar
  129. 129.
    F. J. A. Talman and E. M. Rowan, J. Pharm. Pharmacol. 22, 338 (1970).Google Scholar
  130. 130.
    F. J. A. Talman and E. M. Rowan, J. Pharm. Pharmacol. 22, 417 (1970).Google Scholar
  131. 131.
    F. J. A. Talman, P. J. Davies, and E. M. Rowan, J. Pharm. Pharmacol. 19, 417 (1967).Google Scholar
  132. 132.
    F. J. A. Talman, P. J. Davies, and E. M. Rowan, J. Pharm. Pharmacol. 20, 513 (1968).Google Scholar
  133. 133.
    B. W. Barry, J. Colloid Interface Sci. 28, 82 (1968).Google Scholar
  134. 134.
    B. W. Barry, J. Colloid Interface Sci. 32, 551 (1970).Google Scholar
  135. 135.
    E. G. Mapstone, Aust. Chem. Process. Eng. 25(12), 18 (1977).Google Scholar
  136. 136.
    K. Okamoto and H. Oishi, Yakuzaigaku 37, 52 (1977).Google Scholar
  137. 137.
    P. H. Elworthy, A. T. Florence, and J. A. Rogers, J. Colloid Interface Sci. 35, 34 (1971).Google Scholar
  138. 138.
    S. Fukushima, M. Takahashi, and M. Yamaguchi, J. Colloid Interface Sci. 57, 201 (1976).Google Scholar
  139. 139.
    S. S. Davis and A. Smith, in Theory and Practice of Emulsion Technology, A. L. Smith (ed.), Academic Press, London, 1976, pp. 325–346.Google Scholar
  140. 140.
    G. M. Eccleston, J. Colloid Interface Sci. 57, 66 (1976).Google Scholar
  141. 141.
    J. E. Carless and G. W. Hallworth, J. Colloid Interface Sci. 26, 75 (1968).Google Scholar
  142. 142.
    G. W. Hallworth and J. E. Carless, in Theory and Practice of Emulsion Technology, A. L. Smith (ed.), Academic Press, London, 1976, pp. 305–324.Google Scholar
  143. 143.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 34, 300 (1970).Google Scholar
  144. 144.
    B. W. Barry and G. M. Saunders, J. Pharm. Pharmacol. 22 (S), 139S (1970).Google Scholar
  145. 145.
    S. Fukushima and M. Yamaguchi, J. Jpn. Oil Chem. Soc. 29, 106 (1980).Google Scholar
  146. 146.
    B. W. Barry and G. M. Eccleston, J. Pharm. Pharmacol. 5, 244 (1973).Google Scholar
  147. 147.
    B. W. Barry and G. M. Eccleston, J. Pharm. Pharmacol. 25, 394 (1973).Google Scholar
  148. 148.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 41, 331 (1972).Google Scholar
  149. 149.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 35, 689 (1971).Google Scholar
  150. 150.
    C. Fuhrer, H. Junginger, and S. Friberg, J. Soc. Cosmet. Chem. 29, 303 (1978).Google Scholar
  151. 151.
    M. Yamaguchi, K. Yoshida, M. Tanaka, and S. Fukushima, J. Electron Microsc. 31, 249 (1982).Google Scholar
  152. 152.
    S. Fukushima, K. Yoshida, and M. Yamaguchi, J. Jpn. Pharm. Soc. 104, 986 (1984).Google Scholar
  153. 153.
    T. Suzuki, H. Tsutsumi, and A. Ishida, Nippon Kagaku Kaishi 337 (1983).Google Scholar
  154. 154.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 20, 242 (1968).Google Scholar
  155. 155.
    S. Fukushima, K. Yoshida, M. Yamaguchi, J. Pharm. Soc. Jpn. 104, 986 (1984).Google Scholar
  156. 156.
    B. W. Barry, J. Colloid Interface Sci. 28, 82 (1968).Google Scholar
  157. 157.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 41, 626 (1972).Google Scholar
  158. 158.
    B. W. Barry and G. M. Saunders, J. Colloid Interface Sci. 41, 331 (1972).Google Scholar
  159. 159.
    T. Suzuki, H. Tsutsumi, and A. Ishida, Nippon Kagaku Kaishi 337, (1983).Google Scholar
  160. 160.
    M. Yamaguchi and A. Noda, Nippon Kagaku Kaishi 26 (1989).Google Scholar
  161. 161.
    F. J. A. Talman, P. J. Davies, and E. M. Rowan, J. Pharm. Pharmacol. 20, 513 (1968).Google Scholar
  162. 162.
    B. W. Barry and E. Shotton, J. Pharm. Pharmacol. 19, 110S (1967).Google Scholar
  163. 163.
    S. Friberg, J. Colloid Interface Sci. 37, 291 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Shoji Fukushima
    • 1
  • Michihiro Yamaguchi
    • 1
  1. 1.Basic Research LaboratoryShiseido Research CenterYokohamaJapan

Personalised recommendations