Jurassic Reef Ecosystems

Part of the Topics in Geobiology book series (TGBI, volume 17)


Corals and sponges from Jurassic reefs have attracted both amateur and professional paleontologists for a long time. In particular, the often beautifully preserved corals, which may look just like a coral skeleton from an extant coral, nourished the idea that Jurassic reefs were quite similar to modern representatives. Also, Jurassic reefs often are considered to have been very prolific, having outcompeted even the modern Great Barrier Reef by forming a reef belt at least 7000-km long.


Coral Reef Reef Growth Siliceous Sponge Reef Type Microbial Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, O. E., 1983, Microsolenid corals as rock-formers in the Corallian (Upper Jurassic) rocks of England, Geol. Mag. 120:375–380.Google Scholar
  2. Allison, N., Tudhope, A. W., and Fallick, A. E., 1996, Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand, Coral Reefs 15:43–57.Google Scholar
  3. Aurell, M, and Bádenas, B., 1997, The pinnacle reefs of Jabaloyas (Late Kimmeridgian, NE Spain, Vertical zonation and associated facies related to sea level changes, Cuad. Geol. Ibérica 22:37–64.Google Scholar
  4. Baria, L. R., Stoudt, D. L., Harris, P. M., and d, P. D., 1982, Upper Jurassic reefs of Smackover Formation, United States Gulf Coast, Am. Assoc. Petrol. Geol. Bull. 66:1449–1482.Google Scholar
  5. Baumeister, J., 1997, Funktionsmorphologie und Paläoökologie regulärer jurassischer Echinoiden des nordwestlichen Tethys-Schelfs, unpublished dissertation (Dr. rer. nat.), Faculty of Geo-and Biosciences, University of Stuttgart.Google Scholar
  6. Baumeister, J. G., and Leinfelder, R. R., 1998, Constructional morphology of three Upper Jurassic echinoids, Palaeontology 42(2):203–219.Google Scholar
  7. Baumgärtner, M., and Reyle, M., 1995, Oberjurassische Rampenentwicklung in der Region von Jabaloyas und Arroyo Cerezo (Keltiberikum; Spanien), Profil 8:339–361.Google Scholar
  8. Bertling, M., 1993, Ecology and distribution of the Late Jurassic Scleractinian Thamnasteria concinna (Goldfuss) in Europe, Palaeogeogr. Palaeoclimatol. Palaeoecol. 105:311–335.Google Scholar
  9. Bertling, M., 1997a, Bioerosion of Late Jurassic reef corals — Implications for reef evolution, Proc. 8th Int. Coral Reef Sym. 2:1663–1668.Google Scholar
  10. Bertling, M., 1997b, Structure and function of coral associations under extreme siltation stress — A case study from the northern German Upper Jurassic, Proc. 8th Int. Coral Reef Sym. 2:1749–1754.Google Scholar
  11. Brachert, T., 1992, Sequence stratigraphy and paleo-oceanography of an open-marine mixed carbonate/siliciclastic succession, Late Jurassic; South Germany, Facies 27:179–216.Google Scholar
  12. Buddemeier, R. W., and Kinzie, R. A., 1976, Coral growth, Oceanogr. Mar. Biol. Annu. Rev. 14:183–225.Google Scholar
  13. Coates, G. A., and Jackson, J. B. C., 1987, Clonal growth, algal symbiosis, and reef formation by corals, Paleobiology 13: 363–378.Google Scholar
  14. Conway, K. W., and Barrie, J. V., 1997, Modern Hexactinellid sponge reefs on the western Canadian continental margin, 18th IAS Reg. Europ. Meeting, Heidelberg, 1997, Abstracts, Gaea heidelbergensis 3:105.Google Scholar
  15. Conway, K. W., Barrie, J. V., Austin, W. C, and Lutemauer, J. L., 1991, Holocene sponge bioherms on the western Canadian continental shelf, Continental Shelf Res. 11: 771–790.Google Scholar
  16. Crevello, P., and Harris, P., 1984, Depositional models for Jurassic reefal buildups, in: The Jurassic of the Gulf Rim (W. P. S. Ventress, D. G. Bebout, B. F. Perkins, and C. H. Moore, eds.), SEPM Gulf Coast Section, Proceedings of the 3rd Annual Research Conference, Tulsa, OK, pp. 57–102.Google Scholar
  17. Dayton, P. K., Mordida, B. J., and Bacon, F., 1994, Polar marine communities, Am. Zool. 34:90–99.Google Scholar
  18. Deusch, M., Friebe, A., and Krautter, M. 1991, Spongiolithic facies in the Middle and Upper Jurassic of Spain, in: Fossil and Recent Sponges (J. Reitner and H. Keupp, eds.), Springer, New York, pp. 498–505.Google Scholar
  19. Dietl, G., Dietl, O., Kapitzke, M., Rieter, M., Schweigert, G., Ilg, A., and Hugger, R., 1996, Der Nusplinger Plattenkalk (Weißer Jura) — Grabungskampagne 1996, Jh. Ges. Naturk. Württemberg 153:185–203.Google Scholar
  20. Helm, C, 1997, Faunistische Untersuchungen an einem Fleckenriff des Oberjura (florigemma-Bank; Süntel), unpublished diploma Thesis, Fachbereich Geowissenschaften, University of Hannover.Google Scholar
  21. Draganescu, A., 1976, Constructional to corpuscular sponge-algal, algal and coralalgal facies in the Upper Jurassic carbonate formation of central Dobrogea (the Casimcea Formation), in: Carbonate Rocks and Evaporites (D. Patrullius et al., eds.), Internat. Coll. Carb. Rocks/Evapor. Roumania, Guidebook Series, Vol. 15, pp. 3–43.Google Scholar
  22. Dromart, G., Gaillard, C, and Jansa, L. F., 1994, Deep-marine microbial structures in the Upper Jurassic of Western Tethys, in: Phanerozoic Stromatolites II (J. Bertrand-Sarfati and C. Monty, eds.), Kluwer, Dordrecht, pp. 295–318.Google Scholar
  23. Duarte, L. V., and Krautter, M., 1998, Siliceous sponge mud mounds from the Toarcian of the Lusitanian Basin, Portugal: Facies, stratigraphy and sequential evolution, Abstr. Jurassic Symposium, Vancouver, 1998.Google Scholar
  24. Ellis, P. M., Wilson, R. C. L., and Leinfelder, R. R., 1990, Controls on Upper Jurassic carbonate buildup development in the Lusitanian Basin, Portugal, in: Carbonate Platforms. Facies, Sequences and Evolution (M. E. Tucker, J. L. Wilson, P. D. Crevello, J. R. Sarg, and J. F. Read, eds.), Int. Assoc. Sediment. Spec. Publ. 9:169–202.Google Scholar
  25. Elmi, S., 1987, Le Jurassique inférieur du Bas Vivarais (sud-est) de la France (avec la collaboration de R. Mouterde, C. Ruget, Y. Aimeras, and G. Naud), 2ième Colloqu. Centr. Internat. Etudes du Lias (C.I.E.L.), Lyon, 27–30 Mai 1986, Cah. Inst. Cathol. Lyon Sér. Sci. 1:63–189.Google Scholar
  26. Errenst, C, 1990a, Das korallenführende Kimmeridgium der nordwestlichen Iberischen Ketten und angrenzender Gebiete (Fazies, Paläogeographie und Beschreibung der Korallenfauna), Teil 1, Palaeontographica Abt. A 214:121–207.Google Scholar
  27. Errenst, C, 1990b, Das korallenführende Kimmeridgium der nordwestlichen Iberischen Ketten und angrenzender Gebiete (Fazies, Paläogeographie und Beschreibung der Korallenfauna), Teil 2, Palaeontographica Abt. A 215:1–42.Google Scholar
  28. Fagerstrom, J. A., 1987, The Evolution of Reef Communities, Wiley, New York.Google Scholar
  29. Fezer, R., 1988, Die oberjurassische karbonatische Regressionsfazies im südwestlichen Keltiberikum zwischen Griegos und Aras de Alpuente (Prov. Teruel, Cuenca, Valencia; Spanien), Arb. Inst. Geol. Paläont. Univ. Stuttgart N.F. 84:1–119.Google Scholar
  30. Flügel, E., Alt, T., Joachimski, M., Riemann, V., and Scheller, J., 1993, Korallen-Kalke im oberen Malm (Unter-Tithon) der Südlichen Frankenalb (Laisacker, Marching, Mikrofazies-Merkmale und Fazies-Interpretation, Geo. Bl. NO-Bayern 43:33–56.Google Scholar
  31. Fürsich, F. T., 1981, Salinity-controlled benthic associations from the Upper Jurassic of Portugal, Lethaia 14:203–223.Google Scholar
  32. Fürsich, F. T., and Werner, W., 1986, Benthic associations and their environmental significance in the Lusitanian Basin (Upper Jurassic, Portugal), N. Jb. Geol. Paläont. Abh. 172:271–329.Google Scholar
  33. Fürsich, F. T., and Werner, W., 1991, Palaeoecology of coralline sponge—coral meadows from the Upper Jurassic of Portugal, Paläont. Z. 65:35–69.Google Scholar
  34. Gaillard, C., 1983, Les biohermes à spongiaires et leur environnement dans l’Oxfordien du Jura méridional, Docum. Lab. Géol. Lyon 90:1–515.Google Scholar
  35. Geister, J., 1983, Holozäne westindische Korallenriffe: Geomorphologie, Ökologie und Fazies, Facies 9:173–284.Google Scholar
  36. Geister, J., 1992, Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Carribean Sea, Colombia), Facies 27:1–70.Google Scholar
  37. Geister, J., and Lathuilière, B., 1991, Jurassic coral reefs of the northeastern Paris basin (Luxembourg and Lorraine), Excursion A 3, Excursion-Guidebook, VI. Int. Sympos. on Fossil Cnidaria, Münster.Google Scholar
  38. Ginsburg, R. N., 1997, Coral reefs are cities under the sea. Transparencies and teachers notes to introduce coral reefs to students and adults, (manuscript), Project Miami R.A.R.E., The Hachette Filipacchi Foundation.Google Scholar
  39. Greb, L., Saric, B., Seyfried, H., Broszonn, T., Brauch, S., Gugau, G., Wiltschko, C, and Leinfelder, R., 1996, Ökologie und Sedimentologie eines rezenten Rampensystems an der Karibikküste von Panama, Profil 10:1–168.Google Scholar
  40. Gwinner, M. P., 1976, Origin of the Upper Jurassic limestones of the Swabian Alb (Southwest Germany), Contr. Sedimentol. 5:1–75.Google Scholar
  41. Gygi, R. A., and Persoz, F. 1986, Mineralostratigraphy, litho- and biostratigraphy combined in correlation of the Oxfordian of the Swiss Jura range, Eclogae geol. Helv. 79:455–491.Google Scholar
  42. Hantzpergue, P., 1988, Les Plates-Formes Recifales du Jurassique Nord-Aquitain, Livret-Guide Excursion GFEJ, Poitiers.Google Scholar
  43. Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change, SEPM, Spec. Publ. 42:71–108.Google Scholar
  44. Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Freiwald, A., Steinmetz, S., Dietrich, P., and Thiede, J., 1992, Facies belts and communities of the Arctic Vesterisbanken Seamount (Central Greenland Sea), Facies 27:71–104.Google Scholar
  45. Henrich, R., Freiwald, A., Wehrmann, A., Schäfer, P., Samtleben, C, and Zankl, H., 1996, Nordic cold-water carbonates: Occurrences and controls, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), research reports. Göttinger Arb. Geol. Paläont. Sb 2: 35–52.Google Scholar
  46. Herrmann, R., 1996, Entwicklung einer oberjurassischen Karbonatplattform: Biofazies, Riffe und Sedimentologie im Oxfordium der Zentralen Dobrogea (Ost-Rumänien), Berliner geowiss. Abh. E 19:1–101.Google Scholar
  47. Highsmith, R. C, 1979, Coral growth rates and the environmental control of density banding, J. Exp. Mar. Biol. Ecol. 37:105–125.Google Scholar
  48. Hobbie, J. E., Holm-Hansen, O., Packard, T. T., Pomeroy, L. R., Sheldon, R. W., Homas, J. P., and Wiebe, W. J., 1972, A study of the distribution and activity of microorganisms in the ocean water, Limnol. Oceanogr. 17:544–555.Google Scholar
  49. Hubbard, J. A., and Pocock, Y. P., 1972, Sediment rejection by scleractinian corals: a key to palaeo-environmental reconstruction, Geol.Rundschau 61:598–626.Google Scholar
  50. Insalaco, E., 1996a, Upper Jurassic microsolenid biostromes of northern and central Europe: Facies and depositional environment, Palaeogeogr. Palaeoclimatol. Palaeoecol. 121:169–194.Google Scholar
  51. Insalaco, E., 1996b, The use of Late Jurassic coral growth bands as palaeoenvironmental indicators, Palaeontology 39:413–431.Google Scholar
  52. Insalaco, E., Hallam, A., and Rosen, B., 1997, Oxfordian (Upper Jurassic) coral reefs in Western Europe: Reef types and conceptual depositional model, Sedimentology 44:707–734.Google Scholar
  53. James, N. P., 1983, Reef environments, in: Carbonate Depositional Environments (P.A. Scholle, D. G. Bebout, and C. H. Moore, eds.), Am. Assoc. Petrol. Geol, Mem. 33:345–440.Google Scholar
  54. James, N. P., and Bourque, P., 1992, Reefs and mounds, in: Facies Models. Response to Sea Level Change (R. G. Walker and N. P. James, eds.), Geological Association of Canada, Waterloo, pp. 323–347.Google Scholar
  55. Jansa, L. F., Pratt, B. R., and Dromart, G., 1989, Deep water thrombolite mounds from the Upper Jurassic of offshore Nova Scotia, in: Reefs, Canada and Adjacent Areas (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Can. Soc. Petroleum Geol. Mem. 13:725–735.Google Scholar
  56. Kauffman, E. G., and Scott, R. W., 1976, Basic concepts of community ecology and paleoecology, in: Structure and Classification of Paleocommunities (R. W. Scott and R. R. West, eds.), Dowden, Hutchinson, and Ross, Stroudsburg, pp. 1–28.Google Scholar
  57. Kempe, S., 1990, Alkalinity: The link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77:426–427.Google Scholar
  58. Kempe, S., and Kazmierczak, J., 1993, Satonda Crater Lake, Indonesia: Hydrogeochemsistry and biocarbonates, Facies 29:1–32.Google Scholar
  59. Kempe, S., and Kazmierczak, J., 1994, The role of alkalinity in the evolution of ocean chemistry, organisation of living systems and biocalcification processes, in: Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle (F. Doumenge, ed.), IUCN-COE Workshop, Monaco, 1993, Bull. Inst. Océanogr. Monaco No. Spéc. 13:61–117.Google Scholar
  60. Kempe, S., Kazmierczak, J., Reimer, A., Landmann, G., and Reitner, J., 1996, Microbialites and hydrochemistry of the Crater Lake of Satonda — a status report, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arb. Geol. Paläont. Sb2:59–63.Google Scholar
  61. Keupp, H., Brugger, H., Galling, U., Hefter, J., Herrmann, R., Jenisch, A., Kempe, S., Michaelis, W., Seifert, R., and Thiel, V., 1996, Paleobiological controls of Jurassic spongiolites, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arb. Geol. Paläont. Sb2:209–214.Google Scholar
  62. Koch, R., 1996, Paleogeography, microfacies and diagenesis of Upper Jurassic (Malm) “Reef”-limestones in the Geislingen-Eybtal area (Swabian Alb), in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arb. Geol. Paläont. Sb2:215–220.Google Scholar
  63. Koch, R., Senowbari-Daryan, B., and Strauss, H., 1994, The Late Jurassic “Massenkalk Fazies” of Southern Germany: Calcareous sand piles rather than organic reefs, Facies 31:179–208.Google Scholar
  64. Krautter, M., 1994, Observations on Eudea clavata Lamouroux (Calcarea) from the Upper Jurassic of Portugal, in: Proceedings of the 4th International Porifera Congress “Sponges in Time and Space” Amsterdam 1993 (R. W. M. van Soest, T. M. G. van Kempen, and J. C. Braekman, eds.), Balkema, Amsterdam, pp. 29–34.Google Scholar
  65. Krautter, M., 1995, Kieselschwämme als potentielle Indikatoren für Sedimentationsrate und Nährstoffangebot am Beispiel der Oxford-Schwammkalke von Spanien, Profil 8:281–304.Google Scholar
  66. Krautter, M., 1996, Kieselschwämme aus dem unterjurassischen Misonekalk der Trento-Plattform (Südalpen, Taxonomie und phylogenetische Relevanz, Paläont. Z. 70:301–313.Google Scholar
  67. Krautter, M., 1997, Aspekte zur Paläökologie postpaläozoischer Kieselschwämme, Profil 11:199–324.Google Scholar
  68. Laternser, R., 2000, Oberjurassische Korallenriffe von Nordostfrankreich (Lothringen) und Südwestdeutschland— unpublished dissertation, University of Stuttgart.Google Scholar
  69. Leão, Z. M. A. N., and Ginsburg, R. N., 1997, Living reefs surrounded by siliciclastic sediments: The Abrolhos coastal reefs, Bahia, Brazil, Proc. 8th Int. Coral Reef Sym. 2:1767–1772.Google Scholar
  70. Legarreta, L., 1991, Evolution of a Callovian—Oxfordian carbonate margin in the Neuquén Basin of west-central Argentina: Facies, architecture, depositional sequences and global sea-level changes, Sediment. Geol. 70:209–240.Google Scholar
  71. Leinfelder, R. R., 1986, Facies, stratigraphy and paleogeographic analysis of Upper? Kimmeridgian to Upper Portlandian sediments in the environs of Arruda dos Vinhos, Estremadura, Portugal, Münchn. Geowiss. Abh. A7:l–215.Google Scholar
  72. Leinfelder, R. R., 1992, A modern-type Kimmeridgian reef (Ota Limestone, Portugal, Implications for Jurassic reef models, Facies 26:11–34.Google Scholar
  73. Leinfelder, R. R., 1993a, Upper Jurassic reef types and controlling factors. — A preliminary report, Profil 5:1–45.Google Scholar
  74. Leinfelder, R. R., 1993b, A sequence stratigraphie approach to the Upper Jurassic mixed carbonate— siliciclastic succession of the central Lusitanian Basin, Portugal, Profil 5:119–140.Google Scholar
  75. Leinfelder, R. R., 1994a, Distribution of Jurassic reef types: A mirror of structural and environmental changes during breakup of Pangea, in: Pangea: Global Environments and Resources (B. Beauchamp, A. F. Embry, and D. Glass, eds.), Can. Soc. Petrol. Geol. Mem. 17:677–700.Google Scholar
  76. Leinfelder, R. R., 1994b, Karbonatplattformen und Korallenriffe innerhalb siliziklastischer Sedimentationsbereiche (Oberjura, Lusitanisches Becken, Portugal), Profil 6:1–207.Google Scholar
  77. Leinfelder, R. R., 1997, Coral reefs and carbonate platforms within a siliciclastic setting: General aspects and examples from the Late Jurassic of Portugal: Proc. 8th Int. Coral Reef Sym, Panama City, V.Z., p. 1737–1742, Smithsonian Tropical Research Institute, Balboa, Panama.Google Scholar
  78. Leinfelder, R. R., and Ginsburg, R. N., 1998, Städte unter Wasser—Gibt es so etwas? in: Riffe—Ein faszinierendes Thema für den Schulunterricht. Materialien für die Fächer Biologie, Erdkunde und Geologie (R. R. Leinfelder, U. Kull, and F. Brummer, eds.), Profil 13:105–116.Google Scholar
  79. Leinfelder, R. R., and Keupp, H., 1995, Upper Jurassic mud mounds: Allochthonous sedimentation versus autochthonous carbonate production, in: Mud Mounds: A Polygenetic Spectrum of Fine-grained Carbonate Buildups (J. Reitner and F. Neuweiler, coord.), Facies 32:17–26.Google Scholar
  80. Leinfelder, R. R., and Nose, M., 1999, Increasing complexity—decreasing flexibility. A different perspective of reef evolution through time, Profil 17:135–147.Google Scholar
  81. Leinfelder, R. R., and Nose, M., submitted for publication, Physical and geological controls of Upper Jurassic reef growth, in: Reef Systems in Earth History (E. Flügel and H. Zankl, eds.), Springer, Heidelberg-Berlin.Google Scholar
  82. Leinfelder, R. R., and Schmid, D. U., 2000, Mesozoic reefal thrombolites and other microbolites, in: Microbial Sediments (R. Riding, ed.), Springer, Berlin, pp. 289–294.Google Scholar
  83. Leinfelder, R. R., and Werner, W., 1993, The systematic position and palaeoecology of the alga Marinella lugeoni Pfender, Zitteliana 20:105–122.Google Scholar
  84. Leinfelder, R. R., and Wilson, R. C. L., 1989, Seismic and sedimentologie features of Oxfordian -Kimmeridgian syn-rift sediments on the eastern margin of the Lusitanian Basin, Portugal, Geol. Rundschau 78:81–104.Google Scholar
  85. Leinfelder, R. R., and Wilson, R. C. L., 1998, Third-order sequences in an Upper Jurassic rift-related second-order sequence, central Lusitanian Basin, Portugal, in: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (P.-C. de Graciansky, J. Hardenbol, T. Jacquin, and P. R. Vail, eds.), SEPM Spec. Publ. Vol. 60, pp. 507–525.Google Scholar
  86. Leinfelder, R. R., Krautter, M., Nose, M., Ramalho, M. M., and Werner, W., 1993a, Siliceous sponge facies from the Upper Jurassic of Portugal, N. Jb. Geol. Paläont. Abh. 189:199–254.Google Scholar
  87. Leinfelder, R. R., Nose, M., Schmid, D. U., and Werner, W., 1993b, Microbial crusts of the Late Jurassic: Composition, palaeoecological significance and importance in reef construction, Facies 29:195–230.Google Scholar
  88. Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C, Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H., 1994, The origin of Jurassic reefs: Current research developments and results, Facies 31:1–56.Google Scholar
  89. Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, R., Takacs, M., and Hartmann, D., 1996, Palaeoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arb. Geol. Paläont. Sb2:227–248.Google Scholar
  90. Lévi, C, and Lévi, P., 1988, Nouveaux spongiaire Lithistides bathyaux à affinités crétacées de la Nouvelle Calédonie, Bull. Mus. Nat. d’Histoire Naturelle Paris 10(A2):241–263.Google Scholar
  91. Mackie, G. O., Lawn, I. D., and Pavans de Ceccatty, M., 1983, Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe, 1873), Phil. Trans. Royal Soc. London B Biol. Sci. 301:401–418.Google Scholar
  92. Matheos, S. D., and Morsch, S. M., 1990, Geochemistry and paleoecological aspects of coral-bearing limestones from the Late Jurassic at the southern end of the Sierra de la Vaca Muerta, Neuquén Basin, Argentina, N.Jb. Geol. Paläont. Abh. 181:159–169.Google Scholar
  93. Matyszkiewicz, J., 1996, The significance of Saccocoma-calciturbidites for the analysis of the Polish epicontinental Late Jurassic basin: an example from the southern Cracow-Wielun Upland, Poland), Facies 34:23–40.Google Scholar
  94. Matyszkiewicz, J., 1997, Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan shelf: A comparative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow-Wielun Upland, Polen), Berlin. Geowiss. Abh. (E) 21:1–111.Google Scholar
  95. Mehl, D., 1992, Die Entwicklung der Hexactinellida seit dem Mesozoikum—Paläobiologie, Phylogenie und Evolutionsökologie, Berliner Geowiss. Abh. (E) 2:1–164.Google Scholar
  96. Meyer, R. K. F., and Schmidt-Kaler, H., 1989, Paläogeographischer Atlas des süddeutschen Oberjura (Malm), Geol. Jb. A 115:3–77.Google Scholar
  97. Montaggioni, L. F., and Camoin, G. F., 1993, Stromatolites associated with coralgal communities in the Holocene high-energy reefs, Geology 21:149–152.Google Scholar
  98. Montgomery, S. L., 1993, Cotton Valley Lime of East Texas: New pinnacle reef play in the Late Jurassic, in: Petroleum Frontiers (Petroleum Information Corp.), Vol. 10, pp. 1–55.Google Scholar
  99. Montgomery, S. L., 1996, Cotton Valley Lime pinnacle reef play: Branton Field, AAPG Bull. 80:617–629.Google Scholar
  100. Morsch, S. M., 1989, Scleractinian corals from the Oxfordian La Manga Formation in the Neuquén Basin, Argentina, Mem. Assoc. Australas. Palaeontols. 8:303–306.Google Scholar
  101. Nose, M., 1995, Vergleichende Faziesanalyse und Palökologie korallenreicher Verflachungsabfolgen des iberischen Oberjura, Profil 8:1–237.Google Scholar
  102. Nose, M., submitted for publication, The modern (sub)tropical “reef window,” in: Reef Systems in Earth History (E. Flügel and H. Zankl, eds.), Springer, Heidelberg-Berlin.Google Scholar
  103. Nose, M., and Leinfelder, R., 1997, Upper Jurassic coral communities within siliciclastic settings (Lusitanian Basin, Portugal, Implications for symbiotic and nutrient strategies), Proc. 8th Int. Coral Reef Symp. 2:1755–1760.Google Scholar
  104. Nose, M., and Leinfelder, R. R., submitted for publication, The Upper Jurassic (sub)tropical “reef window,” in: Reef Systems in Earth History (E. Flügel and H. Zankl, eds.), Springer, Heidelberg-Berlin.Google Scholar
  105. Odum, E. P., 1983, Grundlagen der Ökologie, Thieme, Stuttgart.Google Scholar
  106. Palmer, T. J., and Fürsich, F. T., 1981, Ecology of sponge reefs from the middle Jurassic of Normandy, Palaeontology 24:1–23.Google Scholar
  107. Paulsen, S., 1964, Aufbau und Petrographie des Riffkomplexes von Arnegg im höheren Weißen Jura der Schwäbischen Alb (Württemberg), Arbeiten aus dem Institut für Geologie und Paläontologie der Universität Stuttgart, N.F. 42:1–98.Google Scholar
  108. Pisera, A., 1997, Upper Jurassic siliceous sponges from the Swabian Alb: Taxonomy and Paleoecology, Palaeontol. Polonica 57:1–216.Google Scholar
  109. Pittet, B., Strasser, A., and Dupraz, C, 1995, Palaeoecology, palaeoclimatology and cyclostratigraphy of shallow-water carbonate-siliciclastic transitions in the Oxfordian of the Swiss Jura. IAS-16th Regional Meeting of Sedimentology—5ème Congrès Français de Sédimentologie, ASF, Field Trip Guide Book, Publication ASF, Paris 23:225–254.Google Scholar
  110. Ponsot, C. M., and Vail, P. R., 1991, Sequence stratigraphy of the Jurassic: New data from the Paris-London Basin, EUG VI-Congress, Strasbourg, Terra Cognita 28:48.Google Scholar
  111. Pümpin, V. F., 1965, Riffsedimentologische Untersuchungen im Rauracien von St. Ursanne und Umgebung (Zentraler Schweizer Jura), Eclogae geol. Helvetiae 58:799–876.Google Scholar
  112. Ramalho, M., 1988, Sur la découverte de biohermes stromatolithiques à spongiaires siliceux dans le Kimméridgien de l’Algarve (Portugal), Comun. Serv. Geol. Portugal 74:41–55.Google Scholar
  113. Reid, R. E. H., 1968, Bathymetrie distribution of Calcarea and Hexactinellida in the present and the past, Geol. Mag. 105:546–559.Google Scholar
  114. Reiswig, H. M., and Mackie, G. O. 1983, Studies on Hexactinellid Sponges. III. The taxonomic status of Hexactinellida within the Porifera, Phil. Trans. Royal Soc. London B Biol. Sci. 301:419–428.Google Scholar
  115. Reitner, J., 1993, Modem cryptic microbialite/metazoan macies from Lizard Island (Great Barrier Reef, Australia)—Formation and concepts, Facies 29:3–40.Google Scholar
  116. Reitner, J., and Keupp, H., 1991, The fossil record of the haploslerid excavating sponge Aka de Laubenfels, in: Fossil and Recent Sponges (J. Reitner and H. Keupp, eds.), Springer, Berlin, pp. 102–120.Google Scholar
  117. Reitner, J., Wörheide, G., Thiel, V., and Gautret, P., 1996, Reef caves and cryptic habitats of Indo-Pacific reefs—Distribution patterns of coralline sponges and microbialites, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arb. Geol. Paläont. Sb2:91–100.Google Scholar
  118. Renesto, S., and Viohl, G., 1997, A sphenodontid (Reptilia, Diapsida) from the Late Kimmeridgian of Schamhaupten (southern Franconian Alb, Bavaria, Germany), Archaeopteryx 15:27–46.Google Scholar
  119. Rheinheimer, G., 1980, Aquatic Microbiology, 2 ed., Wiley and Sons, New York.Google Scholar
  120. Riegl, B., 1995, Effects of sand deposition on scleractinian and alcyonacean corals, Mar. Biol. 121:517–526.Google Scholar
  121. Rogers, C. S., 1990, Response of coral reefs and reef organisms to sedimentation, Mar. Ecol. Prog. Ser. 62:185–202.Google Scholar
  122. Röper, M., Rothgaenger, M., and Rothgaenger, K., 1996, Die Plattenkalke von Brunn (Landkreis Regensburg). Sensationelle Fossilien aus dem Oberpfälzer Jura, Eichendorf Verlag, Eichendorf.Google Scholar
  123. Rosendahl, S., 1985, Die oberjurassische Korallenfazies von Algarve (Südportugal), Arb. Inst. Geol. Paläont. Univ. Stuttgart N.F. 82:1–125.Google Scholar
  124. Roux, M., Bouchet, P., Bourseau J. P., Gaillard, C., Grandperrin, R., Guille, A. Q., Laurin, B., Monniot, C., Richer de Forges, B., Rio, M., Segonzac, M., Vacelet, J., and Zibrorius, H., 1991, L’étagement du benthos bathyal observe à l’aide de la soucoupe CYANA, in: L’Environements Carbonate Bathyal en Nouvelle—Calédonie (B. Lambert and M. Roux, eds.), Doc. Travaux Inst. Géol. Albert-de-Lapparent 15:151–165.Google Scholar
  125. Sartorio, D., 1989, Reef and open episodes on a carbonate platform margin from Malm to Cenomanian: The Cansiglio example (Southern Alps), Mem. Soc. Geol. Ital. 40:91–97.Google Scholar
  126. Schlichter, D., 1992, A perforated gastrovascular cavity in the symbiotic deep water coral Leptoseris fragilis: A new strategy to optimize heterotrophic nutrition, Helgoländer Wissenschaftliche Meeresuntersuchungen 45:423–443.Google Scholar
  127. Schmid, D. U., 1995, “Tubiphytes” morronensis—Eine fakultativ inkrustierende Foraminifere mit endosymbiontischen Algen, Profil 8:305–317.Google Scholar
  128. Schmid, D. U., 1996, Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura, Profil 9:101–251.Google Scholar
  129. Schmid, D. U., and Jonischkeit, A., 1995, The Upper Jurassic São Romão limestone (Algarve, Portugal, An isolated carbonate ramp, Profil 8:319–337.Google Scholar
  130. Schmid, D. U., and Leinfelder, R. R., 1996, The Jurassic Lithocodium aggregatum-Troglotella incrustons foraminiferal consortium, Palaeontology 39:21–52.Google Scholar
  131. Schuhmacher, H., 1976, Korallenriffe. Verbreitung, Tierwelt, Ökologie, BLV Verlagsgesellschaft, München.Google Scholar
  132. Scotese, C. R., Walsh, D. B., Kraus, J. U., and Bocharova, N. Y., 1993, Plate evolution of Pangea from the Late Paleozoic to the Jurassic. Pangea Conference (Can. Soc. Petrol. Geol.), August 15–19, 1993, Calgary, book of abstracts, p. 274, and PALEOMAP Project, International Lithosphere Program,Google Scholar
  133. Scott, R. W., 1988, Evolution of Late Jurassic and Early Cretaceous reef biotas, Palaios 3:184–193.Google Scholar
  134. Stanley, G. D. Jr., 1988, The history of Early Mesozoic reef communities: A three step process, Palaios 3:170–183.Google Scholar
  135. Stanley, G. D. Jr., 1996, Recovery of reef communities after the Triassic mass extinction, Paleont. Soc. Sp. Publ. 8:370.Google Scholar
  136. Stanley, G. D., Jr., and Beauvais, L., 1994, Corals from an Early Jurassic coral reef in British Columbia: Refuge on an oceanic island reef, Lethaia 27:35–47.Google Scholar
  137. Stanley, G. D., Jr., and McRoberts, C. A., 1993, A coral reef in the Telkwa Range, British Columbia: the Earliest Jurasic example, Can. J. Earth Sci. 30:819–831.Google Scholar
  138. Stanley, G. D., Jr., and Swart, P., 1995, Evolution of the coral—zooxanthellae symbiosis during the Triassic: A geochemical approach, Paleobiology 21:179–199.Google Scholar
  139. Steiger, T., 1981, Kalkturbidite im Oberjura der Nördlichen Kalkalpen (Barmsteinkalke, Salzburg, Österreich), Facies 4:215–348.Google Scholar
  140. Steiger, T., and Jansa, L. F., 1984, Jurassic limestones of the seaward edge of the Mazagan Carbonate Platform, Northwest African continental margin, Morocco, Initial Reports, DSDP 79:449–491.Google Scholar
  141. Steiger, T., and Wurm, D., 1980, Faziesmuster oberjurassischer Plattformkarbonate (Plassenkalke, Steiermark), Facies 2:241–284.Google Scholar
  142. Takacs, M., in prep., Vergleichende Analyse zeitgleicher oberjurassischer Korallen- und Kieselschwammriffe aus dem Schweizer Jura, unpublished dissertation, University of Stuttgart.Google Scholar
  143. Taylor, P. D., and Palmer, T. J., 1994, Submarine caves in a Jurassic reef (La Rochelle, France) and the evolution of cave biotas, Naturwissenschaften 81:357–360.Google Scholar
  144. Trammer, J., 1988, Ecologie history of the Oxfordian sponge assemblage in the Polish Jura Chain, Berliner Geowiss. Abh. A 100:44–45.Google Scholar
  145. Turnšek, D., Buser, S., and Ogorelev, B., 1981, An Upper Jurassic reef complex from Slovenia, Yugoslavia, in: European Fossil Reef Models (D. F. Toomey, ed.), Soc. Econ. Paleont. Mineral. Sp. P. 30:361–369.Google Scholar
  146. Wagenplast, P., 1972, Ökologische Untersuchung der Fauna aus Bank- Und Schwammfazies des Weißen Jura der Schwäbischen Alb, Arb. Inst. Geol. Paläont. Univ. Stuttgart N.F. 67:1–99.Google Scholar
  147. Walker, K. R., and Alberstadt, L. P., 1975, Ecological succession as an aspect of structure in fossil communities, Paleobiology 1:238–257.Google Scholar
  148. Warme, J. E., Burke, R. B., Crevello, P. D., Halliwell-Hazlett, B., and Letsch, D. K., 1988, Evolution of the Jurassic High Atlas Rift, Morocco: Transtension, structural and eustatic controls on carbonate facies: Am. Assoc. Petrol Geol. Mediterranean Basins Conf. Nice, Sept. 1988, Fieldtrip 9, Guidebook.Google Scholar
  149. Werner, W., 1986, Palökologische und biofazielle Analyse des Kimmeridge (Oberjura) von Consolação, Mittelportugal, Zitteliana 13:1–109.Google Scholar
  150. Werner, W., Leinfelder, R. R., Fürsich, F. T., and Krautter, M., 1994, Comparative palaeoecology of marly coralline sponge-bearing reefal associations from the Kimmeridgian (Upper Jurassic) of Portugal and Southwestern Germany, Cour. Forsch. Inst. Senckenb. 172:381–397.Google Scholar
  151. Wiedenmayer, F., 1980, Spicules and sponges in the lower Jurassic of the western Tethys, Sedimenta 8:135–145.Google Scholar
  152. Wilkinson, C. R., and Evans, E., 1989, Sponge distribution across Davies Reef, Great Barrier Reef, relative to location, depth, and water movement, Coral Reefs 8:1–7.Google Scholar
  153. Wilkinson, C. R., and Trott, L. A., 1985, Light as a factor determining the distribution of sponges across the central Great Barrier Reef, Proc. 5th Int. Coral Reef Congr. Tahiti 5:125–130.Google Scholar
  154. Wilson, R. C. L., Hiscott, R. N., Willis, M. G., and Gradstein, F. M., 1989, The Lusitanian Basin of west central Portugal: Mesozoic and Tertiary tectonic, stratigraphy and subsidence history, in: Extensional Tectonics and Stratigraphy of the North Atlantic Margins (A. J. Tankard, and H. Balkwill, eds.), AAPG Mem. 46:341–361.Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  1. 1.Institute for Palaeontology and Historical GeologyUniversity of MünchenMünchenGermany

Personalised recommendations