Advertisement

Triassic Reefs of the Tethys

Chapter
Part of the Topics in Geobiology book series (TGBI, volume 17)

Abstract

The evolution of Triassic reefs started with a long-lasting global crisis of the metazoan reef ecosystem after the Permian—Triassic mass extinction (about 12 Ma), followed by a relatively rapid recovery during the Middle Triassic. Reef systems were differentiated during the Upper Triassic but were severely affected by a global crisis at the Triassic—Jurasic boundary. The present contribution is focused on the biological controls of Triassic reefs, particularly in the Tethyan realm, and on the major changes in reef ecosystems recorded by differences in reef types and reef biota. The term “reef” as used in this chapter refers to bioconstructions characterized by (1) biological control during the formation of the structure (predominantly by sessile benthic organisms), (2) a laterally restricted topographic relief, and (3) (inferred) rigidity of the structure.

Keywords

Middle Triassic Northern Calcareous Microbial Crust Reef Mound Triassic Reef 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balog, S.-J., 1996, Boring thallophytes in some Permian and Triassic reefs: Bathymetry and bioerosion, Göttinger Arbeiten Geol. Paläont. Sonderband 2:305–308.Google Scholar
  2. Baud, A., Cirilli, S., and Marcoux, J., 1997, Biotic response to mass extinction: The lowermost Triassic microbialites, Facies 36:238–242.Google Scholar
  3. Beauvais, L., 1977, Main characters of the Liassic coral fauna from Morocco, Proceedings of the 3rd International Coral Reef Symposium, Miami 2:375–378.Google Scholar
  4. Beauvais, L., 1984, Evolution and diversification of Jurassic Scleractinia, Palaeontogr. Am. 54:219–224.Google Scholar
  5. Benton, M. J., 1986, One than one event in the Late Triassic mass extinction, Nature 321:857–861.Google Scholar
  6. Benton, M. J., 1991, What really happened in the Late Triassic, Hist. Biol. 5:257–278.Google Scholar
  7. Bernecker, M., 1996, Upper Triassic reefs of the Oman Mountains: Data from the South Tethyan margin, Facies 34:41–76.Google Scholar
  8. Bernecker, M., and Weidlich, O., 1994, Attempted reconstruction of Permian and Triassic skeletonization from reefbuilders (Oman, Turkey): Quantitative assessment with digital analysis, Abhandlungen Geol. Bundesanst. Wien. 50:31–56.Google Scholar
  9. Bernecker, M., Weidlich, O., and Flügel, E., 1999, Response of Triassic reef coral communities to sea-level fluctuations, storms and sedimentation: Evidence from a spectacular outcrop (Adnet, Austria), Facies 40:229–280.Google Scholar
  10. Berra, F., and Jadoul, F., 1996, Norian serpulid and microbial bioconstructions: Implications for the platform evolution in the Lombardy Basin (Southern Alps, Italy), Facies 35:143–162.Google Scholar
  11. Bhargava, O. N., and Bassi, U. K., 1985, Upper Triassic coral knoll reefs: Middle Norian, Spiti-Kinnaur, Himachal Himalaya, India, Facies 12:219–242.Google Scholar
  12. Bodzioch, A., 1994, Paleoecology of hexactinellid sponges from the epicontintal Triassic of Poland, in: Sponges in Time and Space (R. W. M. van Soest, T. M. G. van Kempen, and J. C. Braekman, eds.), Balkema, Rotterdam, pp. 35–44.Google Scholar
  13. Boiko, E. V., Belyaeva, G. V., and Zhuravleva, T., 1991, Phanerozoic sphinctozoans from the territory of Russia, Acad. Sci. USSR, Siberian Department, Inst. Geol. Geophys., Acad. Sci. Tajikistan, (in Russian), Dushanbe (Akademiya Nauk), pp. 223.Google Scholar
  14. Brachert, T. C., and Dullo, W. C., 1994, Micrite crusts on Ladinian foreslopes of the Dolomites seen in the light of a modern scenario from the Red Sea, Abhandlungen Geol. Bundesanst. Wien 50:57–68.Google Scholar
  15. Braga, J. C., and Lopez-Lopez, J. R., 1989, Serpulid bioconstructions at the Triassic-Liassic boundary in Southern Spain, Facies 21:1–10.Google Scholar
  16. Brandner, R., Flügel, E., and Senowbari-Daryan, B., 1991, Microfacies of carbonate slope boulders: Indicators of the source area (Middle Triassic: Rifugio Molignon Cliff, Western Dolomites), Facies 25:279–296.Google Scholar
  17. Calvet, F., and Tucker, M., 1995, Mud mounds with reefal caps in the upper Muschelkalk (Triassic), eastern Spain, in: Carbonate Mud mounds. Their Origin and Evolution, Vol. 23 (C. L. V. Monty, D. W. J. Bosence, P. H. Bridges, and B. R. Pratt, eds.), Blackwell Science, Oxford, pp. 311–333.Google Scholar
  18. Ciarapica, G., Cirilli, S., Martini, R., Rettori, R., Zaninetti, L., and Salvini-Bonnard, G., 1990, Carbonate buildups and associated facies in the Monte Facito Formation (Southern Apennines), Boll. Soc. Geol. Ital. 109:151–164.Google Scholar
  19. Climaco, A., Boni, M., Iannace, A., and Zamparelli, V., 1997, Platform margins, microbial/serpulid bioconstructions and slope-to-basin sediments in the Upper Triassic of the “Verbicaro Unit” (Lucania and Calabria, Southern Italy), Facies 36:37–56.Google Scholar
  20. Davies, G. R., Richards, B. C, Beauchamp, B., and Nassichuk, W. W., 1998, Carboniferous and Permian reefs in Canada and adjacent areas, in: Reefs, Canada and Adjacent Areas (H. H. J. Geldsetzer, N. P. James and G. E. Tebbutt, eds.), Mem. Canadian Society Petroleum Geologists, Calgary, pp. 565–574.Google Scholar
  21. Dercourt, R., Ricou, L. E., and Vrielynck, B. (eds.), 1993, Atlas Tethys palaeoenvironment maps. Late Murghabian (266–264 Ma); Late Anisian (237–234 Ma), 9–33, maps, Gauthier-Villars, Paris.Google Scholar
  22. Dickins, J. M., 1993, Climate of the Late Devonian to Triassic, Palaeogeogr. Palaeoclimat. Palaeoecol. 100:89–94.Google Scholar
  23. DuDresnay, R., 1977, Le milieu récifal fossile du Jurassique inférieur (Lias) dans le domaine des Chaines atlasiques du Maroc, Bull Bur. Bech. Gol Min. Mem. 89:296–312.Google Scholar
  24. DuDresnay, R., 1979, Recent data on the geology of the Middle Atlas (Morocco), Lect. Notes Earth Sci. 15:293–320.Google Scholar
  25. Enos, P., Jiayong, W., and Yangji, Y., 1997, Facies distribution and retreat of Middle Triassic platform margin, Guizhou province, south China, Sedimentology 44:563–584.Google Scholar
  26. Erwin, D. H., and Droser, M. L., 1993, “Elvis taxa,” Palaios 8(6): 623–624.Google Scholar
  27. Fabricius, F. H., Friedrichsen, H., and Jacobshagen, V., 1970, Paläotemperaturen und Paläoklima in Obertrias und Lias der Alpen, Geol. Bundschau 59:805–826.Google Scholar
  28. Fagerstrom, J. A., 1987, The Evolution of Beef Communities, Wiley, New York.Google Scholar
  29. Fagerstrom, J. A., and Weidlich, O., 1999, Strengths and weaknesses of the reef guild concept and quantitative data: Application to the Upper Capitan-massive community (Permian), Guadalupe Mountains, New Mexico-Texas, Facies 40:131–156.Google Scholar
  30. Flügel, E., 1981, Paleoecology and facies of Upper Triassic reefs in Northern Calcareous Alps, Soc. Econ. Paleont. Min. Spec. Publ. 30:291–359.Google Scholar
  31. Flügel, E., 1982, Evolution of Triassic reefs: current concepts and problems, Facies 6:297–328.Google Scholar
  32. Flügel, E., 1985, Diversity and environments of Permian and Triassic Dasycladacean algae, in: Paleoalgology (D. F. Toomey and M. H. Nitecki, eds.), Springer, Berlin, pp. 344–351.Google Scholar
  33. Flügel, E., 1994, Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs, Geol Soc. Am. Spec. Paper 288:247–266.Google Scholar
  34. Flügel, E., 2001, Triassic reef patterns, in: Phanerozoic Beef Patterns (E. Flügel, W. Kiessling, and J. Golonka, eds.), Soc. Econ. Paleont. Min. Spec. Publ., Tulsa, OK, pp. 000-000.Google Scholar
  35. Flügel, E., and Bernecker, M., 1996, Upper Triassic reefs of the South Tethyan Margin (Oman), Göttinger Arbeiten Geol. Paläont. Sonderband 2:273–277.Google Scholar
  36. Flügel, E., and Flügel-Kahler, E., 1992, Phanerozoic reef evolution: Basic questions and database, Facies 26:167–278.Google Scholar
  37. Flügel, E., and Senowbari-Daryan, B., 1996, Evolution of Triassic reef biota: State of the art, Göttinger Arbeiten Geol. Paläont. Sonderband 2:285–294.Google Scholar
  38. Flügel, E., and Stanley, G. D., 1984, Reorganization, development and evolution of post-Permian reefs and reef organisms, Palaeontogr. Am. 54:177–186.Google Scholar
  39. Fois, E., 1981, The Sass da Putia carbonate buildup (Western Dolomite): Biofacies succsession and margin development during the Ladinian, Riv. Ital. Paleont. Strat. 87:565–598.Google Scholar
  40. Fois, E., and Gaetani, M., 1984, The recovery of reef-building communities and the role of onidarians in carbonate sequences of the Middle Triassic (Anisian) in the Italian Dolomites, Palaeontogr. Am. 54:191–200.Google Scholar
  41. Gaetani, M., Fois, E., Jadoul, F., and Nicora, A., 1981, Nature and evolution of Middle Triassic buildups in the Dolomites (Italy), Marine Geol. 44:25–57.Google Scholar
  42. Glaub, I., and Schmidt, H., 1994, Traces of endolithic microboring organisms in Triassic and Jurassic bioherms, Kaupia 4:103–112.Google Scholar
  43. Golonka, J., and Ford, D., 2000, Pangean (Late Carboniferous—Middle Jurassic) paleoenvironment and litho facies, Palaeogeogr., Palaeoclimatol, Palaeoecol. 161:1–34.Google Scholar
  44. Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., van Veen, P., Thierry, J., and Huang, Z., 1994, A Mesozoic time scale, J. Geophys. Res. 24:51–74.Google Scholar
  45. Guo, L., and Riding, R., 1992, Microbial micritic carbonates in uppermost Permian reefs, Sichuan Basin, southern China: some similarities with Recent travertines, Sedimentology 39:37–53.Google Scholar
  46. Hallam, A., 1990, The end-Triassic mass extinction event, Geol Soc. Am. Spec. Papers 247:577–583.Google Scholar
  47. Hallam, A., 1991, Why was there a delayed radiation after the end-Paleozoic extinctions? Hist. Biol. 5:257–262.Google Scholar
  48. Hallam, A., and El Shaarawy, Z., 1982, Salinity reduction of the end-Triassic sea from the Alpine region into northwestern Europe, Lethaia 2:169–178.Google Scholar
  49. Hallam, A., and Goodfellow, W. D., 1990, Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine reef ecosystem, Hist. Biol. 4:131–138.Google Scholar
  50. Harris, M. T., 1993, Reef fabric, biotic crusts and syndepositional cements of the Latemar reef margin (Middle Triassic, northern Italy), Sedimentology 40:383–401.Google Scholar
  51. Harris, M. T., 1994a, The foreslope and toe-of-slope facies of the Middle Triassic Latemar buildup (Dolomites, northern Italy), J. Sed. Res. B64:132–145.Google Scholar
  52. Harris, M. T., 1994b, A volume—based approach to reef productivity and submarine erosion rates — A case-study of a Middle Triassic reef margin (Latemar buildup, northern Italy), J. Geol. 102:603–610.Google Scholar
  53. Henrich, R., 1982, Middle Triassic carbonate margin development: Hochstaufen—Zwieselmassif, Northern Calcareous Alps, Germany, Facies 6:85–106.Google Scholar
  54. Hüssner, H., 1993, Rifftypen im Muschelkalk Süddeutschlands, in: Muschelkalk (H. Hagdorn and A. Seilacher, eds.), Schöntaler Symposium der Gesellschaft für Naturkunde in Württemberg, pp. 261–269.Google Scholar
  55. Iannace, A., Radoicic, R., and Zamparelli, V., 1998, A new dasycladalean alga from the Middle Triassic carbonates of southern Calabria (Southern Italy), Facies 39:67–74.Google Scholar
  56. Kawamura, T., and Machiyama, H., 1995, A Late Permian coral reef complex, South Kitakami Terrane, Japan, Sed. Geol. 99:135–150.Google Scholar
  57. Kenter, J. A. M., and Campbell, A. E., 1991, Sedimentation on a Lower Jurassic carbonate platform flank: Geometry, sediment fabric and related depositional structures (Djebel Bou Dahar, High Atlas, Morocco), Sed. Geol. 72:1–34.Google Scholar
  58. Klotz, W., and Lukas, V., 1988, Bioherme im Unteren Muschelkalk (Trias) Südosthessens, Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte 11:661–669.Google Scholar
  59. Kozur, H. W., 1998, Problems for evaluation of the scenario of the Permian—Triassic boundary biotic crisis and of its causes, Geol. Croatica 51:135–162.Google Scholar
  60. Krasnov, E. V., 1997, Early Mesozoic reef-like coral communities development in the Russian Far-East, Bol R. Soc. Esp. Hist. Nat. Sec. Geol. 92:61–64.Google Scholar
  61. Lehrmann, D. J., 1999, Early Triassic calcimicrobial mounds and biostromes of the Nanpanijang basin, south China, Geology 27:359–362.Google Scholar
  62. Lehrmann, D. J., Wei, J., and Enos, P., 1998, Controls on facies architecture of a large Triassic carbonate platform: the great bank of Guizhou, Nanpanjiang Basin, South China, J. Sed. Res. B68:311–326.Google Scholar
  63. Lobitzer, H., Mandl, G. W., Mazzullo, S. J., and Mello, J., 1990, Comparative study of Wetterstein carbonate platforms of eastern Northern Calcareous Alps and West Carpathian Mountains: Preliminary results, in: Thirty Years of Geological Cooperation between Austria and Czechoslovakia (D. Minarikova and H. Lobitzer, eds.), Geologische Bundesanstalt, Wien, pp. 136–158.Google Scholar
  64. Martin, J. M., and Braga, J. C, 1987, Bioconstrucciones del Anisiense—Ladiniense en el Trias Alpujarride, Cuadernos Geol. Iberica 11:421–444.Google Scholar
  65. Mazzullo, S. J., and Lobitzer, H., 1988, Facies and diagenesis of Triassic (Austrian Alps) and Upper Permian (New Mexico-Texas) platform-margin carbonates: A comparison, Am. Assoc. Petrol. Geol. Bull. 72:219.Google Scholar
  66. McRoberts, C. A., and Newton, C. R., 1995, Selective extinction among end-Triassic European bivalves, Geology 23:102–104.Google Scholar
  67. Melnikova, G. K., 1975, Pozdnetriasovie skleraktinii Jugo-Vostochnogo Pamira, Akademiya Nauk Tadzhikistanski, SSR, Institut Geologii (Donit), Donit, Dushanbe, pp. 236.Google Scholar
  68. Melnikova, G., 1994, Triassic corals, their stratigraphie significance and geographic distribution, Courier Forschungsinstitut Senckenberg 172:35–41.Google Scholar
  69. Mojsisovics, M., 1879, Die Dolomit-Riffe von Südtirol und Venetien: Beiträge zur Bildungsgeschichte der Alpen, Hölder, Wien.Google Scholar
  70. Nazarevich, B. P., Nazarevich, I. A., and Boiko, N. I., 1986, Uloviya formirovaniya i osobennosti razmetsennya nizhnetriasovikh iskopaemikh organogennykh postroek vostochnogo Predkavkazya, in: Fanerozoiskie rify i korally SSSR (B. S. Sokolov, ed.), Otdel. Geol. Geofiz. Geochim. i Gornykh Nauk, Moskva, pp. 161–166.Google Scholar
  71. Ott, E., 1967, Segmentierte Kalkschwämme (Sphinctozoa) aus der alpinen Mitteltrias und ihre Bedeutung als Riffbildner im Wettersteinkalk, Bayer. Akad. Wiss. Math.-Naturwiss. Kl. Abh. N.F. 131:1–96.Google Scholar
  72. Ott, E., Pisa, G., and Farabegoli, E., 1980, Celyphia zoldana sp. n., a reef building sphinctozoan sponge in Anisian limestones of the southeastern Dolomites, Riv. Ital. Paleont. Strat. 85:892–942.Google Scholar
  73. Philip, J., Masse, J. P., and Camoin, G., 1996, Tethyan carbonate platforms, in: The Ocean Basins and Margins, Vol. 8 (A. E. M. Nairn, L. E. Ricou, B. Vrielnyck, and J. Dercourt, eds.) Plenum Press, New York, pp. 239–266.Google Scholar
  74. Prinz-Grimm, P., 1995, Triassische Korallen der südlichen Zentral-Anden, Geol. Palaeontol. 29:233–243.Google Scholar
  75. Railsback, L. B., and Anderson, T. F., 1987, Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas, Geology 15:1002–1005.Google Scholar
  76. Reid, R. P., 1986, Discovery of Triassic phylloid algae; Possible links with the Paleozoic, Can. J. Earth Sci. 23:2068–2071.Google Scholar
  77. Reid, R. P., and Ginsburg, R. N., 1986, The role of framework in Upper Triassic patch reefs in the Yukon (Canada), Palaios 1:590–600.Google Scholar
  78. Reitner, J., 1992, “Coralline Spongien.” Der Versuch einer phylogenetisch-taxonomischen Analyse, Berliner Geowiss. Abhandlungen, Reihe E 1:1–352.Google Scholar
  79. Richthofen, F. V., 1860, Geognostische Beschreibung der Umgebung von Predazzo, St.Cassian und der Seiser Alpe in Süd-Tyrol, Perthes, Gotha.Google Scholar
  80. Riding, R., 1993, Shamovella obscura: The correct name for Tubiphytes obscurus (Fossil), Taxon 42:71–73.Google Scholar
  81. Riedel, P., 1990, Riffbiotope im Karn und Nor (Obertrias) der Tethys: Entwicklung, Einschnitte und Diversitätsmuster, Ph.D. Thesis, Riedel-Palaontologisches Institut Universität Erlangen.Google Scholar
  82. Riedel, P., 1991, Korallen in der Trias der Tethy: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen, Mitteilungen Gesellschaft Geol. Bergbaustudenten Österreich 37:97–118.Google Scholar
  83. Riedel, P., and Senowbari-Daryan, B., 1991, Pharetronids in Triassic reefs, in: Fossil and Recent Sponges (J. Reitner and H. Keupp, eds.), Springer, Berlin, pp. 465–476.Google Scholar
  84. Röhl, U., Dumont, T., von Rad, U., Martini, R., and Zaninetti, L., 1991, Upper Triassic Tethyan carbonates off Northwest Australia (Wombat Plateau, ODP Leg 122), Facies 25:211–252.Google Scholar
  85. Roniewicz, E., 1989, Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria, Denkschriften Österr. Akad. Wiss. Math.-Naturw. Klasse 126:1–152.Google Scholar
  86. Roniewicz, E., 1995, Upper Triassic solitary corals from the Gosankamm and other North Alpine regions, Sitzungsberichte der österreichischen Akademie der Wissenschaften, mathematisch-naturwissen schaftliche Klasse, Abteilung I 202:3–41.Google Scholar
  87. Roniewicz, E., and Morycowa, E., 1989, Triassic Scleractinia and the Triassic/Liassic boundary, Mem. Assoc. Australas. Palaeontol. 8:347–354.Google Scholar
  88. Roniewicz, E., and Morycowa, E., 1993, Evolution of the Scleractinia in the light of microstructural data, Cour. Forschungsinstitut Senckenberg 164:233–240.Google Scholar
  89. Roniewicz, E., and Stanley, G. D., 1998, Middle Triassic onidarians from the New Pass Range, Central Nevada, J. Paleontol. 72:246–256.Google Scholar
  90. Sano, H., and Nakashima, K., 1997, Lowermost Triassic (Griesbachian): Microbial bindstone—cementstone facies, southwest Japan, Facies 36:1–24.Google Scholar
  91. Sarti, M., Russo, A., and Bosellini, F. R., 1992, Rhaetian strata, Wombat Plateau: Analysis of fossil communities as a key to paleoenvironmental change, Proc. Ocean Drilling Program Sci. Results 122:181–195.Google Scholar
  92. Satterley, A. K., 1994, Sedimentology of the Upper Triassic reef complex at the Hochkönig Massiv (Northern Calcareous Alps, Austria), Facies 30:119–150.Google Scholar
  93. Schäfer, P., 1979, Fazielle Entwicklung und palökologsche Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (‘Oberrhät’-Riff-Kalke, Salzburg), Facies 1:3–245. Schäfer, P., 1994, Bryozoen der Trias—eine Übersicht, Abhandlungen Geol. Bundesanstalt Wien 50:387–397.Google Scholar
  94. Schäfer, P., and Grant-Mackie, J. A., 1998, Revised systematics and paleobiogeography of some late Triassic colonial invertebrates in the Pacific region, Alchingeria 22:87–122.Google Scholar
  95. Schäfer, P., and Senowbari-Daryan, B., 1981, Facies development and paleoecologic zonation of four Upper Triassic patch-reefs, Northern Calcareous Alps near Salzburg, Austria, Soc. Econ. Paleont. Min. Spec. Publ. 30:241–259.Google Scholar
  96. Schafhauser, M., 1997, Statigraphie und Fazies in der Mitteltrias der Sudkara wanken (Kärten/ Osterreich) des angrenzenden Sudalpins: Ph.D. Thesis Technische Universität Berlin, pp. 161.Google Scholar
  97. Scheuber, M., 1990, Der Spitzkalk von Recoaro (Vicentinische Alpen, Norditalien): Sedimentologie, Paläontologie und Paläogeographie eines mitteltriassischen Sedimentationsraumes, Facies 23:57–96.Google Scholar
  98. Schmidt, H., 1992, Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bythymetrische Interpretation), Frankfurter geowiss. Arbeiten, Serie A 12:1–228.Google Scholar
  99. Schubert, J. K., and Bottjer, D. J., 1995, Aftermath of the Permian—Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA, Palaeogeogr. Palaeoclimat. Palaeoecol. 116:1–39.Google Scholar
  100. Seffinga, G., 1988, Possible evidence of ‘glacial’ conditions during the Julian substage of the Karnian (Upper-Triassic), Proc. Koninklijke of the Nederlandse Akademie van Wetenschappen Ser. B 91:91–100.Google Scholar
  101. Senowbari-Daryan, B., 1984, Mikroproblematika aus den obertriadischen Riffkalken von Sizilien, Münstersche Forschungen Geol. Paläont. 61:1–81.Google Scholar
  102. Senowbari-Daryan, B., 1990, Die systematische Stellung der thalamiden Schwämme und ihre Bedeutung in der Erdgeschichte, Münchner Geowiss. Abhandlungen, Reihe A, Geol. Paläont. 21:1–326.Google Scholar
  103. Senowbari-Daryan, B., 1994, Segmentierte Schwämme (‘Sphinctozoen’) aus der Obertrias (Nor) des Taurus-Gebirges (S-Türkei), Abhandlungen Geol. Bundesanstalt Wien 50:415–446.Google Scholar
  104. Senowbari-Daryan, B., 1996, Upper Triassic reefs and reef communities of Iran, Göttinger Arbeiten Geol. Paläont. Sonderband 2:299–304.Google Scholar
  105. Senowbari-Daryan, B., and Flügel, E., 1993, Triassic reefs and platform carbonates in the Northern Calcareous Alps, in: Facial Development of Algae-Bearing Carbonate Sequences in the Eastern Alps (R. Höfling, E. Moussavian, and W. Piller, eds.), Field Trip Guidebook, International Algal Symposium, Regional Meeting, Institut für Paläontologie und Historische Geologie Universität München, München, pp. A1–A35.Google Scholar
  106. Senowbari-Daryan, B., and Flügel, E., 1996, A “problematic fossil” revealed: Pycnoporidium? eomesozoicum Flügel, 1972 (Late Triassic, Tethys) — Not an enigmatic alga but a strophomenid brachiopod (Gosaukammerellla n.g.), Facies 34:83–100.Google Scholar
  107. Senowbari-Daryan, B., and Hamadani, A., 1999, Thalamid sponges from the Upper Triassic (Norian-Rhaetian) Nayband Formation near Wali-Abad, SE Abadeh, Central Iran, Riv. Ital. Paleontol. Strat. 105:79–100.Google Scholar
  108. Senowbari-Daryan, B., and Link, M., 1998, A new thalamid sponge from the Upper Triassic (Norian) reef limestones of the Antalya region (Turkey), Acta Geol. Hungarica 41/3:343–354.Google Scholar
  109. Senowbari-Daryan, B., and Schäfer, P., 1986, Sphinctozoen (Kalkschwämme) aus den norischen Riffen von Sizilien, Facies 14:235–284.Google Scholar
  110. Senowbari-Daryan, B., and Stanley, G. D., 1998, Neoguadalupia oregonenesis new species: Reappearance of a Permian sponge genus in the Upper Triassic Wallowa Terrane, Oregon, J. Paleontol. 72:221–224.Google Scholar
  111. Senowbari-Daryan, B., and Wurm, D., 1994, Radiocella prima n.g., n.sp., der erste segmentierte Schwamm mit tetracladinem Skelett aus den Dachstein-Riffkalken (Nor) des Gosaukammes (Nördliche Kalkalpen, Österreich), Aghandlungen Geol. Bundesanstalt 50:447–452.Google Scholar
  112. Senowbari-Daryan, B., and Zamparelli, V., 1999, Upper Triassic sponges from Northern Calabria (Southern Italy), Riv. Ital. Paleontol. Strat. 105:145–154.Google Scholar
  113. Senowbari-Daryan, B., Zühlke, R., Bechstdät, T., and Flügel, E., 1993, Anisian (Middle Triassic) buildups of the Northern Dolomites (Italy): The recovery of reef communities after the Permian/Triassic crisis, Facies 28:181–256.Google Scholar
  114. Senowbari-Daryan, B., Seyed-Emani, K., and Aghanabati, A., 1997, Some inozoid sponges from Upper Triassic (Norian-Rhaetian) Nayband Formation of Central Iran, Riv. Ital. Paleontol. Strat. 103:293–322.Google Scholar
  115. Shen, J., Kawamura, T., and Yang, W., 1998, Upper Permian coral reef and colonial rugose corals in northwest Hunan, South China, Facies 39:35–66.Google Scholar
  116. Simms, M. J., and Ruffell, A. H., 1989, Synchroneity of climatic change and extinctions in the late Triassic, Geology 17:265–268.Google Scholar
  117. Simms, M. J., and Ruffell, A. H., 1990, Climatic and biotic change in the late Triassic, J. Geol. Soc. London 147:321–327.Google Scholar
  118. Stanley, G. D., 1979, Paleoecology, structure, and distribution of Triassic coral buildups in Western North America, Univ. Kansas Paleontol. Inst. 65:1–58.Google Scholar
  119. Stanley, G. D., 1981, Early history of scleractinian corals and its geological consequences, Geol. 9:507–511.Google Scholar
  120. Stanley, G. D., 1988, The history of early Mesozoic reef communities: A three-step process, Palaios 3:170–183.Google Scholar
  121. Stanley, G. D., 1994a, Late Paleozoic and early Mesozoic reef-building organisms and paleo—geography: The Tethyan-North American connection, Courier Forschungsinstitut Senckenberg 172:69–75.Google Scholar
  122. Stanley, G. D., 1994b, Paleontology and stratigraphy of Triassic and Jurassic rocks in the Peruvian Andes, Palaeontographica A 233:1–208.Google Scholar
  123. Stanley, G. D., and Beauvais, L., 1994, Corals from an Early Jurassic coral reef in British Columbia—refuge on an oceanic island reef, Lethaia 27:35–47.Google Scholar
  124. Stanley, G. D., and Swart, P. K., 1995, Evolution of the coral—zooxanthellate symbiosis during the Triassic: a geochemical approach, Paleobiology 21:179–199.Google Scholar
  125. Stanley, S. M., and Hardie, L. H., 1998, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by technically forced shifts in seawater chemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol. 144:85–144.Google Scholar
  126. Stanton, R. J., and Flügel, E., 1987, Paleoecology of Upper Triassic reefs in the Northern Calcareous Alps: Reef communities, Facies 16:157–186.Google Scholar
  127. Stanton, R. J., and Flügel, E., 1989, Problems with reef models: The Late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria), Facies 20:1–138.Google Scholar
  128. Turnšek, D., and Buser, S., 1989, The Carnian reef complex on the Pokljuka (NW Yugoslavia), Razprave IV, Razreda SAZU 30:76–105.Google Scholar
  129. Turnšek, D., Buser, S., and Ogorelec, B., 1984, The role of corals in Ladinian—Carnian reef communities of Slovenia, Yugoslavia, Palaeontogr. Am. 54:201–209.Google Scholar
  130. Turnšek, D., Buser, S., and Ogorolec, B., 1987, Upper Carnian reef limestone in clastic beds at Perbla near Tolmin (NW Yugoslavia), Razprave IV Razreda SAZU Ljubljana 27:37–64.Google Scholar
  131. Vogel, K., Bundschuh, M., Glaub, I., Hofmann, K., Radtke, G., and Schmidt, H., 1995, Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry, N. Jb. Geol. Paläont. Abhandlungen 195:49–61.Google Scholar
  132. Vogel, K., Balog, S. J., Bundschuh, M., Gektidis, M., Glaub, J., Krutschinna, J., and Radtke, G., 1999, Bathymetrical studies in fossil reefs, with microendoliths as paleoecological indicators, Profil 16:181–191.Google Scholar
  133. Warme, J. E. (ed.), 1988, Evolution of the Jurassic High Atlas Rift, Morocco: Transtension, structural and eustatic controls on carbonate facies, tectonic inversion, Amer. Ass. Petrol. Geol. Mediterranean Conference Nice Sept., 1988, Fieldtrip 9, Guidebook, Nice, pp. 310.Google Scholar
  134. Weidlich, O., and Fagerstrom, J. A., 1998, Evolution of the Upper Capitan—Massive (Permian) Guadalupe Mountains, New Mexico, Brigham Young Univ. Stud. 43:169–187.Google Scholar
  135. Weidlich, O., Bernecker, M., and Flügel, E., 1993, Combined quantitative analysis and microfacies studies of ancient reefs: An integrated approach to Upper Permian and Upper Triassic reef carbonates (Sultanate of Oman), Facies 28:115–144.Google Scholar
  136. Wendt, J., Wu, X., and Reinhardt, J. W., 1989, Deep-water hexactinellid sponge mounds from the Upper Triassic of Northern Sichuan (China), Palaeogeogr. Palaeoclimatol. Palaeoecol. 76:17–29.Google Scholar
  137. Wilson, J. L., 1975, Carbonate facies in geologic history, Springer, Berlin, pp. 471.Google Scholar
  138. Wu, X., 1989, Carnian (Upper Triassic) sponge mounds of the Northwestern Sichuan Basin, China: Stratigraphy, facies and paleoecology, Facies 21:171–188.Google Scholar
  139. Wurm, D., 1982, Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich), Facies 6:203–296.Google Scholar
  140. Zankl, H., 1969, Die Hohe Göll—Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der nördlichen Kalkalpen, Abh. Senckenberg. Naturforsch. Gesellschaft 519:1–123.Google Scholar
  141. Zorn, H., 1976, Über den Lebensraum fossiler Wirtelalgen in der Trias der Alpen, Naturwissenschaften 63:426–429.Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  1. 1.Institute of PaleontologyUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations