Advertisement

Biologically Induced Carbonate Precipitation in Reefs through Time

Chapter
Part of the Topics in Geobiology book series (TGBI, volume 17)

Abstract

Modern reefs are constructed largely by scleractinian corals and coralline red algae. However, through geological time, reef-building communities have varied in terms of biotic composition, community structure, and the mechanisms of reef construction. Entire groups of organisms that do not build reefs today were prominent reef builders in the past. Most studies of reef history have emphasized the role of skeletal organisms in reef building (Newell, 1972; James, 1983; Fagerstrom, 1987; James and Bourque, 1992; Kauffman and Fagerstrom, 1993), but for most of geological time (i.e., Precambrian time) reefs lacked skeletal organisms altogether (Grotzinger, 1989c), and even Phanerozoic reefs that contained skeletal reef builders typically also contained nonskeletal constructional fabrics (Heckel, 1974; Pratt, 1982a Pratt, 1982b; Webb, 1996). Nonskeletal (nonenzymatic sensu Webb, 1996) constructional reef fabrics result predominantly from biologically induced [sensu Lowenstam, 1981) carbonate precipitation and include microbialites and biologically localized marine cements.

Keywords

Great Barrier Reef Carbonate Platform Carbonate Precipitation Petroleum Geologist Reef Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addadi, L., and Weiner, S., 1989, Stereochemical and structural relations between macromolecules and crystals in biomineralization, in: Biomineralization: Chemical and Biochemical Perspectives (S. Mann, J. Webb, and R. P. J. Williams, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 133–156.Google Scholar
  2. Aitken, J. D., 1989, Giant “algal” reefs, Middle/Upper Proterozoic Little Dal Group (>770, <1200 Ma), Mackenzie Mountains, N.W.T., Canada, in: Reefs, Canada and Adjacent Areas, Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 13–23.Google Scholar
  3. Aitken, J. D., and Narbonne, G. M., 1989, Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, Northwestern Canada, Palaios 4:384–388.CrossRefGoogle Scholar
  4. Atlas, R. M., and Bartha, R., 1993, Microbial Ecology: Fundamentals and Applications, 3rd ed., Benjamin/Cummings Pub. Co., Redwood City, CA.Google Scholar
  5. Awramik, S. M., 1991, Archaean and Proterozoic stromatolites, in: Calcareous Algae and Stromatolites (R. Riding, ed.), Springer-Verlag, Berlin, pp. 289–304.CrossRefGoogle Scholar
  6. Bau, M., and Dulski, P., 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precamb. Res. 79:37–55.CrossRefGoogle Scholar
  7. Becker, R. T., House, M. R., and Kirchgasser, W. T., 1993, Devonian goniatite biostratigraphy and timing of facies movements in the Frasnian of the Canning Basin, Western Australia, in: High Resolution Stratigraphy, Geol. Soc. Lond. Spec. Publ. Vol. 70 (E. A. Hailwood and R. B. Kidd, eds.), The Geological Society of London, Bath, pp. 293–321.Google Scholar
  8. Berner, R. A., 1968, Calcium carbonate concretions formed by the decomposition of organic matter, Science 159:195–197.CrossRefGoogle Scholar
  9. Beukes, N. J., 1987, Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, southern Africa, Sediment. Geol. 54:1–46.CrossRefGoogle Scholar
  10. Borowitzka, M. A., 1989, Carbonate calcification in algae-initiation and control, in: Biomineralization: Chemical and Biochemical Perspectives (S. Mann, J. Webb, and R. J. P. Williams, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 63–94.Google Scholar
  11. Bosellini, F., and Russo, A., 1992, Stratigraphy and facies of an Oligocene fringing reef (Castro Limestone, Salento Peninsula, southern Italy), Facies 26:145–165.CrossRefGoogle Scholar
  12. Bosscher, H., and Schlager, W., 1993, Accumulation rates of carbonate platforms, J. Geol. 101:345–355.CrossRefGoogle Scholar
  13. Bourque, P.-A., 1989, Silurian reefs, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 245–250.Google Scholar
  14. Braga, J. C., Martin, J. M., and Riding, R., 1996, Internal structure of segment reefs: Halimeda algal mounds in the Mediterranean Miocene, Geology 24:35–38.CrossRefGoogle Scholar
  15. Brunton, F. R., Copper, P., and Dixon, O. A., 1997, Silurian reef-building episodes, Proc. 8th Int. Coral Reef Symp., Panama 2:1643–1650.Google Scholar
  16. Bryan, J. R., 1991, A Paleocene coral-algal-sponge reef from southwestern Alabama and the ecology of early Tertiary reefs, Lethaia 24:423–438.CrossRefGoogle Scholar
  17. Buddemeier, R. W., and Fautin, D. G., 1996, Saturation state and the evolution and biogeography of symbiotic calcification, in: Biomineralization 93, 7th International Symposium on Biomineralization, Bull. Inst. Océanogr. Monaco, Num. Spec. 14(4), (D. Allemand and J. P. Cuif, eds.), Musée Océanographique, Monaco, pp. 23–32.Google Scholar
  18. Burne, R. V., and Moore, L. S., 1987, Microbialites: Organosedimentary deposits of benthic microbial communities, Palaios 2:241–254.CrossRefGoogle Scholar
  19. Cahuzac, B., and Chaix, C., 1996, Structural and faunal evolution of Chattian-Miocene reefs and corals in western France and the northeastern Atlantic Ocean, in: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, Concepts in Sedimentology and Paleontology Vol. 5 (E. K. Franseen, M. Esteban, W. C. Ward, and J. M. Rouchy, eds.), SEPM, The Society of Sedimentary Geology, Tulsa, pp. 105–127.CrossRefGoogle Scholar
  20. Camoin, G. F. (ed.), 1999, Microbial mediation in carbonate diagenesis, Sed. Geol. 126:340.CrossRefGoogle Scholar
  21. Camoin, G. F., and Montaggioni, L. F., 1994, High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia), Sedimentology 41:655–676.CrossRefGoogle Scholar
  22. Camoin, G. F., Gautret, P., Montaggioni, L. F., and Cabioch, G., 1999, Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox, Sed. Geol. 126:271–304.CrossRefGoogle Scholar
  23. Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P., 1999, Ca-carbonates precipitation and limestone genesis — The microbiogeologists point of view, Sed. Geol. 126:9–23.CrossRefGoogle Scholar
  24. Copper, P., 1989, Enigmas in Phanerozoic reef development, Mem. Assoc. Australas. Palaeont. 8:371–385.Google Scholar
  25. Copper, P., 1997, Reefs and carbonate productivity: Cambrian through Devonian, Proc. 8th Int. Coral Reef Symp. Panama 2:1623–1630.Google Scholar
  26. Copper, P., and Brunton, F. R., 1991, A global review of Silurian reefs, in: The Murchison Symposium: Proceedings of an International Conference on the Silurian System, Spec. Pap. Palaeont. Vol. 44 (M. G. Basett, P. D. Lane, and D. Edwards, eds.), The Palaeontological Association, London, pp. 225–259.Google Scholar
  27. Davies, G. R., and Nassichuk, W. W., 1989, Upper Carboniferous tubular algal boundstone reefs in the Otto Fiord Formation, Canadian Arctic Archipelago, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society for Petroleum Geologists, Calgary, pp. 649–657.Google Scholar
  28. Decho, A., 1990, Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Annu. Rev. 28:73–154.Google Scholar
  29. Doumenge, F. (ed.), 1994, Past and Present Biomineralization Processes: Consideration about the Carbonate Cycle, Bull. Inst. Oceanogr., Monaco, Num. Spec. 13, Monaco.Google Scholar
  30. Ehrlich, H. L., 1990, Geomicrobiology, 2nd ed., Marcel Dekker, New York.Google Scholar
  31. Esteban, M., 1996, An overview of Miocene reefs from Mediterranean areas: General trends and facies models, in: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, Concepts in Sedimentology and Paleontology Vol. 5 (E. K. Franseen, M. Esteban, W. C. Ward, and J. M. Rouchy, eds.), SEPM, The Society of Sedimentary Geology, Tulsa, pp. 3–53.CrossRefGoogle Scholar
  32. Fagerstrom, J. A., 1987, The Evolution of Reef Communities, Wiley, New York.Google Scholar
  33. Fagerstrom, J. A., 1991, Reef-building guilds and a checklist for determining guild membership, Coral Reefs 10:47–52.CrossRefGoogle Scholar
  34. Fagerstrom, J. A., 1994, The history of Devonian-Carboniferous reef communities: Extinctions, effects, recovery, Facies 30:177–192.CrossRefGoogle Scholar
  35. Fairchild, I. J., 1991, Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues, Precamb. Res. 53:281–299.CrossRefGoogle Scholar
  36. Faure, G., 1986, Principles of Isotope Geology, 2nd ed., Wiley, New York.Google Scholar
  37. Feldmann, M., and McKenzie, J. A., 1997, Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: An analogue for the Palaeozoic? Sedimentology 44:893–914.CrossRefGoogle Scholar
  38. Fischer, A. G., 1982, Long-term climatic oscillations recorded in stratigraphy, in: Climate in Earth History (W. Berger, ed.), Natl. Res. Council Studies in Geophys., Washington, DC, pp. 97–104.Google Scholar
  39. Flügel, E., 1994, Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs, in: Pangea: Paleoclimate, Tectonics, and Sedimentation during Accretion, Zenith, and Breakup of a Supercontinent, Geol. Soc. Am. Spec. Pap. Vol. 288 (G. D. Klein, ed.) Geological Society of America, Boulder, CO, pp. 247–266.Google Scholar
  40. Flügel, E., and Flügel-Kahler, E., 1992, Phanerozoic reef evolution: Basic questions and data base, Facies 26:167–278.CrossRefGoogle Scholar
  41. Franseen, E. K., Esteban, M., Ward, W. C., and Rouchy, J.-M. (eds.), 1996, Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, SEPM, Soc. Sediment. Geol., Concepts in Sedimentology and Paleontology, Vol. 5, Tulsa.Google Scholar
  42. Gebelein, C. D., 1976, The effects of the physical, chemical and biological evolution of the Earth, in: Stromatolites, Developments in Sedimentology, Vol. 20 (M. R. Walter, ed.), Elsevier, Amsterdam, pp. 499–515.CrossRefGoogle Scholar
  43. Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), 1989, Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13, Canadian Society for Petroleum Geologists, Calgary.Google Scholar
  44. George, A. D., and Powell, C. McA., 1997, Paleokarst in an Upper Devonian reef complex of the Canning Basin, Western Australia, J. Sediment. Res. 67:935–944.Google Scholar
  45. George, A. D., Playford, P. E., Powell, C. McA., and Tornatora, P. M., 1997, Lithofacies and sequence development on an Upper Devonian mixed carbonate-siliciclastic fore-reef slope, Canning Basin, Western Australia, Sedimentology. 44:843–867.CrossRefGoogle Scholar
  46. Gili, E., Masse, J.-P., and Skelton, P. W., 1995, Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms, Palaeogeogr. Palaeoclimatol. Palaeoecol. 118:245–267.CrossRefGoogle Scholar
  47. Grotzinger, J. P., 1986, Evolution of Early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada, J. Sediment. Pet. 56:831–847.Google Scholar
  48. Grotzinger, J. P., 1989a, Construction of Early Proterozoic (1.9 Ga) barrier reef complex, Rocknest Platform, Northwest Territories, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem.Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 30–37.Google Scholar
  49. Grotzinger, J. P., 1989b, Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, in: Controls on Carbonate Platform and Basin Development, SEPM Spec. Publ. Vol. 44 (P. D. Crevello, J. L. Wilson, J. F. Sarg, and J. F. Read, eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, pp. 79–106.CrossRefGoogle Scholar
  50. Grotzinger, J. P., 1989c, Introduction to Precambrian reefs, in: Reefs, Canada and Adjacent Areas (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.) Can. Soc. Petrol. Geol. Mem. 13:9–12.Google Scholar
  51. Grotzinger, J. P., 1994, Trends in Precambrian carbonate sediments and their implications for understanding evolution, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 245–258.Google Scholar
  52. Grotzinger, J. P., and Kasting, J. F., 1993, New constraints on Precambrian ocean composition, J. Geol. 101:235–243.CrossRefGoogle Scholar
  53. Grotzinger, J. P., and Knoll, A. H., 1995, Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 10:578–596.CrossRefGoogle Scholar
  54. Grotzinger, J. P., and Rothman, D. H., 1996, An abiotic model for stromatolite morphogenesis, Nature 383:423–425.CrossRefGoogle Scholar
  55. Hallam, A., 1992, Phanerozoic Sea-Level Changes, Columbia University Press, New York.Google Scholar
  56. Heckel, P. H., 1974, Carbonate buildups in the geologic record: A review, in: Reefs in Time and Space, SEPM Spec. Publ. Vol. 18 (L. F. Laporte, ed.), Society of Economic Paleontologists and Mineralogists, Tulsa, pp. 90–154.Google Scholar
  57. Herbig, H. G., and Weber, H. M., 1996, Facies and stromatoporoid biostromes in the Strunian (latest Devonian) of the Aachen region, Germany, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports, Göttinger Arb. Geol. Paläont. Vol. Sb2 (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Geologische Institute, Georg-August-Universität Göttingen, Göttingen, pp. 359–364.Google Scholar
  58. Hoffman, P. F., 1989, Pethei reef complex (1.9 Ga), Great Slave Lake, N. W. T., in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 38–48.Google Scholar
  59. Hoffman, P. E., and Grotzinger, J. P., 1989, Abner/Denault reef complex (2.1 Ga), Labrador Trough, N. E. Quebec, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 49–54.Google Scholar
  60. Höfling, R., Moussavian, E., and Götz, S., 1996, Development of Cretaceous and Paleogene reef communities in the Alpine-Mediterranean Realm — Selected case studies, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports, Göttinger Arb. Geol. Paläont. Vol. Sb2 (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Geologische Institute, Georg-August-Universität Göttingen, Göttingen, pp. 179–183.Google Scholar
  61. Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, NJ.Google Scholar
  62. Horbury, A. D., 1992, A late Dinantian peloid cementstone-palaeoberesellid buildup from North Lancashire, England, Sediment. Geol. 79:117–137.CrossRefGoogle Scholar
  63. Hudson, J. D., and Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time, Trans. R. Soc. Edinb. Earth Sci. 80:185–192.CrossRefGoogle Scholar
  64. Jackson, M. J., 1989, Lower Proterozoic Cowles Lake foredeep reef, N. W. T., Canada, in: Reefs, Canada and Adjacent Areas, Can. Soc. Pet. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 64–71.Google Scholar
  65. James, N. P., 1983, Reef environment, in: Carbonate Depositional Environments, Am. Assoc. Petrol. Geol. Mem. Vol. 33 (P. A. Scholle, D. G. Bebout, and C. H. Moore, eds.), American Association of Petroleum Geologists, Tulsa, pp. 346–440.Google Scholar
  66. James, N. P., and Bourque, P.-A., 1992, Reefs and mounds, in: Facies Models: Response to Sea Level Change (R. G. Walker and N. P. James, eds.), Geol. Assoc. Canada, St. John’s, Newfoundland, pp. 323–347.Google Scholar
  67. Jasionowski, M., 1996, Budowle serpulowo-mikrobialitowe sarmatu na Roztoczu: Niezwykle joint-venture, Przegl. Geol. 44:1044–1048.Google Scholar
  68. Kah, L. C., and Grotzinger, J. P., 1992, Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada, Palaios 7:305–315.CrossRefGoogle Scholar
  69. Kano, A., 1994, Quantitative compositions and reef development of the Silurian limestones of Gotland, Sweden, Cour. Forschungsinst. Senckenb. 172:141–146.Google Scholar
  70. Karhu, J., and Epstein, S., 1986, The implications of the oxygen isotope records in coexisting cherts and phosphorites, Geochim. Cosmochim. Acta 50:1745–1756.CrossRefGoogle Scholar
  71. Kasting, J. F., 1987, Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere, Precamb. Res. 34:205–229.CrossRefGoogle Scholar
  72. Kauffman, E. G., and Fagerstrom, J. A., 1993, The Phanerozoic evolution of reef diversity, in: Species Diversity in Ecological Communities (R. E. Rickfels, and D. Schluter, eds.), University of Chicago Press, Chicago, pp. 315–329.Google Scholar
  73. Kauffman, E. G., and Johnson, C. C., 1988, The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids, Palaios 3:194–216.CrossRefGoogle Scholar
  74. Kauffman, E. G., and Johnson, C. C., 1997, Ecological evolution of Jurassic-Cretaceous Caribbean reefs, Proc. 8th Int. Coral Reef Symp. Panama 2:1669–1676.Google Scholar
  75. Kempe, S., and Degens, E. T., 1985, An early soda ocean? Chem. Geol. 53:95–108.CrossRefGoogle Scholar
  76. Kempe, S., and Kazmierczak, J., 1990, Calcium carbonate supersaturation and the formation of in situ calcified stromatolites, in: Facets of Modern Biogeochemistry (V. Ittekkot, S. Kempe, W. Michaelis, and A. Spitzy, eds.), Springer-Verlag, Berlin, pp. 255–278.CrossRefGoogle Scholar
  77. Kempe, S., and Kazmierczak, J., 1994, The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes, in: Past and Present Biomineralization Processes: Considerations of the Carbonate Cycle, Bull. Inst. Océanogr. Monaco Num. Spec. 13 (F. Doumenge, ed.), Musée Océanographique, Monaco, pp. 61–117.Google Scholar
  78. Kerans, C., and Donaldson, J. A., 1989, Deep-water conical stromatolite reef, Sulky Formation (Dismal Lakes Group), Middle Proterozoic, N.W.T., in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 81–88.Google Scholar
  79. Kerans, C., Hurley, N. F., and Playford, P. E., 1986, Marine diagenesis in Devonian reef complexes of the Canning Basin, Western Australia, in: Reef Diagenesis (J. H. Schroeder and B. H. Perser, eds.), Springer-Verlag, Berlin, pp. 357–380.CrossRefGoogle Scholar
  80. Kershaw, S., 1997, Palaeoenvironmental change in Silurian stromatoporoid reefs, Gotland, Sweden, Bol. R. Soc. Esp. Hist Nat Secc. Geol. 91:329–342.Google Scholar
  81. Kiessling, W., Flügel, E., and Golonka, J., 1999, Paleoreef maps: Evaluation of a comprehensive database on Phanerzoic reefs, Amer. Assoc. Petrol. Geol. Bull. 83:1552–1587.Google Scholar
  82. Kirkland, B. L., Dickson, J. A. D., Wood, R. A., and Land, L. S., 1998, Microbialites and microstratigraphy: The origin of encrustations in the middle and upper Capitan Formation, Guadalupe Mountains, Texas and New Mexico, USA, J. Sediment. Res. 68:956–969.CrossRefGoogle Scholar
  83. Knoll, A. H., Fairchild, I. J., and Swett, K., 1993, Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition, Palaios 8:512–525.CrossRefGoogle Scholar
  84. Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington, E. A., Nelson, H. F., Otto, J. B., and Waite, L. E., 1985, Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data, Chem. Geol. 58:55–81.CrossRefGoogle Scholar
  85. Krumbein, W. E., 1979, Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai), Geomicrobiol. J. 1:139–203.CrossRefGoogle Scholar
  86. Kruse, P. D., Zhuravlev, A. Yu., and James, N. P., 1995, Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform, Palaios 10:291–321.CrossRefGoogle Scholar
  87. Kuznetsov, V. G., 1996, Framework-free reefs: Types, structure, and position in the geological sequence: Communication 1. Problem statement. Cyathiform organism buildups, Lithol. Miner. Resour. 31:493–501.Google Scholar
  88. Leinfelder, R. R., Krautter, M., Laternser, K., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Keifer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H., 1994, The origin of Jurassic reefs: Current research developments and results, Facies 31:1–56.CrossRefGoogle Scholar
  89. Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, K., Takacs, M., and Hartmann, D., 1996, Paleoecology, growth parameters and dynamics of coral, sponge and microbialite reefs from the Late Jurassic, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports, Göttinger Arb. Geol. Paläont. Vol. Sb2 (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Geologische Institute, Georg-August-Universität Göttingen, Göttingen, pp. 227–248.Google Scholar
  90. Lowe, D. R., 1980, Stromatolites 3,400-Myr old from the Archean of Western Australia, Nature 284:441–443.CrossRefGoogle Scholar
  91. Lowenstam, H. A., 1981, Minerals formed by organisms, Science 211:1126–1131.CrossRefGoogle Scholar
  92. Luchinina, V. A., 1985, Algal buildups of the early Paleozoic in the north of the Siberian Platform, Akad. Nauk SSSR Sibirskoye Otdel. Tr. Inst. Geol. Geofiz. 628:45–50.Google Scholar
  93. Lyons, W. B., Long, D. T., Hines, M. E., Gaudete, H. E., and Armstrong, P. B., 1984, Calcification of cyanobacterial mats in Solar Lake, Sinai, Geology 12:623–626.CrossRefGoogle Scholar
  94. Macintyre, I. G., Reid, R. P., and Steneck, R. S., 1996, Growth history of stromatolites in a Holocene fringing reef, Stocking Island, Bahamas, J. Sediment. Res. 66:231–242.Google Scholar
  95. Mackenzie, F. T., and Morse, J. W., 1992, Sedimentary carbonates through Phanerozoic time, Geochim. Cosmochim. Acta 56:3281–3295.CrossRefGoogle Scholar
  96. Mann, S., 1989, Crystallochemical strategies in biomineralization, in: Biomineralization: Chemical and Biochemical Perspectives (S. Mann, J. Webb, and R. P. J. Williams, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 35–62.Google Scholar
  97. Martín, J. M., and Braga, J. C., 1994, Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean, Sediment. Geol. 90:257–268.CrossRefGoogle Scholar
  98. Martín, J. M., Braga, J. G., and Riding, R., 1997, Miocene Halimeda algal-microbial segment reefs in the marginal Mediterranean Sorbas Basin, Spain, Sedimentology 44:441–456.CrossRefGoogle Scholar
  99. Merz, M. U., 1992, The biology of carbonate precipitation by cyanobacteria, Facies 26: 81–101.CrossRefGoogle Scholar
  100. Merz-Preiss, M. U., 1997, Calcifying cyanobacteria and cyanobacterial micrite production: Environmental interpretation, in: Microbial Mediation in Carbonate Diagenesis. International Workshop (I.A.S.-A.S.F.-I.G.C.P. 380), Chichilianne, 22–24 September, 1997—Abstract Book, Publ. Assoc. Sedimentol. Francais 26:45,46.Google Scholar
  101. Merz-Preiss, M. U., and Riding, R., 1999, Cyanobacterial tufa calcification in freshwater streams: Ambient environment, chemical thresholds and biological processes, Sed. Geol. 126:103–124.CrossRefGoogle Scholar
  102. Mitterer, R. M., and Cunningham, R., Jr., 1985, The interaction of natural organic matter with grain surfaces: Implications for calcium carbonate precipitation, in: Carbonate Cements, S.E.P.M Spec. Publ. Vol. 36 (N. Schneidermann and P. M. Harris, eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, pp. 17–31.CrossRefGoogle Scholar
  103. Montaggioni, L. F., and Camoin, G. F., 1993, Stromatolites associated with coralgal communities in Holocene high-energy reefs, Geology 21:149–152.CrossRefGoogle Scholar
  104. Morse, J. W., 1983, The kinetics of calcium carbonate dissolution and precipitation, in: Reviews in Mineralogy, Vol. 11 (R. J. Reeder, ed.), Mineralogical Society of America, Washington, DC, pp. 227–264.Google Scholar
  105. Morse, J. W., and Mackenzie, F. T., 1990, Geochemistry of Sedimentary Carbonates, Elsevier, Amsterdam.Google Scholar
  106. Narbonne, G. M., and James, N. P., 1996, Mesoproterozoic deep-water reefs from Borden Peninsula, Arctic Canada, Sedimentology 43:827–848.CrossRefGoogle Scholar
  107. Neuweiler, F., 1993, Development of Albian microbialites and microbialite reefs at marginal platform areas of the Vasco-Cantabrian Basin (Soba Reef area, Cantabria, N. Spain), Facies 29:231–250.CrossRefGoogle Scholar
  108. Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W., and Reitner, J., 1999, Petrology of lower cretaceous carbonate mud mounds (Albian, N. Spain): Insights into organomineralic deposits of the geological record, Sedimentology 46:837–859.CrossRefGoogle Scholar
  109. Newell, N. D., 1972, The evolution of reefs, Sci. Am. 226:54–65.CrossRefGoogle Scholar
  110. Opdyke, B. N., and Wilkinson, B. H., 1990, Paleolatitude distribution of Phanerozoic marine ooids and cements, Palaeogeogr. Palaeoclim. Palaeoecol. 78:135–148.CrossRefGoogle Scholar
  111. Orme, G. R., Flood, P. G., and Sargent, C. E. G., 1978, Sedimentation trends in the lee of outer (ribbon) reefs, northern region of the Great Barrier Reef province, Phil. Trans. R. Soc. Lond. A 291:85–99.CrossRefGoogle Scholar
  112. Pedley, M., 1996, Miocene reef distributions and their associations in the central Mediterranean region: An overview, in: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, S.E.P.M Soc. Sediment. Geol. Concepts in Sedimentology and Paleontology Vol. 5 (E. K. Franseen, M. Esteban, W. C. Ward, and J.-M. Rouchy, eds.), S.E.P.M., The Society of Sedimentary Geology, Tulsa, pp. 73–87.CrossRefGoogle Scholar
  113. Pentecost, A., and Riding, R., 1986, Calcification in cyanobacteria, in: Biomineralization in Lower Plants and Animals, Syst. Assoc. Spec. Vol. 30 (B. S. C. Leadbeater and R. Riding, eds.), Clarendon Press, Oxford (for the Systematics Association), pp. 73–90.Google Scholar
  114. Pickard, N. A. H., 1996, evidence for microbial influence on the development of Lower Carboniferous buildups, in: Recent Advances in Lower Carboniferous Geology, Geol. Soc. Lond. Spec. Publ. Vol. 107 (P. Strogen, I. D. Somerville, and G. Ll. Jones, eds.), The Geological Society of London, Bath, pp. 65–82.Google Scholar
  115. Pinckney, J. L., and Reid, R. P., 1997, Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas, in: Biosedimentology of Microbial Buildups, IGCP Project No. 380, Proceedings of 2nd Meeting Göttingen/Germany 1996 (F. Neuweiler, J. Reitner, and C. Monty, eds.), Facies 36:204–207.Google Scholar
  116. Pisera, A., 1985, Diagenesis of the Middle Miocene algal-vermetid reefs from Poland: An example of the local late diagenetic continental control, Proc. 5th Int. Coral Reef Symp. Tahiti 3:277–282.Google Scholar
  117. Pisera, A., 1996, Miocene reefs of the Paratethys: A review, in: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, S.E.P.M. Soc. Sediment. Geol. Concepts in Sedimentology and Paleontology Vol. 5 (E. K. Franseen, M. Esteban, W. C. Ward, and J. M. Rouchy, eds.), S.E.P.M., The Society of Sedimentary Geology, Tulsa, pp. 97–194.CrossRefGoogle Scholar
  118. Playford, P. E., 1980, Devonian “Great Barrier Reef” of Canning Basin, Western Australia, Bull. Am. Assoc. Pet Geol. 64:814–840.Google Scholar
  119. Pomar, L., Ward, W. C., and Green, D. G., 1996, Upper Miocene reef complex of the Llucmajor area, Mallorca, Spain, in: Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions, S.E.P.M. Soc. Sediment. Geol. Concepts in Sedimentology and Paleontology Vol. 5 (E. K. Franseen, M. Esteban, W. C. Ward, and J.-M. Rouchy, eds.), S.E.P.M., The Society of Sedimentary Geology, Tulsa, pp. 191–225.CrossRefGoogle Scholar
  120. Pratt, B. R., 1982a, Stromatolite decline — A reconsideration, Geology 10:512–515.CrossRefGoogle Scholar
  121. Pratt, B. R., 1982b, Stromatolitic framework of carbonate mud-mounds, J. Sediment. Pet. 52:1203–1227.Google Scholar
  122. Pratt, B. R., 1995, The origin, biota and evolution of deep-water mud-mounds, in: Carbonate Mud-Mounds: Their Origin and Evolution, Int. Assoc. Sediment. Spec. Publ. Vol. 23 (C. L. V. Monty, D. W. J. Bosence, P. H. Bridges, and B. R. Pratt, eds.), International Association of Sedimentologists, Oxford, pp. 49–123.CrossRefGoogle Scholar
  123. Rasmussen, K. A., Macintyre, I. G., and Prufert, L., 1993, Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize, Geology 21:199–202.CrossRefGoogle Scholar
  124. Raymo, M. E., 1991, Geochemical evidence supporting T. C. Chamberlin’s theory of glaciation, Geology 19:344–347.CrossRefGoogle Scholar
  125. Reid, R. P., Macintyre, I. G., Browne, K. M., Steneck, R. S., and Miller, J., 1995, Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common, Facies 33:1–18.CrossRefGoogle Scholar
  126. Reitner, J., 1993, Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): Formation and concepts, Facies 29:3–40.CrossRefGoogle Scholar
  127. Reitner, J., Gautret, P., Marin, F., and Neuweiler, F., 1995a, Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia), in: Biomineralization 93, 7th International Symposium on Biomineralization, Bull. Inst. Océanogr. Monaco, Num. Spec. 14(2) (D. Allemand and J. P. Cuif, eds.), Musée Océonographique, Monaco, pp. 237–263.Google Scholar
  128. Reitner, J., Neuweiler, F., and Gautret, P., 1995b, Part II, Modern and fossil automicrites: Implications for mud mound genesis, in: Mud Mounds: A Polygenetic Spectrum of Finegrained Carbonate Buildups (J. Reitner, and F. Neuweiler, eds.), Facies 32:4–1.Google Scholar
  129. Ricketts, B. D., and Donaldson, J. A., 1989, Stromatolite reef development on a mud-dominated platform in the Middle Precambrian Belcher Group of Hudson Bay, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 113–119.Google Scholar
  130. Riding, R., 1991, Classification of microbial carbonates, in: Calcareous Algae and Stromatolites (R. Riding, ed.), Springer-Verlag, Berlin, pp. 21–51.CrossRefGoogle Scholar
  131. Riding, R., 1992, Temporal variation in calcification in marine cyanobacteria, J. Geol. Soc. Lond. 149:979–989.CrossRefGoogle Scholar
  132. Riding, R., 1993, Phanerozoic patterns of marine CaCO3 precipitation, Naturwissen 80: 513–516.CrossRefGoogle Scholar
  133. Riding, R., 2000, Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms, Sedimentology 471(Suppl. 1):179–214.CrossRefGoogle Scholar
  134. Riding, R., and Awramik, S. M., 2000, Microbial Sediments, Springer-Verlag, Heidelberg.Google Scholar
  135. Riding, R., and Zhuravlev, A. Yu., 1995, Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia, Geology 23:649–652.CrossRefGoogle Scholar
  136. Riding, R., Martin, J. M., and Braga, J. C., 1991, Coral-stromatolite reef framework, Upper Miocene, Almería, Spain, Sedimentology 38:799–818.CrossRefGoogle Scholar
  137. Roberts, H. H., Phipps, C. V., and Effeudi, L., 1987, Halimeda bioherms of the eastern Java Sea, Indonesia, Geology 15:371–374.CrossRefGoogle Scholar
  138. Robertson, W. G., 1982, The solubility concept, in: Biological Mineralization and Demoralization (G. H. Nancollas, ed.), Springer-Verlag, Berlin, pp. 5–21.CrossRefGoogle Scholar
  139. Rowland, S. M., and Gangloff, R. A., 1988, Structure and paleoecology of Lower Cambrian reefs, Palaios 3:111–135.CrossRefGoogle Scholar
  140. Sami, T. T., and James, N. P., 1996, Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada, J. Sediment. Res. 66:209–222.Google Scholar
  141. Sandberg, P. A., 1983, An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy, Nature 305:19–22.CrossRefGoogle Scholar
  142. Schubert, J. K., and Bottjer, D. J., 1992, Early Triassic stromatolites as post-mass extinction disaster forms, Geology 20:883–886.CrossRefGoogle Scholar
  143. Schumann, D., 1996, Upper Cretaceous rudist reefs of central Oman, in: Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports, Göttinger Arb. Geol. Paläont. Vol. Sb2 (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Geologische Institute, Georg-August-Universität Göttingen, Göttingen, pp. 193–197.Google Scholar
  144. Schumann-Kindel, G., Bergbauer, M., Manz, W., Szewzyk, U., and Reitner, J., 1997, Aerobic and anaerobic microorganisms in modem sponges: A possible relationship to fossilization processes, in: Biosedimentology of Microbial Buildups, IGCP Project No. 380, Proceedings of 2nd meeting Göttingen/Germany 1996 (F. Neuweiler, J. Reitner, and C. Monty, eds.), Facies 36:268–272.Google Scholar
  145. Schuster, F., 1996, Paleocene coral reefs and related facies associations, Kharga Oasis, Western Desert, Egypt, in: Global and Regional Controls on Biogenic Sedimentation. 1. Reef Evolution. Research Reports, Göttinger Arb. Geol. Paläont. Vol. Sb2 (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Geologische Institute, Georg-August-Universität Göttingen, Göttingen, pp. 169–174.Google Scholar
  146. Scott, R. W., and Brenckle, P. L., 1977, Biotic zonation of a Lower Cretaceous coral-algal-rudist reef, Arizona, Proc. 3rd Int. Coral Reef Symp. Miami 2:183–189.Google Scholar
  147. Shen, J., Yu, C., and Bao, H., 1997, A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China, Facies 37:195–210.CrossRefGoogle Scholar
  148. Shinn, E. A., Robin, D., Lidz, B., and Hudson, H., 1983, Influence of deposition and early diagenesis on porosity and chemical compaction in two Paleozoic buildups: Mississippian and Permian age rocks in the Sacramento Mountains, New Mexico, in: Carbonate Buildups: A Core Workshop, S.E.P.M. Core Workshop Vol. 4 (P. M. Harris, ed.), Society of Economic Paleontologists and Mineralogists, Tulsa, pp. 182–223.Google Scholar
  149. Simkiss, K., 1986, The processes of biomineralization in lower plants and animals — An overview, in: Biomineralization in Lower Plants and Animals, Syst. Assoc. Spec. Vol. 30 (B. S. C. Leadbeater and R. Riding, eds.), Clarendon Press, Oxford (for the Systematics Association), pp. 19–38.Google Scholar
  150. Soja, C. M., 1994, Significance of Silurian stromatolite-sphinctozoan reefs, Geology 22:355–358.CrossRefGoogle Scholar
  151. Spencer, A. J., and Hardie, L. A., 1990, Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines, in: Fluid-Mineral Interactions: A Tribute to H. P. Eugster, Geochem. Soc. Publ. Vol. 19 (R. J. Spencer and I. M. Chou, eds.), Geochemical Society, University Park, PA, pp. 409–419.Google Scholar
  152. Stanley, G. D., Jr., 1988, The history of early Mesozoic reef communities: A three-step process, Palaios 3:170–183.CrossRefGoogle Scholar
  153. Stanley, G. D., Jr., 1997, Evolution of reefs of the Mesozoic, Proc. 8th Int. Coral Reef Symp. Panama 2:1657–1662.Google Scholar
  154. Stearn, C. W., Halim-Dihardja, M. K., and Nishida, D. K., 1987, An oil-producing stromatoporoid patch reef in the Famennian (Devonian) Wabamun Group, Normandville Field, Alberta, Palaios 2:560–570.CrossRefGoogle Scholar
  155. Sumner, D. Y., and Bowring, S. A., 1996, U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa, Precamb. Res. 79:25–35.CrossRefGoogle Scholar
  156. Sumner, D. Y., and Grotzinger, J. P., 1996, Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24:119–122.CrossRefGoogle Scholar
  157. Tardy, Y., N’Kounkou, R., and Probst, J. J., 1989, The global water cycle and continental erosion during Phanerozoic time (570 my), Am. J. Sci. 289:455–483.CrossRefGoogle Scholar
  158. Teitz, M. W., and Mountjoy, E. W., 1989, The Late Proterozoic Yellowhead carbonate platform west of Jasper, Alberta, in: Reefs, Canada and Adjacent Areas, Can. Soc. Petrol. Geol. Mem. Vol. 13 (H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 129–134.Google Scholar
  159. Trichet, J., and Défarge, C., 1995, Nonbiologically supported organomineralization, in: Biomineralization 93, 7th International Symposium on Biomineralization, Bull. Inst. Océanogr. Monaco Num. Spec. 14(2):203–236.Google Scholar
  160. Turner, E. C., Narbonne, G. M., and James, N. P., 1993, Neoproterozoic reef microstructure from the Little Dal Group, northwestern Canada, Geology 21:259–262.CrossRefGoogle Scholar
  161. Turner, E. C., James, N. P., and Narbonne, G. M., 1997, Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie Mountains, northwest Canada, J. Sediment. Res. 67:437–450.Google Scholar
  162. Turner, E. C., James, N. P., and Narbonne, G. M., 2000, Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites, Palaios 15:87–111.Google Scholar
  163. Urey, H. C., 1951, The origin and development of the Earth and other terrestrial planets, Geochim. Cosmochim. Acta 1:209–277.CrossRefGoogle Scholar
  164. Veizer, J., 1994, The Archean-Proterozoic transition and its environmental implications, in: Early Life of Earth (S. Bengtson, ed.), Columbia Univ. Press, New York, pp. 208–219.Google Scholar
  165. Walter, M. R., and Heys, G. R., 1985, Links between the rise of the Metazoa and the decline of stromatolites, Precamb. Res. 29:149–174.CrossRefGoogle Scholar
  166. Walter, M. R., Buick, R., and Dunlop, J. S. R., 1980, Stromatolites 3400–3500 Myr old from the North Pole area, Western Australia, Nature 284:443–445.CrossRefGoogle Scholar
  167. Webb, G. E. 1987, Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas, Bull. Geol. Soc. Am. 99:686–698.CrossRefGoogle Scholar
  168. Webb, G. E., 1989 [1991], Late Visean coral-algal bioherms from the Lion Creek Formation of Queensland, Australia, C. R. 11th Int. Congr. Strat. Geol. Carbonif. 3:282–295.Google Scholar
  169. Webb, G. E., 1994, Non-Waulsortian Mississippian bioherms: A comparative analysis, in: Pangea: Global Environments and Resources, Can. Soc. Petrol. Geol. Mem. Vol. 17 (A. F. Embry, B. Beauchamp, and D. J. Glass, eds.), Canadian Society of Petroleum Geologists, Calgary, pp. 701–712.Google Scholar
  170. Webb, G. E., 1996, Was Phanerozoic reef history controlled by the distribution of nonenzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947–971.CrossRefGoogle Scholar
  171. Webb, G. E., 1998, Earliest known Carboniferous shallow-water reefs, Gudman Formation (Tn1b), Queensland, Australia: Implications for Late Devonian reef collapse and recovery, Geology 26:951–954.CrossRefGoogle Scholar
  172. Webb, G. E., 1999, Youngest Early Carboniferous (late Visean) shallow-water patch reefs in eastern Australia (Rockhampton Group, Queensland): Combining quantitative micro- and macroscale data, Facies 41:111–140.CrossRefGoogle Scholar
  173. Webb, G. E., and Jell, J. S., 1997, Cryptic microbialite in subtidal reef framework and intertidal solution cavities in beachrock, Heron Reef, Great Barrier Reef, Australia: Preliminary observations, in: Biosedimentology of Microbial Buildups, IGCP Project No. 380, Proceedings of 2nd Meeting Göttingen/Germany 1996 (F. Neuweiler, J. Reitner, and C. Monty, eds.), Facies 36:219–223.Google Scholar
  174. Webb, G. E., Baker, J. C., and Jell, J. S., 1998, Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia, Geology 26:355–358.CrossRefGoogle Scholar
  175. Webby, B. B., 1984, Ordovician reefs and climate: A review, in: Aspects of the Ordovician System, Vol. 295 (D. L. Bruton, ed.), Palaeont. Contrib. Univ., Oslo, pp. 87–98.Google Scholar
  176. West, R. R., 1988, Temporal changes in Carboniferous reef mound communities, Palaios 3:152–169.CrossRefGoogle Scholar
  177. Westbroek, P., Buddemeier, B., Coleman, M., Kok, D. J., Fautin, D., and Stal, 1994, Strategies for the study of climate forcing by calcification, in: Past and Present Biomineralization Processes: Considerations of the Carbonate Cycle, Bull. Inst. Océanogr. Monaco Num. Spec. 13 (F. Doumenge, ed.), Musée Océanographique, Monaco, pp. 37–60.Google Scholar
  178. Wilkinson, B. H., and Walker, J. C. G., 1989, Phanerozoic cycling of sedimentary carbonates, Am. J. Sci. 289:525–248.CrossRefGoogle Scholar
  179. Wilkinson, B. H., Owen, R. M., and Carroll, A. R., 1985, Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites, J. Sediment. Pet. 55:171–183.Google Scholar
  180. Wollast, R., 1971, Kinetic aspects of the nucleation and growth of calcite from aqueous solutions, in: Carbonate Cements (O. P. Bricker, ed.), Johns Hopkins University Press, Baltimore, pp. 264–273.Google Scholar
  181. Wollast, R., 1994, The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle, in: Past and Present Biomineralization Processes: Considerations about the Carbon Cycle, Bull. Inst. Océanogr., Monaco, Num. Spec. 13 (F. Doumenge, ed.), Musée Océanographique, Monaco, pp. 13–35.Google Scholar
  182. Worsley, T. R., Moore, T. L., Fraticelli, C. M., and Scotese, C. R., 1994, Phanerozoic CO2 levels and global temperatures inferred from changing paleogeography, in: Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent, Geol. Soc. Amer. Spec. Pap. Vol. 288 (G. D. Klein, ed.), Geological Society of America, Boulder, CO, pp. 57–73.Google Scholar
  183. Zankl, H., 1993, The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs — their dependence on light and turbulence, Facies 29:55–59.CrossRefGoogle Scholar
  184. Zhuravlev, A. Yu., 1996, Reef ecosystem recovery after the Early Cambrian extinction, in: Biotic Recovery from Mass Extinction Events, Geol. Soc. Lond. Spec. Publ. Vol. 102 (M. B. Hart, ed.), The Geological Society of London, Bath, pp. 79–96.Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  1. 1.School of Natural Resource SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations