Paleoecology of Cambrian Reef Ecosystems

Part of the Topics in Geobiology book series (TGBI, volume 17)


Modern tropical reefs, together with tropical rain forests, comprise the principal centers of biodiversity. The tropical rain forest, however, is a relatively fresh phenomenon in a geological time sense. Therefore, to estimate ancient biodiversity, we first of all look to fossil reefs. Mutual intergrowths as well as processes of marine lithification and minor diagenetic alternation allow us to study many aspects of interaction between organisms in long-ago vanished ecosystems, which are poorly preserved in other settings. All these turn fossil reefs into highly attractive areas for scientific exploration. Cambrian reefs, which formed between 545 Ma and 490 Ma, are especially interesting among fossil reefs because they retain their history. They recall the blooming and are a testament to the failure of the earliest metazoan reef ecosystem.


Coral Reef Mass Extinction Siberian Platform Lower Cambrian Reef Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. D., and Grotzinger, J. P., 1996, Lateral continuity of facies and parasequences in Middle Cambrian platform carbonates, Carrara Formation, southeastern California, USA, J. Sediment. Res. 66:1079–1090.Google Scholar
  2. Ahr, W. M., 1971, Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of central Texas, J. Sediment. Petrol. 41:205–216.Google Scholar
  3. Aitken, J. D., 1967, Classification and environmental significance of cryptalgal limestones and dolomites with illustrations from the Cambrian and Ordovician of southwestern Alberta, J. Sediment. Petrol. 37:1163–1178.Google Scholar
  4. Aitken, J. D., and Narbonne, G. M., 1989, Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada, Palaios 4:384–388.Google Scholar
  5. Alexander, E. M., and Gravestock, D. I., 1990, Sedimentary facies in the Sellick Hill Formation, Fleurieu Peninsula, South Australia, in: The Evolution of a Late Precambrian-Early Palaeozoic Rift Complex: The Adelaide Geosyncline (J. B. Jago and P. S. Moore, eds.), Geol. Soc. Austral Spec. Publ. 16:269–289.Google Scholar
  6. Astashkin, V. A., 1979, Osnovnye tipy organogennykh postroek v rivovykh sistemakh kembriya severnogo sklona Aldanskogo shchita [Principal types of organogeneous buildups in the Cambrian on the northern slope of the Aldan Shield], in: Geologiya Rifovykh Sistem Kembriya Zapadnoy Yakutii [Geology of the Cambrian Reef Systems in Western Yakutia] (V. E. Savitskiy, ed.), Tr. Sibirsk. Nauch.-Issled. Inst. Geol. Geofiz. Miner. Syr’ya 270:19–30 [in Russian].Google Scholar
  7. Astashkin, V. A., Varlamov, A. I., Gubina, N. K, Ekhanin, A. E., Pereladov, V. S., Romenko, V. I., Sukhov, S. S., Umperovich, N. V., Fedorov, A. B., Fedyanin, A. P., Shishkin, B. B., and Khobnya, E. I., 1984, Geologiya i Perspektivy Neftegazonosnosti Rifovykh Sistem Kembriya Sibirskoy Platformy [Geology and Prospects of Oil-Gas-Bearing of the Cambrian Reef Systems of the Siberian Platform], Nedra, Moscow [in Russian].Google Scholar
  8. Awramik, S. M., 1992, The history and significance of stromatolites, in: Early Organic Evolution: Implications for Mineral and Energy Resources (M. Schidlowski, ed.), Springer-Verlag, Berlin, Heidelberg, pp. 435–449.Google Scholar
  9. Bao, H., Mu, X., and Riding, R., 1991, Middle Cambrian dendrolite biostromes, Jinan, East China, in: 5th International Symposium Fossil Algae, April 1991, Abstracts, Capri, Italy, pp. 7–8.Google Scholar
  10. Barnaby, R. J., and Read, J. F., 1990, Carbonate ramp to rimmed shelf evolution: Lower to Middle Cambrian continental margin, Virginian Appalachians, Geol. Soc. Am. Bull. 102:391–404.Google Scholar
  11. Barskov, I. S., 1984, Paleontological aspects of biomineralization, in: Proceedings 27th International Geology Congress, Moscow (4–14 August 1984), Vol. 2, Palaeontology, VNU Sciences Press, Utrecht, pp. 63–69.Google Scholar
  12. Bechstädt, T., Boni, M., and Fröhler, M., 1994, Facies development in early and middle Cambrian time, in: Sedimentological, Stratigraphical and Ore Deposits Field Guide of the Autochthonous Cambro-Ordovician of Southwestern Sardinia, Pt I (T. Bechstädt and M. Boni, eds.), Mem. Descr. Carta Geol. d’It. 48:47–106.Google Scholar
  13. Berner, R. A., 1994, GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci. 294:56–91.Google Scholar
  14. Blanchon, P., Jones, B., and Kalbfleisch, W., 1997, Anatomy of a fringing reef around Grand Cayman: Storm rubble, not coral framework, J. Sediment. Res. 67:1–16.Google Scholar
  15. Brock, G. A., and Cooper, B. J., 1993, Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay limestones of South Australia, J. Paleont. 67:758–787.Google Scholar
  16. Bruggemann, J. S., 1995, Parrotfish Grazing on Coral Reefs: A Trophic Novelty, Rijksuniversitet Groningen, Utrecht.Google Scholar
  17. Chafetz, H. S., 1973, Morphological evolution of Cambrian algal mounds in response to a change in depositional environment, J. Sediment. Petrol. 43:435–446.Google Scholar
  18. Church, S. B., 1991, A new lower Ordovician species of Calathium, and skeletal structure of western Utah calathids, J. Paleont. 65:602–610.Google Scholar
  19. Clements, F. E., 1916, Plant succession: An analysis of the development of vegetation. Carnegie Inst. Publ. 242:1–512.Google Scholar
  20. Coniglio, M., and James, N. P., 1985, Calcified algae as sediment contributors to early Paleozoic limestones: Evidence from deep-water sediments of the Cow Head Group, western Newfoundland, J. Sediment. Petrol. 55:746–754.Google Scholar
  21. Connell, J. H., 1978, Diversity in tropical rain forests and coral reefs, Science 199:1302–1310.Google Scholar
  22. Cook, H. E., and Taylor, M. E., 1977, Comparison of continental slope and shelf environments in the Upper Cambrian and lowest Ordovician of Nevada, in: Deep-Water Carbonate Environments (H. E. Cook and P. Enas, eds.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 25:51–81.Google Scholar
  23. Copper, P., 1974, Structure and development of early Palaeozoic reefs, in: Proceedings Second International Coral Reef Symposium, Great Barrier Reef Committee, Brisbane, pp. 365–386.Google Scholar
  24. Copper, P., 1988, Ecological succession in Phanerozoic reef ecosystems: Is it real? Palaios 3:136–152.Google Scholar
  25. Copper, P., 1994, Ancient reef ecosystem expansion and collapse, Coral Reefs 13:3–11.Google Scholar
  26. Copper, P., 1997, Reefs and carbonate productivity: Cambrian through Devonian, Proc. 8th Int. Coral Reef Symp. 2:1623–1630.Google Scholar
  27. Courjault-Radé, P., 1988, Analyse sédimentologique de la formation de l’Orbiel (“alternances gréso-calcaires” auct., Cambrien inférieur). Evolution tectono-sédimentaire et climatique (versant sud de la montagne Noire, Massif central, France), Bull. Soc. géol. France 8e Sér. 4:1003–1013.Google Scholar
  28. Courjault-Radé, P., Debrenne, F., and Gandin, A., 1992, Paleogeographic and geodynamic evolution of the Gondwana continental margins during the Cambrian, Terra Nova 4:657–667.Google Scholar
  29. Cowen, R., 1988, The role of algal symbiosis in reefs through time, Palaios 3:221–227.Google Scholar
  30. Debrenne, F., 1959, Récifs, biohermes ou bancs fossilifères d’Archaeocyatha, Bull. Soc. géol. France 7e Sér. 1:393–395.Google Scholar
  31. Debrenne, F., 1975, Formations organogènes du Cambrien inférieur du Maroc, in: Iskopaemye Cnidaria, T. 2 [Fossil Cnidaria, Vol. 2] (B. S. Sokolov, ed.), Tr. Inst Geol. Geofiz. Sibirsk. otd. Akad. Nauk SSSR 202:19–24.Google Scholar
  32. Debrenne, F., and James, N. P., 1981, Reef-associated archaeocyathans from the Lower Cambrian of Labrador and Newfoundland, Palaeontology 24:343–378.Google Scholar
  33. Debrenne, F., and Zhuravlev, A., 1992, Irregular Archaeocyaths, Cahiers de Paléontologie, CNRS Editions, Paris.Google Scholar
  34. Debrenne, F., and Zhuravlev, A., 1994, Archaeocyathan affinity: How deep can we go into the systematic affiliation of an extinct group? in: Sponges in Time and Space: Biology, Chemistry, Paleontology (R. W. M. Van Soest, T. M. G. Van Kempen, and J. C. Braekman, eds.), Balkema, Rotterdam, pp. 3–12.Google Scholar
  35. Debrenne, F., and Zhuravlev, A. Yu., 1996, Archaeocyatha, palaeoecology: A Cambrian sessile fauna, Bol. Soc. Paleont. Ital. Spec. Vol. 3:77–85.Google Scholar
  36. Debrenne, F., and Zhuravlev, A. Yu., 1997, Cambrian food web: A brief review, Géobios, Mém. Spec. 20:181–188.Google Scholar
  37. Debrenne, F., Gandin, A., and Pillola, G. L., 1989a, Biostratigraphy and depositional setting of Punta Manna Member type-section (Nebida Formation, Lower Cambrian, SW Sardinia, Italy), Riv. It. Paleont. Strat. 94:483–514.Google Scholar
  38. Debrenne, F., Gandin, A., and Rowland, S. M., 1989b, Lower Cambrian bioconstructions in northwestern Mexico (Sonora). Depositional setting, paleoecology and systematics of archaeocyaths, Géobios 22:137–195.Google Scholar
  39. Debrenne, F., Gandin, A., and Gangloff, R. A., 1990, Analyse sédimentologique et paléontologie de calcaires organogènes du Cambrien inférieur de Battle Mountain (Nevada, U.S.A.), Ann. Paléont. (Vert.-Invert.) 76:73–119.Google Scholar
  40. Debrenne, F., Gandin, A., and Zhuravlev, A., 1991, Palaeoecological and sedimentological remarks on some Lower Cambrian sediments of the Yangtze platform (China), Bull. Soc. géol. Fr. 162:575–584.Google Scholar
  41. Debrenne, F., Gandin, A., and Debrenne, M., 1993, Calcaires à archéocyathes du Membre de la Vallée de Matoppa (Formation de Nebida), Cambrien inférieur du sud-ouest de la Sardaigne (Italie), Ann. Paléont. (Vert.-Invert.) 79:77–118.Google Scholar
  42. Dronov, A. V., and Fedorov, P. V., 1994, Novye dannye o stroenii i rasprostranenii gekkerovykh gorbov v nizhneordovikskikh karbonatnykh otlozheniyak okrestnostey Sankt-Petersburga [New data on the structure and distribution of Hecker’s humps in the Lower Ordovician carbonate strata of St. Petersburg vicinity], Vestn. St. Petersburg. Univ. Ser. 7: Geol. Geogr. 2:89–93 [in Russian].Google Scholar
  43. Droser, M. L., 1991, Ichnofabric of the Paleozoic Skolithos ichnofacies and the nature and distribution of Skolithos piperock, Palaios 6:316–325.Google Scholar
  44. Drosdova, N. A., 1980, Vodorosli v organogennykh postroykakh nizhnego kembriya Zapadnoy Mongolii [Algae in the Lower Cambrian Organogenous Buildups of Western Mongolia], Tr. Sovm. Sovet.-Mongol. Paleont. Eksp. 10:1–140 [in Russian].Google Scholar
  45. Fagerstrom, J. A., 1987, The Evolution of Reef Communities, John Wiley and Sons, New York.Google Scholar
  46. Farmer, J. D., 1992, Grazing and bioturbation in modern microbial mats, in: The Proterozoic Biosphere: A Multidisciplinary Study (W. J. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, England, pp. 295–297.Google Scholar
  47. Flügel, S. M., 1991, Triassic and Jurassic marine calcareous algae: A critical review, in: Calcareous Algae and Stromatolites (R. Riding, ed.), Springer-Verlag, Berlin, pp. 481–503.Google Scholar
  48. Flügel, S. M., and Senowbari-Daryan, B., 1996, Evolution of Triassic reef biota: State of the art, in: Globale und Regionale Steuerungsfaktoren Biogener Sedimentation. I. Riff-Evolution. DFG-Schwerpunktprogr (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arbeiten Geol. Palont. Sonderband 2:285–294.Google Scholar
  49. Gandin, A., and Debrenne, F., 1984, Lower Cambrian bioconstructions in southwestern Sardinia (Italy), Géobios, Mém. Spec. 8:231–240.Google Scholar
  50. Gangloff, R. A., 1976, Archaeocyatha of eastern California and western Nevada, in: Depositional Environments of Lower Paleozoic Rocks in the White-Inyo Mountains, Inyo County, California, Pacific Coast Paleogeography Field Guide 1 (J. N. Moore and A. E. Fritsche, eds.), Pacific Sec., SEPM, Los Angeles, CA, pp. 19–30.Google Scholar
  51. Garrett, P., 1970, Phanerozoic stromatolites: Noncompetitive ecologie restriction by grazing and burrowing animals, Science 169:171–173.Google Scholar
  52. Geldsetzer, H. H. J., James, N. P., and Tebbutt, E., 1989, Reefs, Canada and adjacent area, Can. Soc. Petrol. Geologists Mem. 13.Google Scholar
  53. Geyer, G., Landing, E., and Heldmaier, W., 1995, Faunas and depositional environments of the Cambrian of the Moroccan Atlas regions, Beringeria Spec. Issue 2:47–119.Google Scholar
  54. Glumac, B., and Walker, K. R., 1997, Selective dolomitization of Cambrian microbial carbonate deposits: A key to mechanisms and environments of origin, Palaios 12:98–110.Google Scholar
  55. Grant, S. W. F., Knoll, A. H., and Germs, G. J. B., 1991, Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: Origin, diagenesis and implications, J. Paleont. 65:1–18.Google Scholar
  56. Grime, J. P., 1979, Plant Strategies and Vegetation Processes, John Wiley and Sons, Chichester.Google Scholar
  57. Grotzinger, J. P., and Knoll, A. H., 1995, Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 10:578–596.Google Scholar
  58. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Science 270:598–604.Google Scholar
  59. Hallock, P., 1988, The role of nutrient availability in bioerosion: Consequences to carbonate buildups, Palaeogeogr. Palaeoclimatol., Palaeoecol. 66:275–291.Google Scholar
  60. Hamdi, B., Rozanov, A. Yu., and Zhuravlev, A. Yu., 1995, Latest Middle Cambrian metazoan reef from northern Iran, Geol. Mag. 132:367–373.Google Scholar
  61. Heckel, P. H., 1974, Carbonate buildups in the geologic record: a review, in: Reefs in Time and Space (L. F. Laporte, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 18:90–154.Google Scholar
  62. Hillmer, G., and Scholz, J., 1996, Structure and dynamics of bryozoan communities and microbial mats, in: Globale und Regionale Steuerungsfaktoren Biogener Sedimentation. I. Riff-Evolution. DFG-Schwerpunktprogr. (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arbeiten Geol. Paläont. Sonderband 2:53–57.Google Scholar
  63. Hoffman, A., and Narkiewicz, M., 1977, Developmental pattern of Lower to Middle Paleozoic banks and reefs, N. Jb. Geol. Paläont. Mh. 5:272–283.Google Scholar
  64. Hyatt, A., 1885, Cruise of Arethusa (Letters to the editor), Science 7:384–386.Google Scholar
  65. Ilan, M., and Loya, Y., 1988, Reproduction and settlement of the coral reef sponge Niphates sp. (Red Sea), Proc. 6th Intern. Coral Reef Symp., Australia 2:745–749.Google Scholar
  66. James, N. P., 1981, Megablocks of calcified algae in the Cow Head Breccia, western Newfoundland: Vestiges of a Cambro-Ordovician platform margin, Geol. Soc. Am. Bull. Pt I 92:799–811.Google Scholar
  67. James, N. P., and Gravestock, D. I., 1990, Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia, Sedimentology 37:455–480.Google Scholar
  68. James, N. P., and Klappa, C. F., 1983, Petrogenesis of Early Cambrian reef limestone, Labrador, Canada, J. Sediment. Petrol. 53:1051–1096.Google Scholar
  69. James, N. P., and Kobluk, D. R., 1978, Lower Cambrian patch reefs and associated sediments: Southern Labrador, Canada, Sedimentology 25:1–35.Google Scholar
  70. Jazmir, M. M., 1960, O prirode nizhnekembriyskikh biogermov poberezh’ya srednego techeniya r. Aldana [On the nature of Lower Cambrian bioherms from the banks of the Aldan River middle courses], Uchenye Zapiski Saratov. Gos. Univ. Vyp. Geol. 74:157–166.Google Scholar
  71. Kennard, J. M., 1991, Lower Cambrian archaeocyathan buildups, Todd River Dolomite, northeast Amadeus Basin, central Australia: Sedimentology and diagenesis, in: Geological and Geophysical Studies in the Amadeus Basin, Central Australia (R. J. Korsch, and J. M. Kennard, eds.), Bull. Bur. Miner. Res. 236:195–225.Google Scholar
  72. Kennard, J. M., and James, N. P., 1986, Thrombolites and stromatolites: Two distinct types of microbial structures, Palaios 1:492–503.Google Scholar
  73. Knoll, A. H., Fairchild, I. J., and Swett, K., 1993, Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition, Palaios 8:512–525.Google Scholar
  74. Kobluk, D. R., 1981, Lower Cambrian cavity-dwelling endolithic (boring) sponges, Can. J. Earth Sci. 18:972–980.Google Scholar
  75. Kobluk, D. R., 1985, Biota preserved within cavities in Cambrian Epiphyton mounds, Upper Shady Dolomite, southwestern Virginia, J. Paleont. 59:1158–1172.Google Scholar
  76. Kobluk, D. R., and James, N. P., 1979, Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador, Lethaia 12:193–218.Google Scholar
  77. Kosmynin, V. N., and Hecker, M. R., 1997, Suktsessii na rifakh [Successions on reefs], in: Rifogennye Postroyki v Paleozoie Rossii [Reefogenous Buildups in the Paleozoic of Russia] (B. S. Sokolov and A. B. Iwanowsky, eds.), Nauka, Moscow, pp. 117–136 [in Russian].Google Scholar
  78. Kruse, P. D., 1991, Cyanobacterial-archaeocyathan-radiocyathanbioherms in the Wirrealpa Limestone of South Australia, Can. J. Earth Sci. 28:601–615.Google Scholar
  79. Kruse, P. D., Zhuravlev, A. Yu., and James, N. P., 1995, Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform, Palaios 10:291–321.Google Scholar
  80. Kruse, P. D., Gandin, A., Debrenne, F., and Wood, R., 1996, Early Cambrian bioconstructions in the Zavkhan Basin of western Mongolia, Geol. Mag. 133:429–444.Google Scholar
  81. Landing, E., 1996, Avalon: Insular continent by the latest Precambrian, Geol. Soc. Am. Spec. Pap. 304:29–63.Google Scholar
  82. Lasemi, Z., and Sandberg, P. A., 1996, Micrites as potential clues to changes in Phanerozoic ocean-atmosphere composition, in: Carbonates and Global Change: An Interdisciplinary Approach, Wildhaus, Switzerland, pp. 90–91.Google Scholar
  83. Loch, J. D., and Taylor, J. F., 1997, Trilobite biofacies associated with microbialitic bioherms from the Upper Cambrian Ore Hill Member of the Gatesburg Formation in south-central Pennsylvania, in: 2nd International Trilobite Conference, Brock University, St. Catharines, Ontario, pp. 34–35.Google Scholar
  84. Lohmann, K. C., 1976, Lower Dresbachian (Upper Cambrian) platform to deep-shelf transition in eastern Nevada and western Utah: An evaluation through lithologic cycle correlation, Brigham Young Univ. Geol. Stud. 23:111–122.Google Scholar
  85. Lowenstam, H. A., 1950, Niagaran reefs of the Great Lakes area, J. Geol. 58:430–487.Google Scholar
  86. Luchinina, V. A., 1985, Vodoroslevye postroyki rannego paleozoya Sibirskoy platformy [Algal buildups of the early Paleozoic of the Siberian Platform], in: Sreda i zhizn’ v Geologicheskom Proshlom: Paleobasseyny i ikh Obitateli [Environment and Life in the Geological Past: Paleobasins and Their Inhabitants] (O. A. Betekhtina, and I. T. Zhuravleva, eds.), Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 628: 45–49 [in Russian].Google Scholar
  87. Markello, J. R., and Read, J. F., 1981, Carbonate ramp-to-deeper shale transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians, Sedimentology 28:573–597.Google Scholar
  88. Mattes, B. W., and Conway Morris, S., 1990, Carbonate/evaporate deposition in the Late Precambrian-Early Cambrian Ara Formation of Southern Oman, in: The Geology and Tectonics of the Oman Region (A. H. F. Robertson, M. P. Searl and A. C. Ries, eds.), Geol. Soc. Spec. Publ. 49:617–636.Google Scholar
  89. Mel’nikov, N. V., Kilina, L. I., Krinin, V. A., and Khomenko, A. V., 1991, Neftegazonosnost’ kembriyskikh rifov Suringdakonskogo svoda [Oil-gas capacity of the Cambrian reefs of the Suringdakon Arch], in: Teoreticheskie i Regional’nye Problemy Geologii Nefti i Gaza [Theoretical and Regional Problems in the Oil and Gas Geology] (V. S. Sukhov and A. E. Kontorovich, eds.), Nauka, Novosibirsk, pp. 180–189 [in Russian].Google Scholar
  90. Monty, C. L. V., 1973, Precambrian background and Phanerozoic history of stromatolitic communities, an overview, Ann. Soc. géol. Belg. 96:585–624.Google Scholar
  91. Moreno-Eiris, E., 1987, Los monticulos arrecifales de Algas y Arqueociatos del Cámbrico Inferior de Sierra Morena. III: Microfacies y diagénesis, Bol. Geol. Minero 98:591–621.Google Scholar
  92. Morgan, N., 1976, The Montenegro bioherms: Their paleoecology, relation to other archaeocyathid bioherms and to Early Cambrian sedimentation in the White and Inyo Mountains, California, in: Depositional Environments of Lower Paleozoic Rocks in the White-Inyo Mountains, Inyo County, California, Pacific Coast Paleogeography Field Guide 1 (J. N. Moore and A. E. Fritsche, eds.), Pacific Sec, SEPM, Los Angeles, CA, pp. 13–17.Google Scholar
  93. Myrow, P. M., 1995, Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems, Palaios 10:58–74.Google Scholar
  94. Newell, N. D., 1972, The evolution of reefs, Sci. Am. 226:54–65.Google Scholar
  95. Nikitin, I. F., Gnilovskaya, M. B., Zhuravleva, I. T., Luchinina, V. A., and Miagkova, E. I., 1974, Anderkenskaya biogermnaya gryada i istoriya ee obrazovaniya [The Anderken Bioherm Belt and the history of its development], in: Sreda i Zhizn’ v Geologicheskom Proshlom: Problemy Paleoekologii [Environment and Life in the Geological Past: Problems of Paleoecology] (O. A. Betekhtina and I. T. Zhuravleva, eds.), Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 169:122–158 [in Russian].Google Scholar
  96. Nitecki, M. H., and Mutvei, H., 1996, Nature and mineralogy of receptaculitid skeleton, Bull. Inst. Océanogr. Monaco No. Spec. 14:287–294.Google Scholar
  97. Pegel, T. V., 1982, Kharakter raspredeleniya trilobitovykh soobshchestv v Diringdinskom rifovom massive (kembriy Yugo-Zapadnogo Prianabar’ya) [The character of distribution of trilobite communities in the Diringde Reef Massif (Cambrian of the Southwestern Prianabar’e)], in: Stratigrafiya i Fatsii Osadochykh Basseynov Sibiri [Stratigraphy and Facies in Sedimentary Basins of Siberia] (V. A. Astashkin, ed.), Sib. Sci.-Res. Inst. Geol., Geophys. Miner. Res., Novosibirsk, pp. 82–89 [in Russian].Google Scholar
  98. Pillola, G. L., 1996, The trilobite Giordanella Bornemann, 1891 from Lower Cambrian of Sardinia, (Italy): A discussion on its morphology and possible mode of life, Bull. Soc. Paleont. Ital. (Spec Vol.) 3:145–158.Google Scholar
  99. Playford, P. E., and Cockbain, A. E., 1989, Devonian reef complexes, Canning Basin, Western Australia: A review, in: Fossil Cnidaria 5 (P. A. Jell and J. W. Pickett, eds.), Mem. Assoc. Austral. Palaeontol. 8:401–412.Google Scholar
  100. Pratt, B. R., 1989, Deep-water Girvanella-Epiphyton reef on a mid-Cambrian continental slope, Rockslide Formation, Mackenzie Mountains, Northwest Territories, in: Reefs, Canada and Adjacent Area (H. H. J. Geldsetzer, N. P. James, and E. Tebbutt, eds.), Can. Soc. Petrol. Geol. Mem. 13:161–164.Google Scholar
  101. Pratt, B. R., 1991, Lower Cambrian reefs of the Mural Formation, southern Canadian Rocky Mountains, in: Geol. Assoc. Canada, Annu. Meeting 16:102.Google Scholar
  102. Pratt, B. R., 1995, The origin, biota and evolution of deep-water mud-mounds, Spec. Publ. Int. Assoc. Sediment. 23:49–123.Google Scholar
  103. Ramenskiy, L. G., 1935, O printsipial’nykh ustanovkakh, osnovnykh ponyatiyakh i terminakh proizvodstvennoy tipologii zemel’, geobotaniki i ekologii [On the principal orientations, main concepts, and terms of the production typology of soils, geobotany, and ecology], Sovet. Botanika 4:25–42 [in Russian].Google Scholar
  104. Read, B. C., 1980, Lower Cambrian archaeocyathid buildups, Pelly Mountains Yukon, Geol. Surv. Can. Pap. 78–18:1–54.Google Scholar
  105. Read, J. F., and Pfeil, R. W., 1983, Fabrics of allochthonous reefal blocks, Shady Dolomite (Lower to Middle Cambrian), Virginia Appalachians, J. Sediment. Petrol. 53:761–778.Google Scholar
  106. Rees, M. N., and Robison, R. A., 1989, Cambrian stratigraphy and paleontology of the central House Range and Drum Mountains, Utah, in: Cambrian and Early Ordovician Stratigraphy and Paleontology of the Basin and Range Province, Western United States, Field Trip Guidebook T125 (M. E. Taylor, ed.), American Geophysical Union, Washington, DC, pp. 59–72.Google Scholar
  107. Rees, M. N., Pratt, B. R., and Rowell, A. J., 1989, Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains, Sedimentology 36:341–361.Google Scholar
  108. Reitner, J., and Neuweiler, F., 1995, Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups, Facies 32:1–70.Google Scholar
  109. Repina, L. N., 1977, Biofatsii trilobitov tarynskogo urovnya nizhnego kembriya Sibiriskoy platformy [Trilobite biofacies of the Lower Cambrian Taryn level on the Siberian Platform], in: Sreda i Zhizn’ v Geologicheskom Proshlom: Fatsii i Organizmy [Environment and Life in the Geological Past: Facies and Organisms] (O. A. Betekhtina and I. T. Zhuravleva, eds.), Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 302:51–74 [in Russian].Google Scholar
  110. Repina, L. N., and Zharkova, T. M. 1974, Ob usloviyakh obitaniya trilobitov v rannekembriyskom basseyne Sibiri [On the environmental conditions of trilobites in the Early Cambrian basin of Siberia], in: Sreda i Zhizn’v Geologicheskom Proshlom: Problemy Paleoekologii [Environment and Life in the Geological Past: Problems of Paleoecology] (O. A. Betekhtina and I. T. Zhuravleva, eds.), Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 84:100–108 [in Russian].Google Scholar
  111. Riding, R., 1991, Classification of microbial carbonates, in: Calcareous Algae and Stromatolites (R. Riding, ed.), Springer-Verlag, New York, pp. 21–51.Google Scholar
  112. Riding, R., 1992, Temporal variation in calcification in marine cyanobacteria, J. Geol. Soc. Lond. 149:979–989.Google Scholar
  113. Riding, R., and Zhuravlev, A. Yu., 1995, Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia, Geology 23:649–652.Google Scholar
  114. Riding, R., Awramik, S. M., Winsborough, B. M., Griffin, K. M., and Dill, R. F., 1991, Bahamian giant stromatolites: Microbial composition of surface mats, Geol. Mag. 128:227–234.Google Scholar
  115. Rosen, B. R., 1981, The tropical high diversity enigma — the corals’-eye view, in: Chance, Change and Challenge. The Evolving Biosphere (P. L. Forey, ed.), British Museum (Nat. Hist.) and Cambridge University Press, London, pp. 103–129.Google Scholar
  116. Rowland, S. M., 1984, Were there framework reefs in the Cambrian? Geology 12:181–183.Google Scholar
  117. Rowland, S. M., and Gangloff, R. A., 1988, Structure and paleoecology of Lower Cambrian reefs, Palaios 3:111–135.Google Scholar
  118. Rowland, S. M., and Savarese, M., 1988, The hypothesis of algal symbiosis in Archaeocyatha, Geol. Soc. Am. 20:226.Google Scholar
  119. Rozanov, A. Yu., 1979, Nekotorye problemy izucheniya drevneyshikh skeletnykh organizmov [Some problems in study of ancient skeletal organisms], Byull. Mosk. Obshch. Ispyt. Prir. Otd. Geol. 54(3):62–69 [in Russian].Google Scholar
  120. Rozanov, A. Yu., and Sayutina, T. A., 1982, Microstructures of certain algae, archaeocyathids and cribricyathids, Proc. III N. Am. Paleont. Convent. 2:453–455.Google Scholar
  121. Runnegar, B., Pojeta, J., Jr., Taylor, M. E., and Collins, D., 1979, New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: Evidence for the early history of polyplacophoran mollusks, J. Paleont. 53:1374–1394.Google Scholar
  122. Sandberg, P. A., 1983, An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy, Nature 305:19–22.Google Scholar
  123. Savarese, M., 1995, Functional significance of regular archaeocyathan central cavity diameter: A biomechanical and paleoecological test, Paleobiology 21:356–378.Google Scholar
  124. Savarese, M., Mount, J. F., Sorauf, J. E., and Bucklin, L., 1993, Paleobiologic and paleoenvironmental context of coral-bearing Early Cambrian reefs: Implications for Phanerozoic reef development, Geology 21:917–920.Google Scholar
  125. Schmitt, M., and Monninger, W., 1977, Stromatolites and thrombolites in Precambrian/Cambrian boundary beds of the Anti-Atlas, Morocco: Preliminary results, in: Fossil Algae (E. Flügel, ed.), Springer-Verlag, Berlin, pp. 80–85.Google Scholar
  126. Schubert, J. K., and Bottjer, D. J., 1992, Early Triassic stromatolites as post-mass extinction disaster forms, Geology 20:883–886.Google Scholar
  127. Scrutton, C. T., 1997, The Palaeozoic corals, I: origins and relationships, Proc. Yorkshire Geol. Soc. 51:177–208.Google Scholar
  128. Semikhatov, M. A., Komar, Vl. A., and Serebryakov, S. N., 1970, Yudomskiy kompleks stratotipicheskoy mestnosti [The Yudoma Complex of the Stratotype Area], Tr. Geol. Inst. Akad. Nauk SSSR 210:1–207 [in Russian].Google Scholar
  129. Shabanov, Yu. Ya., Astashkin, V. A., Pegel, T. V., Egorova, L. I., Zhuravleva, I. T., Pelman, Yu. L., Sundukov, V. M., Stepanova, M. V., Sukhov, S. S., Fedorov, A. B., Shishkin, B. B., Vaganova, N. V., Ermak, V. I., Ryabukha, K. V., Yadrenkina, A. G., Abaimova, G. P., Lopushinskaya, T. V., Sychev, O. V., and Moskalenko, T. A., 1987, Nizhniy Paleozoy Yugo-Zapadnogo Sklona Anabarskoy Anteklizy (po materialam bureniya) [The Lower Paleozoic of the Southwestern Slope of the Anabar Anteclise (According to Borehole Data], Nauka, Novosibirsk [in Russian].Google Scholar
  130. Shishkin, B. B., Pegel, T. V., and Fedorov, A. B., 1978, Stroenie sredne-verkhnekembriyskogo rifogenno-akkumulyativnogo kompleksa yugo-zapadnogo Prianabar’ya [The structure of the Middle-Upper Cambrian reef-accumulative complex in the southwestern Prianabar’e], in: Aktual’Nye Voprosy Regional’Noy Geologii Sibiri [Actual Problems of the Regional Geology of Siberia] (V. I. Krasnov, ed.), Tr. Sibirsk. Nauch.-Issled. Inst. Geol. Geofiz. Miner. Syr’ya 258: 34–44 [in Russian].Google Scholar
  131. Shunula, J. P., and Ndibalema, V., 1986, Grazing preferences of Diadema setosum and Heliocidaris erythrogramma (echinoderms) on an assortment of marine algae, Aquatic Botany 25:91–95.Google Scholar
  132. Spencer, L. M., 1981, Paleoecology of a Lower Cambrian archaeocyathid interreef fauna from southern Labrador, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), U.S. Geol. Surv. Open-File Rep. 81-743:215–218.Google Scholar
  133. Spincer, B. R., 1996, The palaeoecology of some Upper Cambrian microbial-sponge-eocrinoid reefs, central Texas, Paleont. Soc. Spec. Publ. 18:367.Google Scholar
  134. Stanley, G. D., Jr., and Swart, P. K., 1995, Evolution of coral-zooxanthellae symbiosis during the Triassic: A geochemical approach, Paleobiology 21:179–199.Google Scholar
  135. Stenek, R. S., 1986, The ecology of coralline algal crust: Convergent pattern and adaptive strategies, Annu. Rev. Ecol. Syst. 17:273–303.Google Scholar
  136. Stepanova, M. V., 1986, Zavisimost’ sistematicheskogo sostava vodoroslevykh soobshchestv na primere nizhnego kembriya stratotipicheskogo razreza Sibirskoy platformy [Dependence of the taxonomic composition of algal communities on facies environments on the example of the Lower Cambrian stratotype section of the Siberian Platform], in: Paleoekologicheskiy i Litologo-Fatsial’nyy Analizy Dlya Obosnovaniya Detal’Nosti Stratigraficheskikh Shkal [Paleoecological and Lithological-Facies Analyses for the Grounds of Scrutiny of the Stratigraphic Charts] (V. D. Krasnov, ed.), Sibirsk. Sci.-Res. Inst. Geol., Geophys. Miner. Res., Novosibirsk, pp. 22–30 [in Russian].Google Scholar
  137. Stinchcomb, B. L., 1975, Paleoecology of two new species of Late Cambrian Hypseloconus (Monoplacophora) from Missouri, J. Paleont. 49:416–421.Google Scholar
  138. Stitt, J. H., 1976, Functional morphology and life habits of the Late Cambrian trilobite Stenopilus pronus Raymond, J. Paleont. 50:561–576.Google Scholar
  139. Sukhov, S. S., and Pegel, T. V., 1986, Lito-i biofatsial’nyy analiz srednekembriyskikh otlozheniy vostoka Sibirskoy platformy dlya rekonstruktsii usloviy karbonatonakopleniya [Lithological and biofacies analysis of the Middle Cambrian strata on the East of the Siberian Platform for the carbonate deposition environment reconstruction], in: Paleoekologicheskiy i Litologo-Fatsial’nyy Analizy Dlya Obosnovaniya Detal’Nosti Stratigraficheskikh Shkal [Paleoecological and Lithological-Facies Analyses for the Grounds of Scrutiny of the Stratigraphie Charts] (V. D. Krasnov, ed.), Sibirsk. Sci.-Res. Inst. Geol., Geophys. Miner. Res., Novosibirsk, pp. 35–50 [in Russian].Google Scholar
  140. Surge, D. M., Savarese, M., Dodd, J. R., and Lohmann, K. C., 1997, Carbon isotopic evidence for photosynthesis in Early Cambrian oceans, Geology 25:503–506.Google Scholar
  141. Sychev, O. V., 1986, Paleogeografiya rannego ordovika Sibirskoy platformy [Early Ordovician paleogeography of the Siberian Platform], in: Paleoekologicheskiy i Litologo-Fatsial’nyy Analizy Dlya Obosnovaniya Detal’nosti Stratigraficheskikh Shkal [Paleoecological and Lithological-Facies Analyses for the Grounds of Scrutiny of the Stratigraphie Charts] (V. D. Krasnov, ed.), Sibirsk. Sci.-Res. Inst. Geol., Geophys. Miner. Res., Novosibirsk, pp. 50–58 [in Russian].Google Scholar
  142. Talent, J. A., 1988, Organic reef-building: episodes of extinction and symbiosis? Senkenberg, Lethaia 69:315–368.Google Scholar
  143. Thayer, C. W., 1983, Sediment-mediated biological disturbance and the evolution of marine benthos, in: Biotic Interactions in Recent and Fossil Benthic Communities (M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York, pp. 479–625.Google Scholar
  144. Toomey, D. F., and Nitecki, M. H., 1979, Organic buildups in the Lower Ordovician (Canadian) of Texas and Oklahoma, Fieldiana New Ser. 2:1–181.Google Scholar
  145. Tucker, R. D., and McKerrow, W. S., 1995, Early Paleozoic chronology: A review in light of new U-Pb zircon ages from Newfoundland and Britain, Can. J. Earth Sci. 32:368–379.Google Scholar
  146. Turner, E. C., James, N. P., and Narbonne, G. M., 1997, Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie Mountains, northwest Canada, J. Sediment. Petrol. 67:437–450.Google Scholar
  147. Usychenko, O. N., 1988, Biofatsial’naya zonal’nost’ v nizhnem kembrii Nepsko-Botuobinskoy anteklizy [Biofacies zonation in the Lower Cambrian of the Nepa-Botuoba Anteclise], in: Izvestkovye Vodorosli i Stromatolity (sistematika, biostratigrafiya, fatsial’nyy analiz) [Calcareous Algae and Stromatolites (Systematics, Biostratigraphy, Facies Analysis)] (V. N. Dubatolov and T. A. Moskalenko, eds.), Nauka, Novosibirsk, pp. 85–93 [in Russian].Google Scholar
  148. Van Treeck, P., Schuhmacher, H., and Paster, M., 1996, Grazing and bioerosion by herbivorous fishes — key processes structuring coral reef communities, in: Globale und Regionale Steuerungsfaktoren Biogener Sedimentation. I. Riff-Evolution. DFG-Schwerpunktprogr. (J. Reitner, F. Neuweiler, and F. Gunkel, eds.), Göttinger Arbeiten Geol. Paläont. Sonderband 2:133–137.Google Scholar
  149. Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, NJ.Google Scholar
  150. Walker, K. R., and Alberstadt, L. P., 1975, Ecological succession as an aspect of structure in fossil communities, Paleobiology 1:238–257.Google Scholar
  151. Waters, B. B., 1989, Upper Cambrian Renalcis-Girvanella framestone mounds, Alberta, in: Reefs, Canada and Adjacent Area (H. H. J. Geldsetzer, N. P. James, and E. Tebbutt, eds.), Can. Soc. Petrol. Geologists Mem. 13:165–169.Google Scholar
  152. Webby, B. D., 1999, Early to earliest Late Ordovician reef development, in: Quo vadis Ordovician? Short Papers of the 8th International Symposium on the Ordovician System (Prague, June 20–25, 1999) (P. Kraft, and O. Fatka, eds.), Acta Univ. Carolinae, Geol. 43:425–428.Google Scholar
  153. Westrop, S. R., 1989, Facies anatomy of an Upper Cambrian grand cycle: Bison Creek and Mistaya formations, southern Alberta, Can. J. Earth Sci. 26:2292–2304.Google Scholar
  154. Westrop, S. R., 1996, Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America, Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:33–46.Google Scholar
  155. Wickstrom, C. E., and Castenholz, R. W., 1985, Dynamics of cyanobacteria-ostracod interactions in an Oregon hot spring, Ecology 66:1024–1041.Google Scholar
  156. Wilkinson, C. R., and Cheshire, A. C., 1989, Patterns in the distribution of sponge populations across the central Great Barrier Reef, Coral Reefs 8:127–134.Google Scholar
  157. Wilson, M. A., Palmer, T. J., Guensburg, T. E., Finton, C. D., and Kaufman, L. E., 1992, The development of and Early Ordovician hardground community in response to rapid sea-floor calcite precipitation, Lethaia 25:19–34.Google Scholar
  158. Wood, R., 1993, Nutrients, predation and the history of reef-building, Palaios 8:526–543.Google Scholar
  159. Wood, R., 1999, Reef Evolution, Oxford University Press, Oxford, England.Google Scholar
  160. Wood, R., Zhuravlev, A. Yu., and Debrenne, F., 1992, Functional biology and ecology of Archaeocyatha, Palaios 7:131–156.Google Scholar
  161. Wood, R., Zhuravlev, A. Yu., and Chimed Tseren, A., 1993, The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: Implications for early metazoan reef evolution, Sedimentology 40:829–858.Google Scholar
  162. Wray, J. L., and Playford, P. E., 1970, Some occurrences of Devonian reef-building algae in Alberta, Can. Soc. Petrol. Geol. Bull. 18:544–555.Google Scholar
  163. Yochelson, E. L., and Stinchcomb, B. L., 1987, Recognition of Macluritella (Gastropoda) from the Upper Cambrian of Missouri and Nevada, J. Paleont. 61:56–61.Google Scholar
  164. Zadorozhnaya, N. M., 1974, Rannekembriyskie organogenny postroyki vostochnoy chasti Altae-Sayanskoy skladchatoy oblasti [Early Cambrian organogenous buildups of the eastern part of the Altay Sayan Foldbelt], Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 84:158–186 [in Russian].Google Scholar
  165. Zadorozhnaya, N. M., Osadchaja, D. V., Zhuravleva, I. T., and Luchinina, V. A., 1973, Rannekembriyskie organogenny postroyki territorii Tuvy (Sayano-Altayskaya skladchataya ob last’) [Early Cambrian organogenous buildups on the territory of Tuva (Sayan-Altay Foldbelt)], in: Sreda i Zhizn’ v Geologicheskom Proshlom: Problemy Paleoekologii [Environment and Life in the Geological Past: Problems of Paleoecology] (O. A. Betekhtina and I. T. Zhuravleva, eds.), Tr. Inst. Geol. Geofiz. Sibirsk. Otd. Akad. Nauk SSSR 169:53–65 [in Russian].Google Scholar
  166. Zamarreño, I., 1977, Early Cambrian algal carbonates in southern Spain, in: Fossil Algae (E. Flügel, ed.), Springer-Verlag, Berlin, pp. 360–365.Google Scholar
  167. Zherikhin, V. V., 1997, Phylogenesis and phylocoenogenesis, in: Evolution of the Biosphere (A. Yu. Rozanov, P. Vickers-Rich, and C. Tassell, eds.), Rec. Queen Victoria Mus. Art Gallery, Launceston 104:57–63.Google Scholar
  168. Zhuravlev, A. Yu., 1993, A functional-morphological approach to the biology of the Archaeocyatha, N. Jb. Geol. Paläont. Abh. 190:315–327.Google Scholar
  169. Zhuravlev, A. Yu., 1995, Preliminary suggestions on the global Early Cambrian zonation, Beringeria Spec. Issue 2:147–160.Google Scholar
  170. Zhuravlev, A. Yu., 1996, Reef ecosystem recovery after the Early Cambrian extinction, in: Biotic Recovery from Mass Extinction Events (M. B. Hart, ed.), Geol. Soc. Spec. Publ. 102:79–96.Google Scholar
  171. Zhuravlev, A. Yu., 1999, Modul’nost’ i stanovlenie kembriyskoy rifovoy ekosistemy [The modularity and development of Cambrian reef ecosystem], Zh. Obshch. Biol. 60:29–40 [in Russian].Google Scholar
  172. Zhuravlev, A. Yu., Biotic diversity and structure during the Neoproterozoic/Ordovician transition, in: Ecology of the Cambrian Radiation (A. Yu. Zhuravlev and R. Riding, eds.), Columbia University Press, New York, pp. 173–199.Google Scholar
  173. Zhuravlev, A. Yu., and Gravestock, D. I., 1994, Archaeocyaths from Yorke Peninsula, South Australia and archaeocyathan Early Cambrian zonation, Alcheringa 18:1–54.Google Scholar
  174. Zhuravlev, A. Yu., and Maidanskaya, I. D., 1998, Skhodstvo faun i dinamika plit v rannem kembrii [Faunal similarities and plate tectonics in the Early Cambrian], in: Paleogeografiya Venda-Rannego Paleozoya Severnoy Evrazii [The Vendian-Early Paleozoic Paleogeography of Northern Eurasia] (V. A. Koroteev and A. V. Maslov, eds.), Uralian Branch, Russian Academy of Sciences, Ekaterinburg, pp. 166–171 (in Russian).Google Scholar
  175. Zhuravlev, A. Yu., and Wood, R., 1995, Lower Cambrian reefal cryptic communities, Palaeontology 38:443–470.Google Scholar
  176. Zhuravlev, A. Yu., and Wood, R. A., 1996, Anoxia as the cause of the mid-Early CambrianGoogle Scholar
  177. (Botomian) extinction event, Geology 24:311–314.Google Scholar
  178. Zhuravlev, A. Yu., Hamdi, B., and Kruse, P. D., 1996, IGCP 366: Ecological aspects of Cambrian radiation — Field meeting, Episodes 19:136–137.Google Scholar
  179. Zhuravleva, I. T., 1966, Rannekembriyskie organogenny postroyki territorii Sibirskoy platformy [Early Cambrian organogenous buildups on the territory of the Siberian Platform], in: Sreda i Zhizn’ v Geologicheskom Proshlom [Organism and Environment in the Geological Past] (R. T. Hecker, ed.), Nauka, Moscow, pp. 61–84 [in Russian].Google Scholar
  180. Zhuravleva, I. T., and Zelenov, K. K., 1955, Biogermy pestrotsvetnoy svity reki Leny [Bioherms from the Pestrotsvet Formation of the Lena River], Tr. Paleont. Inst. Akad. Nauk SSSR 56:57–78 [in Russian].Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  1. 1.Paleontological InstituteAcademy of Russian SciencesMoscowRussia

Personalised recommendations