Coral Reefs, Carbonate Sediments, Nutrients, and Global Change

Part of the Topics in Geobiology book series (TGBI, volume 17)


As the 21st century begins, studies of coral reefs, carbonate sediments, and limestones will continue to be fundamental to understanding the past, present, and future of marine ecosystems and global climate. An intellectually challenging aspect of carbonate research is the plethora of paradoxes associated with the biology of carbonate-secreting organisms, carbonate geochemistry, and carbonate depositional ecosystems. Discovering new paradoxes, deciphering existing ones, and deepening understanding of old ones undoubtedly will continue to engage carbonate researchers well into the new century.


Coral Reef Benthic Community Gross Primary Productivity Great Barrier Reef Ozone Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. G., Lee, D. E., and Rosen, B. R., 1990, Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary, Palaeogeogr. Palaeoclimatol. Palaeoecol. 77:289–313.Google Scholar
  2. Arthur, M. A., and Schlanger, S. O., 1979, Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, Am. Assoc. Petrol. Geol. Bull. 63:870–885.Google Scholar
  3. Barron, E. J., 1989, Studies of Cretaceous climate, in: Understanding Climate Change, America Geophysical Union Monograph 52 (W. A. Berger, ed.), American Geophysical Union, Washington, DC, pp. 149–157.Google Scholar
  4. Barron, E. J., Fawcett, P. J., Peterson, W. H., Pollard, D., and Thompson, S. L., 1995, A “simulation” of mid-Cretaceous climate, Paleoceanography 10:953–962.Google Scholar
  5. Berner, R. A., 1994, Geocard II: A revised model for atmospheric CO2 over Phanerozoic time, Am. J. Sci. 294:56–91.Google Scholar
  6. Birkeland, C., 1977, The importance of the rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits, Proc. 3rd Int. Coral Reef Symp. 1:16–21.Google Scholar
  7. Birkeland, C., 1987, Nutrient availability as a major determinant of differences among coastal hard-substratum communities in different regions of the tropics, in: Differences between Atlantic and Pacific Tropical Marine Coastal Systems: Community Structure, Ecological Processes, and Productivity (C. Birkeland, ed.), UNESCO, Paris, pp. 45–90.Google Scholar
  8. Birkeland, C., 1997, Geographic differences in ecological processes on coral reefs, in: Life and Death of Coral Reefs (C. Birkeland, ed.), Chapman and Hall, New York, pp. 273–297.Google Scholar
  9. Blanchon, P., and Shaw, J., 1995, Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse, Geology 23:4–8.Google Scholar
  10. Bralower, T. J., Arthur, M. A., Leckie, R. M., Sliter, W. V., Allard, D. J., and Schlanger, S. O., 1994, Timing and paleoceanography of oceanic dysoxia/anoxia in the Late Barremian to Early Aptian (Early Cretaceous), Palaios 9:335–369.Google Scholar
  11. Bricaud, A., Morel, A., and Prieur, L., 1981, Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains, Limnol. Oceanogr. 26:43–53.Google Scholar
  12. Bryant, D., Burke, L., McManus, J., and Spalding, M., 1998, Reefs at Risk: A Map-Based Indicator of Potential Threats to the World’s Coral Reefs, World Resources Institute, Washington, DC.Google Scholar
  13. Buddemeier, R. W., and Hopley, D., 1988, Turn-ons and turn-offs: Causes and mechanisms of the initiation and termination of coral reef growth, Proc. 6th Int. Coral Reef Symp. Australia 1:253–261.Google Scholar
  14. Butler, M. J. IV, Hunt, J. H., Herrnkind, W. F., Childress, M. J., Bertelsen, R., Sharp, W., Matthews, T., Field, J. M., and Marshall, H. G., 1995, Cascading disturbances in Florida Bay, USA: Cyanobacterial blooms, sponge mortality, and implications for juvenile spiny lobsters, Panuirus argus, Mar. Ecol. Progr. Ser. 129:119–125.Google Scholar
  15. Cockey, E. M., Hallock, P., and Lidz, B. H., 1996, Decadal-scale changes in benthic foraminiferal assemblages off Key Largo, Florida, Coral Reefs 15:237–248.Google Scholar
  16. Cook, P. J., and McElhinney, M. W., 1979, A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics, Econ. Geol. 74:315–330.Google Scholar
  17. Copper, P., 1994, Ancient reef ecosystem expansion and collapse, Coral Reefs 13:3–11.Google Scholar
  18. Cowen, R., 1983, Algal symbiosis and its recognition in the fossil record, in: Biotic Interactions in Recent and Fossil Benthic Communities (J. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York, pp. 431–479.Google Scholar
  19. Cutchis, P., 1982, A formula for comparing annual damaging ultraviolet (DUV) radiation doses at tropical and mid-latitude sites, in: The Role of Solar Ultraviolet Radiation in Marine Ecosystems (J. Calkins, ed.), Plenum Press, New York, pp. 213–228.Google Scholar
  20. Davies, P. S., and Marshall, J. F., 1985, Halimeda bioherms — low energy reefs, northern Great Barrier Reef, Proc. 5th Int. Coral Reef Cong. 5:1–7.Google Scholar
  21. D’Hondt, S., and Arthur, M. A., 1996, Late Cretaceous oceans and the cool tropic paradox, Science 271:1838–1841.Google Scholar
  22. Ducklow, H. W., and Mitchell, R., 1979, Observations on naturally and artificially diseased tropical corals: a scanning electron microscope study, Microb. Ecol. 5:215–223.Google Scholar
  23. Duguay, L. E., and Taylor, D. L., 1978, Primary production and calcification by the soritid foraminifera Archaias angulatus (Fichtel and Moll), J. Protozool. 25:356–361.Google Scholar
  24. Erez, J., 1983, Calcification rates, photosynthesis and light in planktonic foraminifera, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. J. de Jong eds.), Reidel, Dordrecht, pp. 307–312.Google Scholar
  25. Fagerstrom, J. A., 1987, The Evolution of Reef Communities, Wiley, New York.Google Scholar
  26. Falkowski, P. G., Jokiel, P. L., and Kinzie, R. A. III, 1990, Irradiance and corals, in: Coral Reefs— Ecosystems of the World 25, Coral Reefs (Z. Dubinsky, ed.), Elsevier, New York, pp. 89–108.Google Scholar
  27. Falkowski, P. G., Dubinsky, Z., Muscatine, L., and McCloskey, L., 1993, Population control in symbiotic corals, Bioscience 43:606–611.Google Scholar
  28. Fanning, K. A., 1989, Influence of atmospheric pollution on nutrient limitation in the ocean, Nature 339:460–463.Google Scholar
  29. Fischer, A. G., and Arthur, M. A, 1977, Secular variations in the pelagic realm, Soc. Econ. Paleontol. Mineral. Spec. Puhl. 25:19–50.Google Scholar
  30. Frederick, J. E., Snell, H. E., and Haywood, E. K., 1989, Solar ultraviolet radiation at the earth’s surface, Photochem. Photobiol. 50:443–450.Google Scholar
  31. Frost, S. H., 1977, Cenozoic reef systems of the Caribbean—prospects for paleoecologic synthesis, in: Reefs and Related Carbonates—Ecology and Sedimentology (S. H. Frost, M. P. Weiss, and J. B. Saunders, eds.), Stud. Geol. No. 4, American Association of Petroleum Geologists, Tulsa, OK, pp. 93–110.Google Scholar
  32. Garrett, P., and Ducklow, H. W., 1975, Coral diseases in Bermuda, Nature 253:349–350.Google Scholar
  33. Garrett, W. E. (ed.), 1985, Atlas of North America: A Space Age Portrait of a Continent, National Geographic Society, Washington, DC.Google Scholar
  34. Gleason, D., and Wellington, G., 1993, Ultraviolet radiation and coral bleaching, Nature 365:836–838.Google Scholar
  35. Glynn, P. W., 1988, El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific, Galaxea 7:129–160.Google Scholar
  36. Glynn, P. W., 1996, Coral reef bleaching: facts, hypotheses and implications, Global Change Biol. 2:495–510.Google Scholar
  37. Glynn, P. W., Szmant, A. M., Corcoran, E. F., and Cofer-Shabica, S. V., 1989, Condition of coral reef cnidarians from the northern Florida reef tract: Pesticides, heavy metals, and histopathologic examination, Mar. Poll. Bull. 20:568–576.Google Scholar
  38. Glynn, P. W., Imai, R., Sakai, K., Nakano, Y., and Yamazato, K., 1993, Experimental responses of Okinawan (Ryukyu Islands, Japan) reef corals to high sea temperature and UV radiation, Proc. 7th Int. Coral Reef Symp. 1:27–37.Google Scholar
  39. Goreau, T. F., 1959, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull. 116:59–75.Google Scholar
  40. Grant, J., and Gust, G., 1987, Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria, Nature 330:244–246.Google Scholar
  41. Hadar, D.-P., and Worrest, R. C., 1991, Effects of enhanced solar ultraviolet radiation on aquatic ecosystems, Photochem. Photobiol. 53:717–725.Google Scholar
  42. Hallock, P., 1981, Algal symbiosis: A mathematical analysis, Mar. Biol. 62:249–255.Google Scholar
  43. Hallock, P., 1982, Evolution and extinction in larger foraminifera, Proc. 3rd N. Am. Paleontol. Conv. 1:221–225.Google Scholar
  44. Hallock, P., 1987, Fluctuations in the trophic resource continuum: A factor in global diversity cycles? Paleoceanography 2:457–471.Google Scholar
  45. Hallock, P., 1988, The role of nutrient availability in bioerosion: consequences to carbonate buildups, Palaeogeogr. Palaeoclimatol. Palaeoecol. 63:275–291.Google Scholar
  46. Hallock, P., 1997, Reefs and reef limestones in Earth history, in: Life and Death of Coral Reefs (C. Birkeland, ed.), Chapman and Hall, New York, pp. 13–42.Google Scholar
  47. Hallock, P., and Elrod, J. A., 1988, Oceanic chlorophyll around carbonate platforms in the western Caribbean: Observations from CZCS data, Proc. 6th Int. Coral Reef Symp. 2:449–454.Google Scholar
  48. Hallock, P., and Schlager, W., 1986, Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios 1:389–398.Google Scholar
  49. Hallock, P., Hine, A. C., Vargo, G. A., Elrod, J. A., and Jaap, W. C., 1988, Platforms of the Nicarguan Rise: Examples of the sensitivity of carbonate sedimentation to excess trophic resources, Geology 16:1104–1107.Google Scholar
  50. Hallock, P., Premoli Silva, I., and Boersma, A., 1991, Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes, Palaeogeogr. Palaeoclimat. Palaeoecol. 83:49–64.Google Scholar
  51. Hallock, P., Muller-Karger, F. E., and Halas, J. C., 1993, Coral reef decline. Res. Explor. 9:358–378.Google Scholar
  52. Hallock, P., Talge, H. K., Cockey, E. M., and Muller, R. G., 1995, A new disease in reef-dwelling foraminifera: Implications for coastal sedimentation, J. Foram. Res. 25:280–286.Google Scholar
  53. Hatcher, B. G., Johannes, R. E., and Robertson, A. I., 1989, Review of research relevant to the conservation of shallow tropical marine systems, Oceanogr. Mar. Biol. Annu. Rev. 27:337–414.Google Scholar
  54. Hine, A. C., Hallock, P., Harris, M. W., Mullins, H. T., Belknap, D. F., and Jaap, W. C., 1987, Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea, Coral Reefs 6:173–178.Google Scholar
  55. Hoffmann, D. J., and Solomon, S., 1989, Ozone destruction through heterogenous chemistry following the eruption of El Chichón, J. Geophys. Res. 94:5029–5041.Google Scholar
  56. Huber, B. B. T., Hodell, D. A., and Hamilton, C. P., 1995, Middle-Late Cretaceous climate of the southern high latitudes — Stable isotope evidence for minimal equatorial-to-pole thermal gradients, Geol. Soc. Am. Bull. 107:1164–1191.Google Scholar
  57. Hughes, T. P., 1994, Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef, Science 265:1547–1551.Google Scholar
  58. Hutchings, P. A., 1986, Biological destruction of coral reefs, Coral Reefs 4:239–252.Google Scholar
  59. Jackson, J. B. C., Cubit, J. D., Keller, B. D., Batista, V., Burns, K., Caffey, H. M., Caldwell, R. L., Garrity, S. D., Gelter, C. D., Gonzalez, C., Guzman, H. M., Kaufmann, K. W., Knap, A. H., Leving, S. C., Marshall, M. J., Sleger, R., Thampson, R. C., and Weit, E., 1989, Ecological effects of a major oil spill on Panamanian coastal marine communities, Ecology 243:37–44.Google Scholar
  60. James, N. P., 1997, The cool-water carbonate depositional realm, in: Cool-Water Carbonates (N. P. James and J. A. D. Clarke, eds.), SEPM (Society for Sedimentary Geology) Spec. Publ. No. 56, Tulsa, OK, pp. 1–20.Google Scholar
  61. James, N. P., Collins, L., Bone, Y., and Hallock, P., 1999, Subtropical carbonates in a temperate realm: Modern sediments on the southwest Australian shelf, J. Sed. Res. 69:1297–1321.Google Scholar
  62. Johnson, C. C., Baron, E. J., Kauffman, E. G., Arthur, A. A., Fawcett, P. J., and Yasuda, M. K., 1996, Middle Cretaceous reef collapse linked to ocean heat transport, Geology 24:376–380.Google Scholar
  63. Kauffman, E. G., and Johnson, C. C., 1988, The morphological and ecological evolution of middle and upper Cretaceous reef building rudistids, Palaios 3:194–126.Google Scholar
  64. Kinsey, D. W., 1985, Metabolism, calcification and carbon production. I. Systems level studies, Proc. 5th Int. Coral Reef Cong. 4:505–526.Google Scholar
  65. Lapointe, B. E., Littler, M. M., and Littler, D. S., 1997, Macroalgal overgrowth of fringing coral reefs at Discovery Bay, Jamaica: Bottom-up versus top-down control, Proc. 8th Int. Coral Reef Symp. 1:927–932.Google Scholar
  66. Larsen, R. L., Erba, E., Nakanishi, M., Bergersen, D. D., and Lincoln, J. M., 1995, Stratigraphie, vertical subsidence, and paleolatitude histories of Leg 144 guyots, in: Proceedings of ODP Scientific Results, 144 (J. A. Haggerty, I. Premoli Silva F. Rack, and M. K. McNutt, eds.), College Station, TX (Ocean Drilling Program), pp. 915–933.Google Scholar
  67. Laws, E. A., and Redalje, D. G., 1979, Effect of sewage enrichment on the phytoplankton populations of a tropical estuary, Pac. Sci. 33:129–144.Google Scholar
  68. Lee, J. J., and Anderson, O. R., 1991, Symbiosis in foraminifera, in: Biology of Foraminifera (J. J. Lee and O. R. Anderson, eds.), Academic Press, New York, pp. 157–220.Google Scholar
  69. Lees, A., 1975, Possible influence of salinity and temperature on modern shelf carbonate sedimentation, Mar. Geol. 19:159–198.Google Scholar
  70. Lesser, M. P., 1996, Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates, Limnol. Oceanogr. 41:271–283.Google Scholar
  71. Lessios, H. A., 1988, Mass mortality of Diadema antillarum in the Caribbean: What have we learned? Annu. Rev. Ecol. Syst. 19:371–393.Google Scholar
  72. Lessios, H. A., Robertson, D. R., and Cubit, J. D., 1984, Spread of Diadema mass mortality through the Caribbean, Science 226:335–337.Google Scholar
  73. Logan, B. W., Read, J. F., Hagan, G. M., Hoffman, P., Brown, R. G., Woods, P. J., and Gebelein, C. D., 1974, Evolution and diagenesis of Quaternary carbonate sequences, Shark Bay, Western Australia, Am. Assoc. Petrol. Geol. Mem. 22:1–358.Google Scholar
  74. McConnaughey, T. A., 1989, Biomineralization mechanisms, in: Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals (R. E. Crick, ed.), Plenum Press, New York, pp. 57–73.Google Scholar
  75. McConnaughey, T. A., and Whelan, J. F., 1997, Calcification generates protons for nutrient and bicarbonate uptake, Earth-Sci. Rev. 42: 95–117.Google Scholar
  76. Macintyre, I. G., Burke, R. G., and Stuckenrath, R., 1977, Thickest recorded Holocene reef section, Osla Perez core hole, Alacran Reef, Mexico, Geology 5:749–754.Google Scholar
  77. Menard, H. W., 1982, The influence of rainfall on the morphology and distribution of atolls, in: The Ocean Floor: Bruce Heezen Commemorative Volume (R. A. Scrutten and M. Talwani, eds.), Wiley, Chichester, pp. 305–311.Google Scholar
  78. Molinari, R. L., Spillane, M., Brooks, I., Atwood, D., and Duckett, C., 1981, Surface currents in the Caribbean Sea as deduced from Lagrangian observations, J. Geophys. Res. 86:6537–6542.Google Scholar
  79. Morse, J. W., and Mackenzie, F. T., 1990, Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48, Elsevier, Amsterdam.Google Scholar
  80. Munro, J. L. (ed.), 1983, Caribbean coral reef fishery resources, ICLARM Stud. Rev. 7:1–276.Google Scholar
  81. Neumann, A. C., 1966, Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa, Limnol. Oceanogr. 11:92–108.Google Scholar
  82. Neumann, A. C., and Macintyre, I., 1985, Reef response to sea level rise: Keep-up, catch-up or give-up, Proc. 5th Int. Coral Reef Congr. 3:105–110.Google Scholar
  83. Odum, E. P., 1959, Fundamentals of Ecology, Saunders, Philadelphia.Google Scholar
  84. Odum, H. T., and Odum, E. P., 1955, Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll, Ecol. Monogr. 25:291–320.Google Scholar
  85. Ogg, J. G., Camoin, G. F., and Vanneau, A. A., 1995, Limalok Guyot: Depositional history of the carbonate platform from downhole logs at Site 871 (lagoon), in: Proceedings of ODP Scientific Results, 144 (J. A. Haggerty, I. Premoli SilvaF. Rack, and M. K. McNutt, eds.), College Station, TX (Ocean Drilling Program), pp. 233–253.Google Scholar
  86. Peters, E. C., 1997, Diseases of coral-reef organisms, in: Life and Death of Coral Reefs (C. Birkeland, ed.), Chapman and Hall, New York, pp. 114–139.Google Scholar
  87. Randel, W. J., Wu, F., Russell, J. M. III, Waters, J. W., and Froidevaux, L., 1995, Ozone and temperature changes following the eruption of Mt. Pinatubo, J. Geophys. Res. 100:16,753–16,764.Google Scholar
  88. Reid, R. P., and Browne, K. M., 1991, Intertidal stromatolites in a fringing Holocene reef complex, Bahamas, Geology 19:15–18.Google Scholar
  89. Richardson, L. L., Kuta, K. G., Schnell, S., and Carlton, P. G., 1997, Ecology of the black band disease microbial consortium, Proc. 8th Int. Coral Reef Symp. 1:597–600.Google Scholar
  90. Richardson, L. L., Goldberg, W. M., Kuta, K. G., Aronson, R. B., Smith, G. W., Ritchie, K. B., Halas, J. C, Feingold, J. S., Miller, S., 1998, Florida’s mystery coral-killer identified, Nature 392:587–588.Google Scholar
  91. Richmond, R. H., 1993, Coral reefs: Present problems and future concerns resulting from anthropogenic disturbance, Am. Zool. 33:524–536.Google Scholar
  92. Robbins, L. L., and Blackwelder, P. L., 1992, Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism, Geology 20:464–468.Google Scholar
  93. Roberts, H. H., and Murray, S. P., 1983, Controls on reef development and the terrigenous-carbonate interface on a shallow shelf, Nicaragua (Central America), Coral Reefs 2:71–80.Google Scholar
  94. Roberts, H. H., Aharon, P., and Phipps, C. V., 1988, Morphology and sedimentology of Halimeda bioherms from the eastern Java Sea (Indonesia), Coral Reefs 6:161–172.Google Scholar
  95. Rogers, C. S., 1990, Responses of coral reefs and reef organisms to sedimentation, Mar. Ecol. Prog. Ser. 62:185–202.Google Scholar
  96. Roy, K. J., and Smith, S. V., 1971, Sedimentation and coral reef development in turbid waters: Fanning Lagoon, Pac. Sci. 25:234–248.Google Scholar
  97. Santavy, D. L., and Peters, E. C., 1997, Microbial pests: Coral diseases in the Western Atlantic, Proc. 8th Int. Coral Reef Symp. 1:607–612.Google Scholar
  98. Shick, J. M., Lesser, M. P., and Jokiel, P. L., 1996, Effects of ultraviolet radiation on corals and other coral reef organisms, Global Change Biol. 2:527–545.Google Scholar
  99. Skelton, P. W., Gili, E., Rosen, B. R., and Valldeperas, F. X., 1997, Corals and rudists in the late Cretaceous: A critique of the hypothesis of competitive displacement, Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.) 92:225–239.Google Scholar
  100. Smith, S. V., and Jokiel, P. L., 1975a, Water composition and biogeochemical gradients in the Canton Atoll lagoon: 1. Lagoon description; design of system analysis; salt and water budget, Mar. Sci. Comm. 1:75–100.Google Scholar
  101. Smith, S. V., and Jokiel, P. L., 1975b, Water composition and biogeochemical gradients in the Canton Atoll lagoon: 2. Budgets of phosphorus, nitrogen, carbon dioxide, and particulate materials, Mar. Sci. Comm. 1:165–207.Google Scholar
  102. Smith, S. V., Kimmerer, W. J. Laws, E. A. Brock, R. E., and Walsh, T. W., 1981, Kaneohe Bay sewage diversion experiment: Perspectives on ecosystem responses to nutrient perturbation. Pac. Sci. 35: 279–402.Google Scholar
  103. Stanley, G. D., Jr., 1981, The early history of scleractinian corals and its geologic consequences, Geology 9:507–511.Google Scholar
  104. Steven, A. P. L., and Broadbent, A. D., 1997, Growth and metabolic responses of Acropora palifera to long-term nutrient enrichment, Proc. 8th Int. Coral Reef Symp. 1:867–872.Google Scholar
  105. Swap, R., Garstang, M. Greco, S., Talbot, R., and Kallberg, P., 1992, Saharan dust in the Amazon Basin, Tellus Ser. B 44:133–149.Google Scholar
  106. Talge, H. K., Williams, D. E., Hallock, P. and Harney, J. N., 1997, Symbiont loss in reef foraminifera: Consequences for affected populations, Proc. 8th Int. Coral Reef Symp. 1:589–594.Google Scholar
  107. ter Kuile, B., 1991, Mechanisms for calcification and carbon cycling in algal symbiont-bearing foraminifera, in: Biology of Foraminifera (J. J. Lee and O. R. Anderson eds.), Academic Press, New York, pp. 73–89.Google Scholar
  108. Triffleman, N. J., Hallock, P., Hine, A. C., and Peebles, M. W., 1992, Morphology, sediments, and depositional environments of a small carbonate platform: Serranilla Bank, Nicaraguan Rise, Southwest Caribbean Sea, J. Sed. Petrol. 62:591–606.Google Scholar
  109. Turner, R. E., and Rabalais, N. N., 1994, Coastal eutrophication near the Mississippi River delta, Nature 368:619–621.Google Scholar
  110. Vitousek, P. M., Mooney, H. A., Lubshenco, J., and Melillo, J. M., 1997, Humandomination of Earth’s ecosystems, Science 277:494–499.Google Scholar
  111. Vogelmann, A. M., and Ackerman, T. P., and Turco, R. P., 1992. Enhancements in biologically effective ultraviolet radiation following volcanic eruption, Eos 359:47–49.Google Scholar
  112. Vogt, P. R., 1989, Valcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions? Geol. Soc. Am. Bull. 101(10):1225–1245.Google Scholar
  113. Walsh, J. J., 1984, The role of ocean biota in accelerated ecological cycles: A temporal view, Bioscience 34:499–507.Google Scholar
  114. Watson, R. T., Rodhe, H., Oeschger, H., and Siegenthaler, U., 1990, Greenhouse gases and aerosols, in: Climate Change. The IPCC Scientific Assessment (J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, eds), Cambridge University Press, Cambridge, pp. 1–40.Google Scholar
  115. Wells, J. W., 1957, Coral reefs, Geol. Soc. Am. Mem. 67(1):609–631.Google Scholar
  116. Williams, E. H. Jr., and Bunckley-Williams, L., 1990, The worldwide coral reef bleaching cycle and related sources of coral mortality, Atoll Res. Bull. 335:1–71.Google Scholar
  117. Wilson, P. A., Jenkins, H. C., Elderfield, H., and Larson, R. L., 1998, The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots, Nature 392:889–894.Google Scholar
  118. Wolanski, E., Drew, A., Abel, K., and O’Brien, J. O., 1988, Tidal jets, nutrient upwelling, and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef, Est. Coast. Shelf Sci. 26:169–201.Google Scholar
  119. Wood, R., 1993, Nutrients, predation and the history of reef building, Palaios 8:526–543.Google Scholar
  120. World Meterological Association, 1995, Scientific Assessment of Ozone Depletion: 1994, World Meterological Organization Global Ozone Research and Monitoring Project, Report No. 37, World Meterological Organization, Geneva.Google Scholar
  121. Yonge, C. M., 1930, Studies on the physiology of corals. I. Feeding mechanisms and food, Great Barrier Reef Expedition, 1928–29, Sci. Rep. 1:15–57.Google Scholar

Copyright information

© Academic/Plenum Publishers, New York 2001

Authors and Affiliations

  1. 1.Department of Marine SciencesUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations