Skip to main content

Battery Degradation and Ageing

  • Chapter

Abstract

Batteries are subject to degradation in storage due to a variety of chemical mechanisms, such as limited thermal stability of materials in storage, e.g. silver oxide in silver - zinc batteries, or corrosion of metal electrodes, e.g. lead in lead - acid batteries or lithium in lithium / thionyl chloride batteries. Battery performance can degrade during use, due to parasitic reactions, such as lithium metal / battery electrolyte reactions in hthium metal rechargeable batteries. Rates of degradation can be related to a number of factors, such as storage temperature or temperature variations. Battery standards require testing after various storage temperature regimes to detect this.

The effect of degradation of performance can be estimated by real time storage measurements or by accelerated ageing at high temperatures. Other methods for estimation of degradation rates include thermal measurements (microcalorimetry). Causes of increased rates of battery degradation include inaccurate control of charging voltages, e.g. overcharging of lead - acid batteries will cause overheating and excessive loss of electrolyte through gassing. Maintenance of batteries is necessary to ensure good performance, e.g. complete discharge of nickel - cadmium batteries to avoid capacity loss due to the ‘memory effect’ or routine charging of lead - acid batteries to avoid capacity loss in storage due to sulphation (formation of unreactive lead sulphate in the battery plates).

Batteries can be designed to avoid degradation in storage by use of reserve designs in which one component, usually the electrolyte, is omitted in manufacture and is then added just before use, e.g. in sea -water batteries, the magnesium anode would rapidly corrode so batteries are stored dry (without electrolyte) and the battery is activated by immersion in sea water.

Keywords

  • Manganese Dioxide
  • Thionyl Chloride
  • Rechargeable Batterie
  • Silver Oxide
  • Storage Life

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banner, J. A. and Winchester C., 1997, High energy battery safety, anecdotes, issues and approaches, J. Power Sources65: 271 - 274, Power Sources 16, Proceedings of the 20th International Power Sources Symposium, Brighton, April 1997.

    CrossRef  CAS  Google Scholar 

  • Chan, M-L., 1999, Reliability and performance of primary lithium batteries for ultrasonic gas meters, J. Power Sources 80:121 -128, Power Sources 17, Proceedings of the 21st International Power Sources Symposium, Brighton, May 1999.

    CrossRef  Google Scholar 

  • Dallek S., Cox W. G. and Kilroy W. P., 1996, Investigation of a voltage delay problem in a reserve silver oxide / zinc battery, 31–34, Proceedings of the 37th Power Sources Conference, Cherry Hill, USA, June 1996.

    Google Scholar 

  • Karpinski A. P., Mokovetski B., Russel S. J., Serenyi. R., and Williams D.C., 1999, Silver - zinc: status of technology and applications, J. Power Sources 80: 273 - 277, Power Sources 17, Proceedings of the 21st International Power Sources Symposium, Brighton, May 1999.

    CrossRef  Google Scholar 

  • Lewis H., Grun C. and Salkind A., 1997, Cellulosic separator applications: new and improved separators for alkaline rechargeable cells, J. Power Sources 65: 29 - 38, Power Sources 16, Proceedings of the 20th International Power Sources Symposium, Brighton, April 1997.

    CrossRef  CAS  Google Scholar 

  • Linden D., 1995, Handbook of batteries, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Ritchie, A. G., 1996, Military applications of reserve batteries, Phil. Trans. Roy. Soc. 354:1643 -1652.

    CrossRef  CAS  Google Scholar 

  • Ritchie A.G., Lee J. C., Giwa C. O. and Gilmour A., 1998, Safety design for portable batteries, ERA Report 98–0109, 2.2.1 - 2.2.9, Conference Proceedings, Portable Batteries: New Technologies and Environmental Responsibilities.

    Google Scholar 

  • Schmidt C. L. and Skarstad P. M., 1997, Development of an equivalent circuit model for the lithium / iodine battery, J. Power Sources 65,121 -128, Power Sources 16, Proceedings of the 20th International Power Sources Symposium, Brighton, April 1997.

    CrossRef  CAS  Google Scholar 

  • Skelton J. and Serenyi R., 1997, Improved silver / zinc secondary cells for underwater applications, J. Power Sources 65, 39 - 45, Power Sources 16, Proceedings of the 20th International Power Sources Symposium, Brighton, April 1997.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ritchie, A.G., Lakeman, B., Burr, P., Carter, P., Barnes, P.N., Bowles, P. (2001). Battery Degradation and Ageing. In: Mallinson, L.G. (eds) Ageing Studies and Lifetime Extension of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1215-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1215-8_58

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5444-4

  • Online ISBN: 978-1-4615-1215-8

  • eBook Packages: Springer Book Archive