Advertisement

Physiological Ecology and Behavior of Desert Birds

Chapter
Part of the Current Ornithology book series (CUOR, volume 16)

Abstract

Two major evolutionary events shaped current vertebrate life forms: the transition from water to land during the Carboniferous period and the development of endothermy during the Triassic period (Freeman and Herron, 1998). Nascent terrestrial animals experienced new ecological opportunities because of the water to land transition, while at the same time they confronted new physiological challenges such as maintaining an aqueous internal milieu in a desiccating environment (Gordon and Olson, 1995). With the advent of endothermy, land animals may have increased their fitness, but their need for energy must have risen by as much as an order of magnitude compared to their ectothermic ancestors (Bartholomew 1982; Bennett and Dawson, 1976). Endothermy also exacerbated problems of water loss because high rates of metabolism were associated with elevated respiratory water loss as well as increased water loss via urine and feces.

Keywords

Basal Metabolic Rate Before Present Physiological Ecology Evaporative Water Loss Metabolic Heat Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akester, A. R., Anderson, R. S., Hill, K. J., and Osbaldiston, G. W., 1967, A radiographic study of urine flow in the domestic fowl, Br. Poult. Sci. 8:209-212.PubMedGoogle Scholar
  2. Allan, T., Warren, A., 1993, Deserts: The Encroaching Wilderness, Mitchell Beazly International Ltd., London.Google Scholar
  3. Alvarez, L. W., 1987, Mass extinctions caused by large bolide impacts, Phys. Today July, 40:24-33.Google Scholar
  4. Amanova, M. B., 1984, The ecological-physiological adaptations of water metabolism in desert birds, J. Arid Environ. 7:199.Google Scholar
  5. Anderson, G. L., 1980, Kidney function and post-renal modification of urine in Desert quail, Ph.D. dissertation, University of Arizona, Tucson, pp. 1-187.Google Scholar
  6. Anderson, G. L., and Braun, E. J., 1985, Postrenal modification of urine in birds, Am. J. Physiol. 248:R93¡ªR98.Google Scholar
  7. Apostol, T. M., 1967, Calculus: One-Variable Calculus,with an Introduction to Linear Algebra, John Wiley and Sons, New York.Google Scholar
  8. Appleyard, R. F., 1979, Cutaneeous and respiratory water losses in the Ring Dove, Streptopelia risoria, Ph.D. dissertation, Washington State University, Pullman.Google Scholar
  9. Arad, Z., and Marder, J., 1982, Comparative thermoregulation of four breeds of fowls (Gallus domesticus) exposed to gradual increase of ambient temperatures, Comp. Biochem. Physiol. 72A:179-184.Google Scholar
  10. Arieli, Y., Feinstain, N., Reber, P., and Marder, J., 1995, The p-adrenoreceptor antagonist propranolol increases blood-vessels permeability in heat-acclimated Rock Pigeons (Columba livia), Eur. J. Physiol.430:214. Google Scholar
  11. Aschoff, J., and Pohl, H., 1970, Rhythmic variations in energy metabolism, Fed. Proc. 29:1541-1552.PubMedGoogle Scholar
  12. Axelrod, D. I., 1983, Paleobotanical history of the western deserts, in: Origin and Evolution of Deserts (S. G. Wells, and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 113-129.Google Scholar
  13. Bakken, G. S., 1976, A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data, J. Theor. Biol. 60:337-384.PubMedGoogle Scholar
  14. Bakken, G. S., 1980, The use of standard operative temperature in the study of the thermal energetics of birds, Physiol. Zool. 53:108-119.Google Scholar
  15. Bakken, G. S., 1990, Estimating the effect of wind on avian metabolic rate with standard operative temperature, Auk 107:587-594. Google Scholar
  16. Bakken, G. S., and Gates, D. M., 1975, Heat transfer analysis of animals: some implications for field ecology, physiology and evolution, in: Perspectives of Biophysical Ecology (D. M. Gates, and R. B. Schmerl, eds.), Springer-Verlag, New York, pp. 225-290.Google Scholar
  17. Bakken, G. S., Buttemer, W. A., Dawson, W. R., and Gates, D. M., 1981, Heated taxidermic mounts: a means of measuring the standard operative temperature affecting small animals, Ecology 62:311-318.Google Scholar
  18. Bakken, G. S., Murphy, M. T., and Erskine, D. J., 1991, The effect of wind and air temperature on metabolism and evaporative water loss rates of Dark-eyed Juncos, Junco hyemalis: A standard operative temperature, Physiol. Zool. 64:1023-1049.Google Scholar
  19. Bartholomew, G. A., 1964, The roles of physiology and behavior in maintenance of horneo-stasis in the desert environment, Symposium of the Society for Experimental Biology 18:7-29.Google Scholar
  20. Bartholomew, G. A., 1972, The water economy of seed-eating birds that survive without drinking, Proceedings of the 15th International Ornithological Congress, W. Junk, The Hague, pp. 237-254.Google Scholar
  21. Bartholomew, G. A., 1982, Body temperature and energy metabolism, in: Animal Physiology: Principals and Adaptations (M. S. Gordon, ed.), Macmillan, New York, pp. 333-406.Google Scholar
  22. Bartholomew, G. A., 1986, The role of natural history in contemporary biology, BioScience 36:324-329.Google Scholar
  23. Bartholomew, G. A., and Cade, T. J., 1956, Water consumption of House Finches, Condor 58:406-412.Google Scholar
  24. Bartholomew, G. A., and Cade, T. J., 1963, The water economy of land birds, Auk 80: 504-539.Google Scholar
  25. Bartholomew, G. A., and Dawson, W. R., 1953, Respiratory water loss in some birds of the southwestern United States, Physiol. Zool. 26:162-166.Google Scholar
  26. Bartholomew, G. A., and MacMillen, R. E., 1960, The water requirements of Mourning Doves and their use of sea water and NaC1 solutions, Physiol. Zool. 33:171-178.Google Scholar
  27. Bartholomew, G. A., and MacMillen, R. E., 1961, Water economy of the California Quail and its use of sea water, Auk 78:505-514.Google Scholar
  28. Bender, G. L., 1982, Introduction, in: Reference Handbook on the Deserts of North America (G. L. Bender, ed.), Greenwood Press, Westport, CT, pp. 1-6.Google Scholar
  29. Bennett, A. F., Dawson, W. R., 1976, Metabolism, in: Biology of the Reptilia (C. Gans and W. R. Dawson, eds.), Academic Press, New York, pp. 127-223.Google Scholar
  30. Bennett, A. F., Huey, R. B., 1990, Studying the evolution of physiological performance, in: Oxford Surveys in Evolutionary Biology (D. J. Futuyma and J. Antonovics, eds.), Oxford University Press, Oxford, pp. 251-284.Google Scholar
  31. Bernstein, M. H., 1971, Cutaneous water loss in small birds, Condor 73:468-469.Google Scholar
  32. Beuchat, C. A., 1990, Body size, medullary thickness, and urine concentrating ability in mammals, Am. J. Physiol. 258:R298¡ªR308.Google Scholar
  33. Bindslev, N., and Skadhauge, E., 1971, Salt and water permeability of the epithelium of the coprodeum and large intestine in the normal and dehydrated fowl (Gallus domesticus): in vivo perfusion studies, J. Physiol. (London) 216:753-768.Google Scholar
  34. Birkebak, R. C., 1966, Heat transfer in biological systems, Int. Rev. Gen. Exper. Zool. 2: 269-344.Google Scholar
  35. Björklund, M., 1997, Are “comparative methods” always necessary?, Oikos 80:607-612.Google Scholar
  36. Bouverot, P., Hildwein, G., and Le Goff, D., 1974, Evaporative water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat, Respir. Physiol. 21:255-269.PubMedGoogle Scholar
  37. Bradshaw, S. D., 1986, Ecophysiology of Desert Reptiles, Academic Press, Sydney, AustraliaGoogle Scholar
  38. Braun, E. J., 1985, Comparative aspects of the urinary concentrating process, Renal Physiology 8:249-260.PubMedGoogle Scholar
  39. Braun, E. J., 1993, Renal function in birds, in: New Insights in Vertebrate Kidney Function (J. A. Brown, R. J. Belmont, and J. C. Rankin, eds.), Cambridge University Press, Cambridge, pp. 167-188.Google Scholar
  40. Braun, E. J., and Dantzler, W. H., 1972, Function of mammalian-type and reptilian-type nephrons in kidney of Desert Quail, Am. J. Physiol. 222:617-629.PubMedGoogle Scholar
  41. Brummermann, M., and Braun, E. J., 1994, The role of the lower intestinal tract in avian osmoregulation, in: Integrative and Cellular Aspects of Autonomic Functions: Temperature and Osmoregulation (K. Pleschka, and R. Gerstberger, eds.), John Libbey Eurotext, Paris, pp. 517-525.Google Scholar
  42. Calder, W. A., 1984, Size, Function and Life History, Harvard University Press, Cambridge.Google Scholar
  43. Calder, W. A., and King, J. R., 1974, Thermal and caloric relationships of birds, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 259-413.Google Scholar
  44. Calder, W. A., and Braun, E. J., 1983, Scaling of osmotic regulation in mammals and birds, Am. J. Physiol. 244:R601¡ªR606.Google Scholar
  45. Calow, P., 1987, Evolutionary Physiological Ecology, Cambridge University Press, Cambridge.Google Scholar
  46. Campbell, G. S., 1977, An Introduction to Environmental Biophysics, Springer-Verlag, New York, pp. 1-159.Google Scholar
  47. Chao, S. C., and Xing, J. M., 1982, Origin and development of the Shamo (sandy deserts) and the Gobi (stony deserts) of China, in: Geological Story of the World’s Deserts (T. L. Smiley, ed.), Uppsala, Striae 17:79-91.Google Scholar
  48. Chappell, M. A., and Bartholomew, G. A., 1981, Standard operative temperatures and thermal energetics of the Antelope Ground Squirrel Ammospermophilus leucurus, Physiol. Zool. 54:81-93.Google Scholar
  49. Chappell, M. A., Goldstein, D. L., and Winkler, D. W., 1984, Oxygen consumption, evaporative water loss, and temperature regulation of California Gull chicks (Larus californicus) in a desert rookery, Physiol. Zool. 57:204-214.Google Scholar
  50. Chew, R. M., 1951, The water exchange of some small mammals, Ecol. Monogr. 21:215-225. Chew, R. M., 1961, Water metabolism of desert-inhabiting vertebrates, Biol. Rev. Cambridge Philos. Soc. 36:1-31.Google Scholar
  51. Chew, R. M., 1965, Water metabolism of mammals, in: Physiological Mammalogy (W. V. Mayer and R. G. van Gelder, eds.), Academic Press, New York, pp. 43-160.Google Scholar
  52. Chiappe, L. M., 1995, The first 85 million years of avian evolution, Nature 378:349-355.Google Scholar
  53. Cloudsley-Thompson, J. L., 1984, Introduction, in: Sahara Desert (J. L. Cloudsley-Thompson, ed.), Pergamom Press, Oxford, pp. 1-15.Google Scholar
  54. Cox, G. W., 1983, Foraging behaviour of the Dune Lark, Ostrich 54:113-120.Google Scholar
  55. Crawford, E. C., and Lasiewski, R. C., 1968, Oxygen consumption and respiratory evaporation of the Emu and Rhea, Condor 70:333-339.Google Scholar
  56. Daan, S., Masman, D., and Groenewold, A., 1990, Avian basal metabolic rates: their association with body composition and energy expenditure in nature, Am. J. Physiol. 259:R333¡ªR340.Google Scholar
  57. Daniels, M., 1994, Report on birds from the Naze London Clay, Society of Avian Paleontology and Evolution Newsletter 8:10-12.Google Scholar
  58. Dantzler, W. H., 1970, Kidney function in desert vertebrates, in: Memoirs of the Society for Endocrinology: Hormones and the Environment (G. K. Benson and J. G. Phillips, eds.), Cambridge, London, pp. 157-190.Google Scholar
  59. Davies, S. J. J. F., 1982, Behavioural adaptations of birds to environments where evaporation is high and water is in short supply, Comp. Biochem. Physiol. 71A:557-566.Google Scholar
  60. Davies, S. J. J. F., 1984, Nomadism as a response to desert conditions in Australia, J. Arid Environ. 7:183-195.Google Scholar
  61. Dawson, W. R., 1976, Physiological and behavioural adjustments of birds to heat and aridity, Proceedings of the 16th International Ornithological Congress, Australian Academy of Science, Canberra pp. 455-467.Google Scholar
  62. Dawson, W. R., 1982, Evaporative losses of water by birds, Comp. Biochem. Physiol. 71A:495-509.Google Scholar
  63. Dawson, W. R., 1984, Physiological studies of desert birds: present and future considerations, J. Arid Environ. 7:133-155.Google Scholar
  64. Dawson, W. R., Bartholomew, G. A., 1968, Temperature regulation and water economy of desert birds, in: Desert Biology (G. W. Brown Jr., ed.), Academic Press, New York, pp. 357-394.Google Scholar
  65. Dawson, W. R., and Bennett, A. F., 1973, Roles of metabolic level and temperature regulation in the adjustment of western Plumed Pigeons (Lophophaps ferruginea) to desert conditions, Comp. Biochem. Physiol. 44A:249-266.Google Scholar
  66. Dawson, W. R., O’Connor, T. P., 1996, Energetic features of avian thermoregulatory responses, in: Avian Energetics and Nutritional Ecology (C. Carey, ed.), Chapman and Hall, New York, pp. 85-124.Google Scholar
  67. Dawson, W R, Schmidt-Nielsen, K., 1964, Terrestrial animals in dry heat: desert birds, in: Handbook of Physiology: Adaptation to the Environment (C. G. Wilber, E. F. Adolph, and D. B. Dill, eds.), American Physiological Society, Washington D.C., pp. 481-492.Google Scholar
  68. Dawson, W. R., Carey, C., Adkisson, C. S., and Ohmart, R. D., 1979, Responses of Brewer’s and Chipping Sparrows to water restriction, Physiol. Zoo/. 42:529-541.Google Scholar
  69. De Jong, A. A., 1976, The influence of simulated solar radiation on the metabolic rate of White-crowned sparrows, Condor 78:174-179.Google Scholar
  70. Dmi’el, R., and Tel-Tzur, D., 1985, Heat balance of two starling species (Sturnus vulgaris and Onychognathus tristami) from temperate and desert habitats, J. Comp. Physiol. 155:395-402.Google Scholar
  71. Dragan, J. C., and Airinei, S., 1989, Geoclimate and History, Nagard, Rome, Italy.Google Scholar
  72. El-Baz, F., 1983, A geological perspective of the desert, in: Origin and Evolution of Deserts (S. G. Wells, and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 163-183.Google Scholar
  73. Evenari, M., 1985, The desert environment, in: Hot Deserts and Shrublands (M. Evenari, I. Noy-Meir, and D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 1-22.Google Scholar
  74. Feduccia, A., 1996, The Origin and Evolution of Birds, Yale University Press, New Haven, CT.Google Scholar
  75. Felsenstein, J., 1985, Phylogenies and the comparative method, Am. Nat. 125:1-15.Google Scholar
  76. Frakes, L. A., 1979, Climates throughout Geologic Time, Elsevier, AmsterdamGoogle Scholar
  77. Frakes, L. A., Francis, J. E., and Syktus, J. I., 1992, Climate Modes of the Phanerozoic, Cambridge University Press, Cambridge.Google Scholar
  78. Freeman, S., and Herron, J. C., 1998, Evolutionary Analysis, Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  79. Garland, Jr., T., and Carter, P. A., 1994, Evolutionary physiology, Annu. Rev. Physiol. 56: 579-621.PubMedGoogle Scholar
  80. Garland, Jr., T., Harvey, P. H., and Ives, A. R., 1992, Procedures for the analysis of comparative data using phylogenetically independent contrasts, Systematic Biology 41: 18-32.Google Scholar
  81. Gerson, R., 1982, The Middle East: landforms of a planetary desert through environmental changes, Striae 17:52-78.Google Scholar
  82. Gessaman, J A, 1972, Bioenergetics of the Snowy Owl (Nyctea scandiaca), Arct. Alp. Res. 4:223-238.Google Scholar
  83. Goldstein, D. L., 1983, The effect of wind on avian metabolic rate with particular reference to Gambel’s Quail, Physiol. Zool. 56:485-492.Google Scholar
  84. Goldstein, D. L., 1984, The thermal environment and its constraint on activity in Desert Quail in summer, Auk 101:542-550.Google Scholar
  85. Goldstein, D. L., and Braun, E. J., 1989, Structure and concentrating ability in the avian kidney, Am. J. Physiol. 256:R501¡ªR509.Google Scholar
  86. Gordon, M. S., and Olson, E. C., 1995, Invasions of the Land: The Transitions of Organisms from Aquatic to Terrestrial Life, Columbia University Press, New York.Google Scholar
  87. Grafen, A., 1989, The phylogenetic regression, Philos. Trans. R. Soc. London, Ser. B 326: 199-257.Google Scholar
  88. Grayson, D. K., 1993, The Desert’s Past, Smithsonian Institute Press, Washington, D. C.Google Scholar
  89. Greenwald, L., and Stetson, D., 1988, Urine concentration and the length of the renal papilla, News Physiol. Sci. 3:46-49.Google Scholar
  90. Grove, A. T., 1977, The geography of semi-arid lands, Philos. Trans. R. Soc. London, Ser. B 278:457-475.Google Scholar
  91. Heim de Balsac, H., 1936, Biog¨¦ographie des mammif¨¨res et des oiseaux de l’Afrique du Nord, Bulletin Biologique de France et Belgique Suppl. 21:1-447.Google Scholar
  92. Heisinger, J. F., and Breitenbach, R. P., 1969, Renal structural characteristics as indexes of renal adaptations for water conservation in the genus Sylvilagus, Physiol. Zool. 42: 160-172.Google Scholar
  93. Hillenius, W. J., 1992, The evolution of nasal turbinates and mammalian endothermy, Paleobiology 18:17-29.Google Scholar
  94. Hinds, D. S., and Calder, W. A., 1973, Temperature regulation of the Pyrrhuloxia and the Arizona Cardinal, Physiol. Zool. 46:55-71.Google Scholar
  95. Hinsley, S. A., 1994, Daily time budgets and activity patterns of Sandgrouse (Pteroclididae) in contrasting arid habitats in Spain and Israel, J. Arid Environ. 26: 373-382.Google Scholar
  96. Hou, L. H., and Zhang, J., 1993, A new fossil bird from Lower Cretaceous of Liaoning, Vertebrate PalAsiatica 7:217-224.Google Scholar
  97. Howell, T. R., Araya, B., and Millie, W. R., 1974, Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool. 104:1-57.Google Scholar
  98. Hudson, D. M., and Bernstein, M. H., 1981, Temperature regulation and heat balance in flying White-necked Ravens, Corvus cryptoleucus, J. Exp. Biol. 90:267-282.Google Scholar
  99. Hudson, J. W., and Kimzey, S. L., 1966, Temperature regulation and metabolic rhythms in populations of the House Sparrow, Passer domesticus, Comp. Biochem. Physiol. 17: 203-217.PubMedGoogle Scholar
  100. Hunt, C. B., 1983, Physiographic overview of our arid lands in the western U.S., in: Origin and Evolution of Deserts (S.G. Wells, and D.R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 7-63.Google Scholar
  101. Jackson, D. C., and Schmidt-Nielsen, K., 1964, Counter-current heat exchange in the respiratory passages, Proc. Nat. Acad. Sci. U.S.A. 51:1192-1197.Google Scholar
  102. Janzen, D. H., 1995, Who survived the Cretaceous?, Science 268:785.Google Scholar
  103. Johnson, O. W., 1974, Relative thickness of the renal medulla in birds, J. Morphol. 142: 277-284.Google Scholar
  104. Johnson, O. W., and Skadhauge, E., 1975, Structural-functional correlations in the kidneys and observations of colon and cloacal morphology in certain Australian birds, j. Anat. 120:495-505.Google Scholar
  105. Jones, C. R., 1982, The Kalahari of Southern Africa, in: The Geological Story of the World’s Deserts (T. L. Smiley, ed.), Striae  17:20-34.Google Scholar
  106. Kaiser, T. J., and Bucher, T. L., 1985, The consequences of reverse sexual size dimorphism for oxygen consumption, ventilation, and water loss in relation to ambient temperature in the Prairie Falcon, Falco mexicanus,Physiol. Zool. 58:748-758.Google Scholar
  107. Keast, A., 1959, Australian birds: their zoogeography and adaptations to an arid continent, in: Biogeography and Ecology in Australia (A. Keast, R. L. Crocker, C. S. Christian, eds.), W. Junk, The Hague, pp. 89-114.Google Scholar
  108. Kennett, J. P., 1980, Palaeoceanographic and biogeographic evaluation of the southern ocean during the Cenozoic, and Cenozoic microfossil datums, Palaeogeogr. Paleoclimatol. Palaeoecol. 31:123-152.Google Scholar
  109. Kersten, M., Bruinzeel, L. W., Wiersma, P., and Piersma, T., 1998. Reduced basal metabolic rate of migratory waders wintering in coastal Africa, Ardea 86:71-80.Google Scholar
  110. King, J. R., 1974, Seasonal allocation of time and energy resources in birds, in: Avian Energetics (R. A. Paynter, Jr., ed.), Nuttall Ornithological Club, Cambridge, MA, pp. 4-85.Google Scholar
  111. Koeppen, B. M., and Stanton, B. A., 1997, Renal Physiology, Mosby-Year Book, St. Louis, MO, pp. 1-199.Google Scholar
  112. Konarzewski, M., and Diamond, J., 1995, Evolution of basal metabolic rate and organ masses in laboratory mice, Evolution 49:1239-1248.Google Scholar
  113. Köppen, W., 1931, Die Klimate der Erde, Walter de Gruyter and So., Berlin.Google Scholar
  114. Lancaster, N., 1989, The Namib Sand Sea: Dune Forms, Processes and Sediments,A.A. Bolkema, Rotterdam.Google Scholar
  115. Lancaster, J., Lancaster, N., and Seely, M. K., 1984, Climate of the central Namib Desert, Madoqua 14:4-61.Google Scholar
  116. Larochelle, J., 1998, Comments on a negative appraisal of taxidermic mounts as tools for studies of ecological energetics, Physiol. Zool. 71:596-598.PubMedGoogle Scholar
  117. Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relationship between standard metabolic rate and body weight in birds, Condor 69:13-23.Google Scholar
  118. Lasiewski, R. C., Acosta, A. L., and Bernstein, M. H., 1966, evaporative water loss in birds: I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability, Comp. Biochem. Physiol. 19:445-457.Google Scholar
  119. Lasiewski, R. C., Bernstein, M. H., and Ohmart, R. D., 1971, Cutaneous water loss in the Roadrunner and Poor-will, Condor 73:470-472.Google Scholar
  120. Louw, G. N., and Seely, M. K., 1982, Ecology of Desert Organisms, Longman, London.Google Scholar
  121. Lucas, A. M., and Stettenheim, P. R., 1972, Avian anatomy, in: Agricultural Handbook 362, U.S. Government Printing Office, Washington, D.C.Google Scholar
  122. Lustick, S., 1969, Bird energetics: effects of artificial radiation, Science 163:387-390.PubMedGoogle Scholar
  123. Lustick, S., Talbot, S., and Fox, E. L., 1970, Absorption of radiant energy in Red-winged Blackbirds Agelaius phoeniceus, Condor 72:471-473.Google Scholar
  124. Maclean, G. L., 1970, The biology of the larks (Alaudidae) of the Kalahari sandveld, Zool. Afr. 5:7-39.Google Scholar
  125. Maclean, G. L., 1996, Ecophysiology of Desert Birds, Springer-Verlag, Berlin, pp. 1-167.Google Scholar
  126. MacMillen, R. E., 1990, Water economy of granivorous birds: a predictive model, Condor 92:379-392.Google Scholar
  127. MacMillen, R. E., and Baudinette, R. V., 1993, Water economy of granivorous birds: Australian parrots, Functional Ecol. 7:704-712.Google Scholar
  128. Madsen, H., 1930, Quelques remarques sur la cause pouruoi les grand oiseaux au Soudan planent si haut au milieu de la journ¨¦e, Vidensk. Medd. Dan. Naturhist. Foren. Khobenhavn 8:301-303.Google Scholar
  129. Maloney, S. K., and Dawson, T. J., 1998, Changes in pattern of heat loss at high ambient temperature caused by water deprivation in a large flightless bird, the Emu, Physiol. Zool. 71:712-719.PubMedGoogle Scholar
  130. Marder, J., and Arieli, Y., 1988, Heat balance of acclimated Pigeons (Columba livia) exposed to temperatures up to 60¡ãC, Comp. Biochem. Physiol. 91A:165-170.Google Scholar
  131. Marder, J., and Ben-Asher, J., 1983, Cutaneous water evaporation-1. Its significance in heat-stressed birds, Comp. Biochem. Physiol. 75A:425-431.Google Scholar
  132. Marder, J., Gavrieli-Levin, I., and Raber, P., 1986, Cutaneous evaporation in heat-stressed Spotted Sandgrouse, Condor 88:99-100.Google Scholar
  133. Marder, J., Arieli, Y., and Ben-Asher, J., 1989, Defense strategies against environmental heat stress in birds, Isr. J. Zool. 36:61-75.Google Scholar
  134. Martins, E. P., and Garland, Jr., T., 1991, Phylogenetic analyses of the correlated evolution of continuous characters: a simulated study, Evolution 45:534-557.Google Scholar
  135. Mautz, W. J., 1982, Patterns of evaporative water loss, in: Biology of the Reptilia (C. Gans and F. H. Pough, eds,) Academic Press, London, pp. 443-481.Google Scholar
  136. McFarland, D., and Baher, E., 1968, Factors affecting the feather posture in the Barbary Dove, Anim. Behay. 16:171-177.Google Scholar
  137. McGilp, J. N., 1932, Heat in the interior of South Australia, South Austr. Ornithol. 11: 160-173.Google Scholar
  138. McGinnies, W. G., 1979, Description and structure of arid ecosystems: general description of desert areas, in: Arid-land Ecosystems: Structure,Functioning and Management (D.W. Goodall, F.A. Perry, and K.W.Howes, eds.), Cambridge University Press, Cambridge, UK.Google Scholar
  139. McNab, B. K., 1980, On estimating thermal conductance in endotherms, Physiol. Zool. 53:145-156.Google Scholar
  140. McNabb, F. M. A., 1969, A comparative study of water balance in three species of quail: I. Water turnover in the absence of temperature stress, Comp. Biochem. Physiol. 28:1045-1058.Google Scholar
  141. McNabb, F. M. A., and McNabb, R. A., 1975, Proportions of ammonia, urea, urate and total nitrogen in avian urine and quantitative methods for their analysis on a single urine sample, Poult. Sci. 54:1498-1505.PubMedGoogle Scholar
  142. McNabb, F. M. A., and Poulson, T. L., 1970, Uric acid excretion in pigeons, Columba livia, Comp. Biochem. Physiol. 33:933-939.Google Scholar
  143. McNabb, F. M. A., McNabb, R. A., Prather, I. D., Conner, R. N., and Adkisson, C. S., 1980, Nitrogen excretion in Turkey Vultures, Condor 82:219-223.Google Scholar
  144. Mead, J. I., 1987, Quaternary records of Pika, Ochotona, in North America, Boreas 16: 165-171.Google Scholar
  145. Meigs, P., 1953, Reviews of Research on Arid Zone Hydrology,UNESCO, Paris.Google Scholar
  146. Meigs, P., 1966, Geography of Coastal Deserts, UNESCO, Paris, pp. 1-140.Google Scholar
  147. Menon, G. K., Baptista, L. F., Elias, P. M., and Bouvier, M., 1988, Fine structural basis of thecutaneous water barrier in nestling Zebra Finches Peophila guttata, Ibis 130:503-511.Google Scholar
  148. Menon, G. K., Baptista, L. F., Brown, B. S., and Elias, P. M., 1989, Avian epidermal differentiation: II. Adaptive response of permeability barrier to water deprivation and replenishment, Tiss. Cell 21:83-92.Google Scholar
  149. Menon, G. K., Maderson, P. F. A., Drewes, R. C., Baptista, L. F., Price, L. F., and Elias, P. M., 1996, Ultrastructural organization of avian stratum conreum lipids as the basis for facultative cutaneous waterproofing, J. Morphol. 227:1-13.PubMedGoogle Scholar
  150. Merkt, J. R., and Taylor, C. R., 1994, “Metabolic switch” for desert survival, Proc. Nat. Acad. Sci. U.S.A. 91:12313-12316.Google Scholar
  151. Miles, D. B., and Dunham, A. E., 1993, Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses, Annu. Rev. Ecol. Syst. 24: 587-619.Google Scholar
  152. Miller, A. H., 1963, Desert adaptations of birds, Proceedings of the 13th International Ornithological Congress, American Ornithologists’ Union, Baton Rouge, pp. 666-674.Google Scholar
  153. Mount, L. E., 1979, Adaptation to Thermal Environment, Edward Arnold, London, pp. 1-333.Google Scholar
  154. Murrish, D. E., 1973, Respiratory heat and water exchange in penguins, Respir. Physiol. 19:262-270.PubMedGoogle Scholar
  155. Nagy, K. A., 1987, Field metabolic rate and food requirement scaling in mammals and birds, Ecol. Monogr. 57:111-128.Google Scholar
  156. Nagy, K. A., Peterson, C. C., 1988, Scaling Water Flux Rate in Animals, University of California Press, Berkeley.Google Scholar
  157. Noy-Meir, I., 1973, Desert ecosystems: environment and producers, Annu. Rev. Ecol. Syst. 4:25-41.Google Scholar
  158. Nuttonson, M. Y., 1958, The Physical Environment and Agriculture of Australia with Special Reference to its Winter Rainfall Regions, American Institute of Crop Ecology, Washington, D.C.Google Scholar
  159. Ohmart, R. D., and Lasiewski, R. C., 1971, Roadrunners: energy conservation by hypothermia and absorption of sunlight, Science 172:67-69.PubMedGoogle Scholar
  160. Pagel, M. D., and Harvey, P. H., 1988, Recent developments in the analysis of comparative data, Q. Rev. Biol. 63:413-440.PubMedGoogle Scholar
  161. Peltonen, L., Arieli, Y., and Marder, J., 1998, Adaptive changes in the epidermal structure of the heat-acclimated Rock Pigeon (Columba livia): a comparative electron microscopy study, J. Morphol. 235:17-29.Google Scholar
  162. Piersma, T., Bruinzeel, L., Drent, R., Kersten, M., van der Meer, J., and Wiersma, P., 1996, Variability in basal metabolic rate of a long-distance migrant shorebird (Red Knot, Calidris canutus) reflects shifts in organ sizes, Physiol. Zool. 69:191-217.Google Scholar
  163. Porter, W. P., and Gates, D. M., 1969, Thermodynamic equilibria of animals with environment, Ecol. Monogr. 39:227-244.Google Scholar
  164. Prinzinger, R., Prebmar, A., and Schleucher, E., 1991, Body temperature in birds, Comp. Biochem. Physiol. 99A:499-506.Google Scholar
  165. Prosser, C. L., 1986, Adaptational Biology: Molecules to Organisms, John Wiley and Sons, New York.Google Scholar
  166. Ramsay, D. J., and Thrasher, T. N., 1984, The defense of plasma osmolality, J. Physiol. (Paris) 79:416-420.Google Scholar
  167. Randall, D., Burggren, W., and French, K., 1997, Animal Physiology: Mechanisms and Adaptations, W. H. Freeman and Company, New York.Google Scholar
  168. Rauh, W., 1985, The Peruvian-Chilean deserts, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, and D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 239-268.Google Scholar
  169. Rawles, M. E., 1960, The integumentary system, in: Biology and Comparative Physiology of Birds (A. J. Marshall, ed.), Academic Press, New York, pp. 189-240.Google Scholar
  170. Richards, S. A.,1976, Evaporative water loss in domestic fowls and its partition in relation to ambient temperature, J. Agric. Sci. 87:527-532.Google Scholar
  171. Ricklefs, R. E., and Hainsworth, F. R., 1968, Temperature dependent behavior of the Cactus Wren, Ecology 49:227-233.Google Scholar
  172. Ricklefs, R. E., and Starck, J. M., 1996, Applications of phylogenetically independent contrasts: a mixed progress report, Oikos 77:167-172.Google Scholar
  173. Robinson, D. E., Campbell, G. S., and King, J. R., 1976, An evaluation of heat exchange in small birds, J. Comp. Physiol. 105:153-166.Google Scholar
  174. Rolfe, D. F. S., and Brown, G. C., 1997, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol. Rev. 77:731-758.PubMedGoogle Scholar
  175. Salzman, A. G., 1982, The selective importance of heat stress in gull nest location, Ecology 63:742-751.Google Scholar
  176. Schleucher, E., Prinzinger, R., and Withers, P. C., 1991, Life in extreme environments: investigations on the ecophysiology of a desert bird, the Australian Diamond Dove (Geopelia cuneata Latham), Oecologia 88:72-76.Google Scholar
  177. Schmidt-Nielsen, K., 1964, Desert Animals, Dover Publications, Inc., New York.Google Scholar
  178. Schmidt-Nielsen, K., 1981, Counter-current systems in animals, Sci. Am. 244:118-128.PubMedGoogle Scholar
  179. Schmidt-Nielsen, K., 1984a, Scaling. Why is Animal Size so Important?, Cambridge University Press, Cambridge.Google Scholar
  180. Schmidt-Nielsen, K., 1984b, Animal Physiology: Adaptation and Environment, 3rd ed., Cambridge University Press, Cambridge.Google Scholar
  181. Schmidt-Nielsen, K., 1997, Animal Physiology: Adaptation and Environment, 4th ed., Cambridge University Press, Cambridge.Google Scholar
  182. Schmidt-Nielsen, B., and O’Dell, R., 1961, Structure and concentrating mechanism in the mammalian kidney, Am. J. Physiol. 200:1119-1124.PubMedGoogle Scholar
  183. Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L., 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull. 99:237-258.PubMedGoogle Scholar
  184. Schulz, H., and Seddon, P., 1996, Biology and status of the Houbara Bustard, in: Propagation of the Houbara Bustard (M. Saint Jaime, and Y. Van Heezik, eds.), Kegan Paul International and National Wildlife Research Center, London.Google Scholar
  185. Scott, I. M., Yousef, M. K., and Johnson, H. D., 1976, Plasma thyroxine levels of mammals: desert and mountain, Life Sci. 19:807-812.PubMedGoogle Scholar
  186. Seely, M. K., 1978, The Namib dune desert: an unusual ecosystem, J. Arid Environ. 1: 117-128.Google Scholar
  187. Serventy, D. L., 1971, Biology of desert birds, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 287-339.Google Scholar
  188. Seymour, R. S., 1972, Convective heat transfer in the respiratory systems of panting animals, J. Theor. Biol. 35:119-127.PubMedGoogle Scholar
  189. Shantz, H. L., 1956, History and problems of arid lands development, in: The Future of Arid Lands (G. F. White, ed.), American Association for the Advancement of Science, Washington, D.C., pp. 3-25.Google Scholar
  190. Shmida, A:, 1985, Biogeography of the desert flora, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 23-77.Google Scholar
  191. Shobrak, M., 1998, Notes on the breeding and cooling behaviour of Hoopoe Larks Alaemon alaudipes in central Saudi Arabia, Sandgrouse 20:53-55.Google Scholar
  192. Sibley, C. G., and Ahlquist, J. E., 1990, Phylogeny and Classification of Birds: A Study in Molecular Evolution, Yale University Press, New Haven.Google Scholar
  193. Skadhauge, E., 1981, Osmoregulation in Birds, Springer-Verlag, Berlin.Google Scholar
  194. Smith, G., 1984, Climate, in: Sahara Desert (J. L. Cloudsley-Thompson, ed.), Pergamom Press, Oxford, pp. 17-30.Google Scholar
  195. Smith, R. M., 1969, Cardiovascular, respiratory, temperature, and evaporative water loss responses of pigeons to varying degrees of heat stress, Ph.D. dissertation, Indiana University, Bloomington.Google Scholar
  196. Sperber, I., 1944, Studies on the mammalian kidney, Zool. Bidr. Uppsala 22:249-432.Google Scholar
  197. Stallone, J. N., and Braun, E. J., 1985, Contributions of glomerular and tubular mechanisms to antidiuresis in conscious domestic fowl, Am. J. Physiol. 249:F842-F850.PubMedGoogle Scholar
  198. Starck, J. M., 1998, Non-independence of data in biological comparisons: a critical appraisal of current concepts, assumptions, and solutions, Theor. Biosci. 117:109-138.Google Scholar
  199. Taylor, C. R., Dmi’el, R., Fedak, M., and Schmidt-Nielsen, K., 1971, Energetic cost of running and heat balance in a large bird, the Rhea, Am. J. Physiol. 221:597-601.PubMedGoogle Scholar
  200. Thomas, D. G., 1997, Arid environments: their nature and extent, in: Arid Zone Geomorphology: Process, Form and Change in Drylands (D. G. Thomas, ed.), John Wiley, New York, pp. 2-12.Google Scholar
  201. Thornthwaite, C. W., 1948, An approach toward a rational classification of climate, Geogr. Rev. 38:55-94.Google Scholar
  202. Tieleman, B. I., and Williams, J. B., 1999, The role of hyperthermia in the water economy of desert birds, Physiol. Biochem. Zool. 72:87-100.Google Scholar
  203. Tieleman, B. I., and Williams, J. B., 2000, The adjustment of avian metabolic rates and water fluxes to desert environments, Physiol. Biochem. Zool. 73:461-479.PubMedGoogle Scholar
  204. Tieleman, B. I., Williams, J. B., Michaeli, G., and Pinshow, B., 1999, The role of the nasal passages in the water economy of Crested Larks and Desert Larks, Physiol. Biochem. Zool. 72:219-226.PubMedGoogle Scholar
  205. Tracy, C. R., 1982, Biophysical modeling in reptilian physiology and ecology, in: Biology of the Reptilia (C. Gans and F. H. Pough, eds.), Academic Press, London, pp. 275-321.Google Scholar
  206. Valtin, H., 1983, Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health, Little, Brown and Company, Boston.Google Scholar
  207. van Devender, T. R., and Spaulding, W. G., 1983, Development of vegetation and climate in the southwestern United States, in: Origin and Evolution of Deserts (S. G. Wells and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 131-156.Google Scholar
  208. Walker, C. A., 1981, New subclass of birds from the Cretaceous of South America, Nature 292:51-53.Google Scholar
  209. Walsberg, G. E., 1977, Ecology and energetics of contrasting social systems in Phainopepla nitens (Aves: Ptilogonatidae), Univ. Calif. Publ. Zool. 108:1-63.Google Scholar
  210. Walsberg, G. E., 1983, Avian ecological energetics, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 161-220.Google Scholar
  211. Walsberg, G. E., 1986, Thermal consequences of roost-site selection: the relative importance of three modes of heat conservation, Auk 103:1-7.Google Scholar
  212. Walsberg, G. E., 1990, Communal roosting in a very small bird: consequences for the thermal and respiratory gas environments, Condor 92:795-798.Google Scholar
  213. Walsberg, G. E., 1993, Thermal consequences of diurnal microhabitat selection in a small bird, Omis Scand. 24:174-182.Google Scholar
  214. Walsberg, G. E., and King, J. R., 1978, The relationship of the external surface area of birds to skin surface and body mass, J. Exp. Biol. 76:185-189.Google Scholar
  215. Walsberg, G. E., and Wolf, B. 0., 1996, An appraisal of operative temperature mounts as tools for studies of ecological energetics, Physiol. Zool. 69:658-681.Google Scholar
  216. Walter, H., 1986, The Namib Desert, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 245-282.Google Scholar
  217. Weathers, W. W., 1979, Climatic adaptation in avian standard metabolic rate, Oecologia 42:81-89.Google Scholar
  218. Weathers, W. W., 1981, Physiological thermoregulation in heat-stressed birds: consequences of body size, Physiol. Zool. 54:345-361.Google Scholar
  219. Weathers, W. W., and Caccamise, D. F., 1975, Temperature regulation and water require ments of the Monk parakeet, Myiopsitta monachus, Oecologia 18:329-342.Google Scholar
  220. Weathers, W. W., and Schoenbaechler, D. C., 1976, Regulation of body temperature in the Budgerigar, Melopsittacus undulatus, Aust. J. Zool. 24:39-47.Google Scholar
  221. Weathers, W. W., and Siegel, R. B., 1995, Body size establishes the scaling of avian postnatal metabolic rate: an interspecific analysis using phylogenetically independent contrasts, Ibis 137:532-542.Google Scholar
  222. Webster, M. D., and Bernstein, M. H., 1987, Ventilated capsule measurements of cutaneous evaporation in Mourning Doves, Condor 89:863-868.Google Scholar
  223. Webster, M. D., and King, J. R., 1987, Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia, J. Comp. Physiol. B 157: 253-260.PubMedGoogle Scholar
  224. Webster, M. D., and Weathers, W.W.,1988, Effect of wind and air temperature on metabolic rate in Verdins, Auriparus flaviceps,Physiol. Zool. 61:543-554.Google Scholar
  225. Webster, M. D., Campbell, G. S., King, J. R., 1985, Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage, Physiol. Zool. 58:58-70.Google Scholar
  226. Welch, W. R., and Tracy, C. R., 1977, Respiratory water loss: a predictive model, J. Theor. Biol. 65:253-265.PubMedGoogle Scholar
  227. Wells, S. G., Bullard, T. F., Smith, L. N., 1982, Origin and evolution of deserts in the basin and range of Colorado plateau provinces of western North America, in: The Geological Story of the World’s Deserts (T. L. Smiley, ed.), Striae 17, Uppsala, pp. 101-111.Google Scholar
  228. Werger, M. A., 1986, The Karoo and southern Kalahari, in: Hot Deserts and Arid Shrub-lands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 283-354.Google Scholar
  229. Westoby, M., Leishman, M. R., and Lord, J. M., 1995, On misinterpreting the “phylogenetic correction”, J. Ecol. 83:531-534.Google Scholar
  230. Williams, J. B., 1996, A phylogenetic perspective of evaporative water loss in birds, Auk 113:457-472.Google Scholar
  231. Williams, J. B., 1999, Heat production and evaporative water loss of Dune Larks from the Namib desert, Condor 101:432-438.Google Scholar
  232. Williams, J. B., Pacelli, M. M., and Braun, E. J., 1991, The effect of water deprivation on renal function in conscious unrestrained Gambel’s Quail (Callipepla gambelii), Physiol. Zool. 64:1200-1216.Google Scholar
  233. Williams, J. B., Bradshaw, D., and Schmidt, L., 1995, Field metabolism and water requirements of Spinifex Pigeons (Geophaps plumifera) in Western Australia, Aust. J. Zool. 43:1-15.Google Scholar
  234. Williams, J. B., Tieleman, B. I., and Shobrak, M., 1999, Lizard burrows provide thermal refugia for larks in the Arabian desert, Condor 101:714-717.Google Scholar
  235. Williams, O. B., Calaby, J. H., 1985, The hot deserts of Australia, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 269-299.Google Scholar
  236. Willoughby, E. J., 1971, Biology of larks (Aves: Alaudidae) in the central Namib Desert, Zool. Afr. 6:133-176.Google Scholar
  237. Withers, P. C., and Williams, J. B., 1990, Metabolic rate and respiratory physiology of an arid-adapted Australian bird, the Spinifex Pigeon, Condor 92:961-969.Google Scholar
  238. Withers, P. C., Siegfried, W. R., and Louw, G. N., 1981, Desert Ostrich exhales unsaturated air, S. Afr. J. Sci. 77:569-570.Google Scholar
  239. Wolf, B. O., and Walsberg, G. E., 1996a, Thermal effects of radiation and wind on a small bird and implications for microsite selection, Ecology 77:2228-2236.Google Scholar
  240. Wolf, B. O., and Walsberg, G. E., 1996b, Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird, J. Exp. Biol. 199:451-457.Google Scholar
  241. Wolf, B. O., Wooden, D. M., and Walsberg, G. E., 1996, The use of thermal refugia by two small desert birds, Condor 98:424-428.Google Scholar
  242. Wright, P. A., 1995, Nitrogen excretion: three end products, many physiological roles, J. Exp. Biol. 198: 273-281.PubMedGoogle Scholar
  243. Yousef, M. K., and Johnson, H. D., 1975, Thyroid activity in desert rodents: a mechanism for lowered metabolic rate, Am. J. Physiol. 229:427-431.PubMedGoogle Scholar
  244. Zubakov, V. A., Borzenkova, I. I., 1990, Global Paleoclimate of the Late Cenozoic, Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.Department of Evolution Ecology and Organismal BiologyOhio State UniversityColumbusUSA
  2. 2.Zoological LaboratoryUniversity of GroningenHarenThe Netherlands

Personalised recommendations