Skip to main content

Physiological Ecology and Behavior of Desert Birds

  • Chapter
Current Ornithology

Part of the book series: Current Ornithology ((CUOR,volume 16))

Abstract

Two major evolutionary events shaped current vertebrate life forms: the transition from water to land during the Carboniferous period and the development of endothermy during the Triassic period (Freeman and Herron, 1998). Nascent terrestrial animals experienced new ecological opportunities because of the water to land transition, while at the same time they confronted new physiological challenges such as maintaining an aqueous internal milieu in a desiccating environment (Gordon and Olson, 1995). With the advent of endothermy, land animals may have increased their fitness, but their need for energy must have risen by as much as an order of magnitude compared to their ectothermic ancestors (Bartholomew 1982; Bennett and Dawson, 1976). Endothermy also exacerbated problems of water loss because high rates of metabolism were associated with elevated respiratory water loss as well as increased water loss via urine and feces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akester, A. R., Anderson, R. S., Hill, K. J., and Osbaldiston, G. W., 1967, A radiographic study of urine flow in the domestic fowl, Br. Poult. Sci. 8:209-212.

    PubMed  CAS  Google Scholar 

  • Allan, T., Warren, A., 1993, Deserts: The Encroaching Wilderness, Mitchell Beazly International Ltd., London.

    Google Scholar 

  • Alvarez, L. W., 1987, Mass extinctions caused by large bolide impacts, Phys. Today July, 40:24-33.

    CAS  Google Scholar 

  • Amanova, M. B., 1984, The ecological-physiological adaptations of water metabolism in desert birds, J. Arid Environ. 7:199.

    Google Scholar 

  • Anderson, G. L., 1980, Kidney function and post-renal modification of urine in Desert quail, Ph.D. dissertation, University of Arizona, Tucson, pp. 1-187.

    Google Scholar 

  • Anderson, G. L., and Braun, E. J., 1985, Postrenal modification of urine in birds, Am. J. Physiol. 248:R93¡ªR98.

    Google Scholar 

  • Apostol, T. M., 1967, Calculus: One-Variable Calculus,with an Introduction to Linear Algebra, John Wiley and Sons, New York.

    Google Scholar 

  • Appleyard, R. F., 1979, Cutaneeous and respiratory water losses in the Ring Dove, Streptopelia risoria, Ph.D. dissertation, Washington State University, Pullman.

    Google Scholar 

  • Arad, Z., and Marder, J., 1982, Comparative thermoregulation of four breeds of fowls (Gallus domesticus) exposed to gradual increase of ambient temperatures, Comp. Biochem. Physiol. 72A:179-184.

    Google Scholar 

  • Arieli, Y., Feinstain, N., Reber, P., and Marder, J., 1995, The p-adrenoreceptor antagonist propranolol increases blood-vessels permeability in heat-acclimated Rock Pigeons (Columba livia), Eur. J. Physiol.430:214.

    Google Scholar 

  • Aschoff, J., and Pohl, H., 1970, Rhythmic variations in energy metabolism, Fed. Proc. 29:1541-1552.

    PubMed  CAS  Google Scholar 

  • Axelrod, D. I., 1983, Paleobotanical history of the western deserts, in: Origin and Evolution of Deserts (S. G. Wells, and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 113-129.

    Google Scholar 

  • Bakken, G. S., 1976, A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data, J. Theor. Biol. 60:337-384.

    PubMed  CAS  Google Scholar 

  • Bakken, G. S., 1980, The use of standard operative temperature in the study of the thermal energetics of birds, Physiol. Zool. 53:108-119.

    Google Scholar 

  • Bakken, G. S., 1990, Estimating the effect of wind on avian metabolic rate with standard operative temperature, Auk 107:587-594.

    Google Scholar 

  • Bakken, G. S., and Gates, D. M., 1975, Heat transfer analysis of animals: some implications for field ecology, physiology and evolution, in: Perspectives of Biophysical Ecology (D. M. Gates, and R. B. Schmerl, eds.), Springer-Verlag, New York, pp. 225-290.

    Google Scholar 

  • Bakken, G. S., Buttemer, W. A., Dawson, W. R., and Gates, D. M., 1981, Heated taxidermic mounts: a means of measuring the standard operative temperature affecting small animals, Ecology 62:311-318.

    Google Scholar 

  • Bakken, G. S., Murphy, M. T., and Erskine, D. J., 1991, The effect of wind and air temperature on metabolism and evaporative water loss rates of Dark-eyed Juncos, Junco hyemalis: A standard operative temperature, Physiol. Zool. 64:1023-1049.

    Google Scholar 

  • Bartholomew, G. A., 1964, The roles of physiology and behavior in maintenance of horneo-stasis in the desert environment, Symposium of the Society for Experimental Biology 18:7-29.

    Google Scholar 

  • Bartholomew, G. A., 1972, The water economy of seed-eating birds that survive without drinking, Proceedings of the 15th International Ornithological Congress, W. Junk, The Hague, pp. 237-254.

    Google Scholar 

  • Bartholomew, G. A., 1982, Body temperature and energy metabolism, in: Animal Physiology: Principals and Adaptations (M. S. Gordon, ed.), Macmillan, New York, pp. 333-406.

    Google Scholar 

  • Bartholomew, G. A., 1986, The role of natural history in contemporary biology, BioScience 36:324-329.

    Google Scholar 

  • Bartholomew, G. A., and Cade, T. J., 1956, Water consumption of House Finches, Condor 58:406-412.

    Google Scholar 

  • Bartholomew, G. A., and Cade, T. J., 1963, The water economy of land birds, Auk 80: 504-539.

    Google Scholar 

  • Bartholomew, G. A., and Dawson, W. R., 1953, Respiratory water loss in some birds of the southwestern United States, Physiol. Zool. 26:162-166.

    Google Scholar 

  • Bartholomew, G. A., and MacMillen, R. E., 1960, The water requirements of Mourning Doves and their use of sea water and NaC1 solutions, Physiol. Zool. 33:171-178.

    Google Scholar 

  • Bartholomew, G. A., and MacMillen, R. E., 1961, Water economy of the California Quail and its use of sea water, Auk 78:505-514.

    Google Scholar 

  • Bender, G. L., 1982, Introduction, in: Reference Handbook on the Deserts of North America (G. L. Bender, ed.), Greenwood Press, Westport, CT, pp. 1-6.

    Google Scholar 

  • Bennett, A. F., Dawson, W. R., 1976, Metabolism, in: Biology of the Reptilia (C. Gans and W. R. Dawson, eds.), Academic Press, New York, pp. 127-223.

    Google Scholar 

  • Bennett, A. F., Huey, R. B., 1990, Studying the evolution of physiological performance, in: Oxford Surveys in Evolutionary Biology (D. J. Futuyma and J. Antonovics, eds.), Oxford University Press, Oxford, pp. 251-284.

    Google Scholar 

  • Bernstein, M. H., 1971, Cutaneous water loss in small birds, Condor 73:468-469.

    Google Scholar 

  • Beuchat, C. A., 1990, Body size, medullary thickness, and urine concentrating ability in mammals, Am. J. Physiol. 258:R298¡ªR308.

    Google Scholar 

  • Bindslev, N., and Skadhauge, E., 1971, Salt and water permeability of the epithelium of the coprodeum and large intestine in the normal and dehydrated fowl (Gallus domesticus): in vivo perfusion studies, J. Physiol. (London) 216:753-768.

    CAS  Google Scholar 

  • Birkebak, R. C., 1966, Heat transfer in biological systems, Int. Rev. Gen. Exper. Zool. 2: 269-344.

    Google Scholar 

  • Björklund, M., 1997, Are “comparative methods” always necessary?, Oikos 80:607-612.

    Google Scholar 

  • Bouverot, P., Hildwein, G., and Le Goff, D., 1974, Evaporative water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat, Respir. Physiol. 21:255-269.

    PubMed  CAS  Google Scholar 

  • Bradshaw, S. D., 1986, Ecophysiology of Desert Reptiles, Academic Press, Sydney, Australia

    Google Scholar 

  • Braun, E. J., 1985, Comparative aspects of the urinary concentrating process, Renal Physiology 8:249-260.

    PubMed  CAS  Google Scholar 

  • Braun, E. J., 1993, Renal function in birds, in: New Insights in Vertebrate Kidney Function (J. A. Brown, R. J. Belmont, and J. C. Rankin, eds.), Cambridge University Press, Cambridge, pp. 167-188.

    Google Scholar 

  • Braun, E. J., and Dantzler, W. H., 1972, Function of mammalian-type and reptilian-type nephrons in kidney of Desert Quail, Am. J. Physiol. 222:617-629.

    PubMed  CAS  Google Scholar 

  • Brummermann, M., and Braun, E. J., 1994, The role of the lower intestinal tract in avian osmoregulation, in: Integrative and Cellular Aspects of Autonomic Functions: Temperature and Osmoregulation (K. Pleschka, and R. Gerstberger, eds.), John Libbey Eurotext, Paris, pp. 517-525.

    Google Scholar 

  • Calder, W. A., 1984, Size, Function and Life History, Harvard University Press, Cambridge.

    Google Scholar 

  • Calder, W. A., and King, J. R., 1974, Thermal and caloric relationships of birds, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 259-413.

    Google Scholar 

  • Calder, W. A., and Braun, E. J., 1983, Scaling of osmotic regulation in mammals and birds, Am. J. Physiol. 244:R601¡ªR606.

    Google Scholar 

  • Calow, P., 1987, Evolutionary Physiological Ecology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Campbell, G. S., 1977, An Introduction to Environmental Biophysics, Springer-Verlag, New York, pp. 1-159.

    Google Scholar 

  • Chao, S. C., and Xing, J. M., 1982, Origin and development of the Shamo (sandy deserts) and the Gobi (stony deserts) of China, in: Geological Story of the World’s Deserts (T. L. Smiley, ed.), Uppsala, Striae 17:79-91.

    Google Scholar 

  • Chappell, M. A., and Bartholomew, G. A., 1981, Standard operative temperatures and thermal energetics of the Antelope Ground Squirrel Ammospermophilus leucurus, Physiol. Zool. 54:81-93.

    Google Scholar 

  • Chappell, M. A., Goldstein, D. L., and Winkler, D. W., 1984, Oxygen consumption, evaporative water loss, and temperature regulation of California Gull chicks (Larus californicus) in a desert rookery, Physiol. Zool. 57:204-214.

    Google Scholar 

  • Chew, R. M., 1951, The water exchange of some small mammals, Ecol. Monogr. 21:215-225. Chew, R. M., 1961, Water metabolism of desert-inhabiting vertebrates, Biol. Rev. Cambridge Philos. Soc. 36:1-31.

    Google Scholar 

  • Chew, R. M., 1965, Water metabolism of mammals, in: Physiological Mammalogy (W. V. Mayer and R. G. van Gelder, eds.), Academic Press, New York, pp. 43-160.

    Google Scholar 

  • Chiappe, L. M., 1995, The first 85 million years of avian evolution, Nature 378:349-355.

    CAS  Google Scholar 

  • Cloudsley-Thompson, J. L., 1984, Introduction, in: Sahara Desert (J. L. Cloudsley-Thompson, ed.), Pergamom Press, Oxford, pp. 1-15.

    Google Scholar 

  • Cox, G. W., 1983, Foraging behaviour of the Dune Lark, Ostrich 54:113-120.

    Google Scholar 

  • Crawford, E. C., and Lasiewski, R. C., 1968, Oxygen consumption and respiratory evaporation of the Emu and Rhea, Condor 70:333-339.

    Google Scholar 

  • Daan, S., Masman, D., and Groenewold, A., 1990, Avian basal metabolic rates: their association with body composition and energy expenditure in nature, Am. J. Physiol. 259:R333¡ªR340.

    Google Scholar 

  • Daniels, M., 1994, Report on birds from the Naze London Clay, Society of Avian Paleontology and Evolution Newsletter 8:10-12.

    Google Scholar 

  • Dantzler, W. H., 1970, Kidney function in desert vertebrates, in: Memoirs of the Society for Endocrinology: Hormones and the Environment (G. K. Benson and J. G. Phillips, eds.), Cambridge, London, pp. 157-190.

    Google Scholar 

  • Davies, S. J. J. F., 1982, Behavioural adaptations of birds to environments where evaporation is high and water is in short supply, Comp. Biochem. Physiol. 71A:557-566.

    Google Scholar 

  • Davies, S. J. J. F., 1984, Nomadism as a response to desert conditions in Australia, J. Arid Environ. 7:183-195.

    Google Scholar 

  • Dawson, W. R., 1976, Physiological and behavioural adjustments of birds to heat and aridity, Proceedings of the 16th International Ornithological Congress, Australian Academy of Science, Canberra pp. 455-467.

    Google Scholar 

  • Dawson, W. R., 1982, Evaporative losses of water by birds, Comp. Biochem. Physiol. 71A:495-509.

    Google Scholar 

  • Dawson, W. R., 1984, Physiological studies of desert birds: present and future considerations, J. Arid Environ. 7:133-155.

    Google Scholar 

  • Dawson, W. R., Bartholomew, G. A., 1968, Temperature regulation and water economy of desert birds, in: Desert Biology (G. W. Brown Jr., ed.), Academic Press, New York, pp. 357-394.

    Google Scholar 

  • Dawson, W. R., and Bennett, A. F., 1973, Roles of metabolic level and temperature regulation in the adjustment of western Plumed Pigeons (Lophophaps ferruginea) to desert conditions, Comp. Biochem. Physiol. 44A:249-266.

    Google Scholar 

  • Dawson, W. R., O’Connor, T. P., 1996, Energetic features of avian thermoregulatory responses, in: Avian Energetics and Nutritional Ecology (C. Carey, ed.), Chapman and Hall, New York, pp. 85-124.

    Google Scholar 

  • Dawson, W R, Schmidt-Nielsen, K., 1964, Terrestrial animals in dry heat: desert birds, in: Handbook of Physiology: Adaptation to the Environment (C. G. Wilber, E. F. Adolph, and D. B. Dill, eds.), American Physiological Society, Washington D.C., pp. 481-492.

    Google Scholar 

  • Dawson, W. R., Carey, C., Adkisson, C. S., and Ohmart, R. D., 1979, Responses of Brewer’s and Chipping Sparrows to water restriction, Physiol. Zoo/. 42:529-541.

    Google Scholar 

  • De Jong, A. A., 1976, The influence of simulated solar radiation on the metabolic rate of White-crowned sparrows, Condor 78:174-179.

    Google Scholar 

  • Dmi’el, R., and Tel-Tzur, D., 1985, Heat balance of two starling species (Sturnus vulgaris and Onychognathus tristami) from temperate and desert habitats, J. Comp. Physiol. 155:395-402.

    Google Scholar 

  • Dragan, J. C., and Airinei, S., 1989, Geoclimate and History, Nagard, Rome, Italy.

    Google Scholar 

  • El-Baz, F., 1983, A geological perspective of the desert, in: Origin and Evolution of Deserts (S. G. Wells, and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 163-183.

    Google Scholar 

  • Evenari, M., 1985, The desert environment, in: Hot Deserts and Shrublands (M. Evenari, I. Noy-Meir, and D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 1-22.

    Google Scholar 

  • Feduccia, A., 1996, The Origin and Evolution of Birds, Yale University Press, New Haven, CT.

    Google Scholar 

  • Felsenstein, J., 1985, Phylogenies and the comparative method, Am. Nat. 125:1-15.

    Google Scholar 

  • Frakes, L. A., 1979, Climates throughout Geologic Time, Elsevier, Amsterdam

    Google Scholar 

  • Frakes, L. A., Francis, J. E., and Syktus, J. I., 1992, Climate Modes of the Phanerozoic, Cambridge University Press, Cambridge.

    Google Scholar 

  • Freeman, S., and Herron, J. C., 1998, Evolutionary Analysis, Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Garland, Jr., T., and Carter, P. A., 1994, Evolutionary physiology, Annu. Rev. Physiol. 56: 579-621.

    PubMed  Google Scholar 

  • Garland, Jr., T., Harvey, P. H., and Ives, A. R., 1992, Procedures for the analysis of comparative data using phylogenetically independent contrasts, Systematic Biology 41: 18-32.

    Google Scholar 

  • Gerson, R., 1982, The Middle East: landforms of a planetary desert through environmental changes, Striae 17:52-78.

    Google Scholar 

  • Gessaman, J A, 1972, Bioenergetics of the Snowy Owl (Nyctea scandiaca), Arct. Alp. Res. 4:223-238.

    Google Scholar 

  • Goldstein, D. L., 1983, The effect of wind on avian metabolic rate with particular reference to Gambel’s Quail, Physiol. Zool. 56:485-492.

    Google Scholar 

  • Goldstein, D. L., 1984, The thermal environment and its constraint on activity in Desert Quail in summer, Auk 101:542-550.

    Google Scholar 

  • Goldstein, D. L., and Braun, E. J., 1989, Structure and concentrating ability in the avian kidney, Am. J. Physiol. 256:R501¡ªR509.

    Google Scholar 

  • Gordon, M. S., and Olson, E. C., 1995, Invasions of the Land: The Transitions of Organisms from Aquatic to Terrestrial Life, Columbia University Press, New York.

    Google Scholar 

  • Grafen, A., 1989, The phylogenetic regression, Philos. Trans. R. Soc. London, Ser. B 326: 199-257.

    Google Scholar 

  • Grayson, D. K., 1993, The Desert’s Past, Smithsonian Institute Press, Washington, D. C.

    Google Scholar 

  • Greenwald, L., and Stetson, D., 1988, Urine concentration and the length of the renal papilla, News Physiol. Sci. 3:46-49.

    Google Scholar 

  • Grove, A. T., 1977, The geography of semi-arid lands, Philos. Trans. R. Soc. London, Ser. B 278:457-475.

    Google Scholar 

  • Heim de Balsac, H., 1936, Biog¨¦ographie des mammif¨¨res et des oiseaux de l’Afrique du Nord, Bulletin Biologique de France et Belgique Suppl. 21:1-447.

    Google Scholar 

  • Heisinger, J. F., and Breitenbach, R. P., 1969, Renal structural characteristics as indexes of renal adaptations for water conservation in the genus Sylvilagus, Physiol. Zool. 42: 160-172.

    Google Scholar 

  • Hillenius, W. J., 1992, The evolution of nasal turbinates and mammalian endothermy, Paleobiology 18:17-29.

    Google Scholar 

  • Hinds, D. S., and Calder, W. A., 1973, Temperature regulation of the Pyrrhuloxia and the Arizona Cardinal, Physiol. Zool. 46:55-71.

    Google Scholar 

  • Hinsley, S. A., 1994, Daily time budgets and activity patterns of Sandgrouse (Pteroclididae) in contrasting arid habitats in Spain and Israel, J. Arid Environ. 26: 373-382.

    Google Scholar 

  • Hou, L. H., and Zhang, J., 1993, A new fossil bird from Lower Cretaceous of Liaoning, Vertebrate PalAsiatica 7:217-224.

    Google Scholar 

  • Howell, T. R., Araya, B., and Millie, W. R., 1974, Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool. 104:1-57.

    Google Scholar 

  • Hudson, D. M., and Bernstein, M. H., 1981, Temperature regulation and heat balance in flying White-necked Ravens, Corvus cryptoleucus, J. Exp. Biol. 90:267-282.

    Google Scholar 

  • Hudson, J. W., and Kimzey, S. L., 1966, Temperature regulation and metabolic rhythms in populations of the House Sparrow, Passer domesticus, Comp. Biochem. Physiol. 17: 203-217.

    PubMed  CAS  Google Scholar 

  • Hunt, C. B., 1983, Physiographic overview of our arid lands in the western U.S., in: Origin and Evolution of Deserts (S.G. Wells, and D.R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 7-63.

    Google Scholar 

  • Jackson, D. C., and Schmidt-Nielsen, K., 1964, Counter-current heat exchange in the respiratory passages, Proc. Nat. Acad. Sci. U.S.A. 51:1192-1197.

    CAS  Google Scholar 

  • Janzen, D. H., 1995, Who survived the Cretaceous?, Science 268:785.

    CAS  Google Scholar 

  • Johnson, O. W., 1974, Relative thickness of the renal medulla in birds, J. Morphol. 142: 277-284.

    Google Scholar 

  • Johnson, O. W., and Skadhauge, E., 1975, Structural-functional correlations in the kidneys and observations of colon and cloacal morphology in certain Australian birds, j. Anat. 120:495-505.

    Google Scholar 

  • Jones, C. R., 1982, The Kalahari of Southern Africa, in: The Geological Story of the World’s Deserts (T. L. Smiley, ed.), Striae 17:20-34.

    Google Scholar 

  • Kaiser, T. J., and Bucher, T. L., 1985, The consequences of reverse sexual size dimorphism for oxygen consumption, ventilation, and water loss in relation to ambient temperature in the Prairie Falcon, Falco mexicanus,Physiol. Zool. 58:748-758.

    Google Scholar 

  • Keast, A., 1959, Australian birds: their zoogeography and adaptations to an arid continent, in: Biogeography and Ecology in Australia (A. Keast, R. L. Crocker, C. S. Christian, eds.), W. Junk, The Hague, pp. 89-114.

    Google Scholar 

  • Kennett, J. P., 1980, Palaeoceanographic and biogeographic evaluation of the southern ocean during the Cenozoic, and Cenozoic microfossil datums, Palaeogeogr. Paleoclimatol. Palaeoecol. 31:123-152.

    Google Scholar 

  • Kersten, M., Bruinzeel, L. W., Wiersma, P., and Piersma, T., 1998. Reduced basal metabolic rate of migratory waders wintering in coastal Africa, Ardea 86:71-80.

    Google Scholar 

  • King, J. R., 1974, Seasonal allocation of time and energy resources in birds, in: Avian Energetics (R. A. Paynter, Jr., ed.), Nuttall Ornithological Club, Cambridge, MA, pp. 4-85.

    Google Scholar 

  • Koeppen, B. M., and Stanton, B. A., 1997, Renal Physiology, Mosby-Year Book, St. Louis, MO, pp. 1-199.

    Google Scholar 

  • Konarzewski, M., and Diamond, J., 1995, Evolution of basal metabolic rate and organ masses in laboratory mice, Evolution 49:1239-1248.

    Google Scholar 

  • Köppen, W., 1931, Die Klimate der Erde, Walter de Gruyter and So., Berlin.

    Google Scholar 

  • Lancaster, N., 1989, The Namib Sand Sea: Dune Forms, Processes and Sediments,A.A. Bolkema, Rotterdam.

    Google Scholar 

  • Lancaster, J., Lancaster, N., and Seely, M. K., 1984, Climate of the central Namib Desert, Madoqua 14:4-61.

    Google Scholar 

  • Larochelle, J., 1998, Comments on a negative appraisal of taxidermic mounts as tools for studies of ecological energetics, Physiol. Zool. 71:596-598.

    PubMed  CAS  Google Scholar 

  • Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relationship between standard metabolic rate and body weight in birds, Condor 69:13-23.

    Google Scholar 

  • Lasiewski, R. C., Acosta, A. L., and Bernstein, M. H., 1966, evaporative water loss in birds: I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability, Comp. Biochem. Physiol. 19:445-457.

    Google Scholar 

  • Lasiewski, R. C., Bernstein, M. H., and Ohmart, R. D., 1971, Cutaneous water loss in the Roadrunner and Poor-will, Condor 73:470-472.

    Google Scholar 

  • Louw, G. N., and Seely, M. K., 1982, Ecology of Desert Organisms, Longman, London.

    Google Scholar 

  • Lucas, A. M., and Stettenheim, P. R., 1972, Avian anatomy, in: Agricultural Handbook 362, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Lustick, S., 1969, Bird energetics: effects of artificial radiation, Science 163:387-390.

    PubMed  CAS  Google Scholar 

  • Lustick, S., Talbot, S., and Fox, E. L., 1970, Absorption of radiant energy in Red-winged Blackbirds Agelaius phoeniceus, Condor 72:471-473.

    Google Scholar 

  • Maclean, G. L., 1970, The biology of the larks (Alaudidae) of the Kalahari sandveld, Zool. Afr. 5:7-39.

    Google Scholar 

  • Maclean, G. L., 1996, Ecophysiology of Desert Birds, Springer-Verlag, Berlin, pp. 1-167.

    Google Scholar 

  • MacMillen, R. E., 1990, Water economy of granivorous birds: a predictive model, Condor 92:379-392.

    Google Scholar 

  • MacMillen, R. E., and Baudinette, R. V., 1993, Water economy of granivorous birds: Australian parrots, Functional Ecol. 7:704-712.

    Google Scholar 

  • Madsen, H., 1930, Quelques remarques sur la cause pouruoi les grand oiseaux au Soudan planent si haut au milieu de la journ¨¦e, Vidensk. Medd. Dan. Naturhist. Foren. Khobenhavn 8:301-303.

    Google Scholar 

  • Maloney, S. K., and Dawson, T. J., 1998, Changes in pattern of heat loss at high ambient temperature caused by water deprivation in a large flightless bird, the Emu, Physiol. Zool. 71:712-719.

    PubMed  CAS  Google Scholar 

  • Marder, J., and Arieli, Y., 1988, Heat balance of acclimated Pigeons (Columba livia) exposed to temperatures up to 60¡ãC, Comp. Biochem. Physiol. 91A:165-170.

    Google Scholar 

  • Marder, J., and Ben-Asher, J., 1983, Cutaneous water evaporation-1. Its significance in heat-stressed birds, Comp. Biochem. Physiol. 75A:425-431.

    Google Scholar 

  • Marder, J., Gavrieli-Levin, I., and Raber, P., 1986, Cutaneous evaporation in heat-stressed Spotted Sandgrouse, Condor 88:99-100.

    Google Scholar 

  • Marder, J., Arieli, Y., and Ben-Asher, J., 1989, Defense strategies against environmental heat stress in birds, Isr. J. Zool. 36:61-75.

    Google Scholar 

  • Martins, E. P., and Garland, Jr., T., 1991, Phylogenetic analyses of the correlated evolution of continuous characters: a simulated study, Evolution 45:534-557.

    Google Scholar 

  • Mautz, W. J., 1982, Patterns of evaporative water loss, in: Biology of the Reptilia (C. Gans and F. H. Pough, eds,) Academic Press, London, pp. 443-481.

    Google Scholar 

  • McFarland, D., and Baher, E., 1968, Factors affecting the feather posture in the Barbary Dove, Anim. Behay. 16:171-177.

    CAS  Google Scholar 

  • McGilp, J. N., 1932, Heat in the interior of South Australia, South Austr. Ornithol. 11: 160-173.

    Google Scholar 

  • McGinnies, W. G., 1979, Description and structure of arid ecosystems: general description of desert areas, in: Arid-land Ecosystems: Structure,Functioning and Management (D.W. Goodall, F.A. Perry, and K.W.Howes, eds.), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • McNab, B. K., 1980, On estimating thermal conductance in endotherms, Physiol. Zool. 53:145-156.

    Google Scholar 

  • McNabb, F. M. A., 1969, A comparative study of water balance in three species of quail: I. Water turnover in the absence of temperature stress, Comp. Biochem. Physiol. 28:1045-1058.

    Google Scholar 

  • McNabb, F. M. A., and McNabb, R. A., 1975, Proportions of ammonia, urea, urate and total nitrogen in avian urine and quantitative methods for their analysis on a single urine sample, Poult. Sci. 54:1498-1505.

    PubMed  CAS  Google Scholar 

  • McNabb, F. M. A., and Poulson, T. L., 1970, Uric acid excretion in pigeons, Columba livia, Comp. Biochem. Physiol. 33:933-939.

    Google Scholar 

  • McNabb, F. M. A., McNabb, R. A., Prather, I. D., Conner, R. N., and Adkisson, C. S., 1980, Nitrogen excretion in Turkey Vultures, Condor 82:219-223.

    Google Scholar 

  • Mead, J. I., 1987, Quaternary records of Pika, Ochotona, in North America, Boreas 16: 165-171.

    Google Scholar 

  • Meigs, P., 1953, Reviews of Research on Arid Zone Hydrology,UNESCO, Paris.

    Google Scholar 

  • Meigs, P., 1966, Geography of Coastal Deserts, UNESCO, Paris, pp. 1-140.

    Google Scholar 

  • Menon, G. K., Baptista, L. F., Elias, P. M., and Bouvier, M., 1988, Fine structural basis of thecutaneous water barrier in nestling Zebra Finches Peophila guttata, Ibis 130:503-511.

    Google Scholar 

  • Menon, G. K., Baptista, L. F., Brown, B. S., and Elias, P. M., 1989, Avian epidermal differentiation: II. Adaptive response of permeability barrier to water deprivation and replenishment, Tiss. Cell 21:83-92.

    CAS  Google Scholar 

  • Menon, G. K., Maderson, P. F. A., Drewes, R. C., Baptista, L. F., Price, L. F., and Elias, P. M., 1996, Ultrastructural organization of avian stratum conreum lipids as the basis for facultative cutaneous waterproofing, J. Morphol. 227:1-13.

    PubMed  CAS  Google Scholar 

  • Merkt, J. R., and Taylor, C. R., 1994, “Metabolic switch” for desert survival, Proc. Nat. Acad. Sci. U.S.A. 91:12313-12316.

    CAS  Google Scholar 

  • Miles, D. B., and Dunham, A. E., 1993, Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses, Annu. Rev. Ecol. Syst. 24: 587-619.

    Google Scholar 

  • Miller, A. H., 1963, Desert adaptations of birds, Proceedings of the 13th International Ornithological Congress, American Ornithologists’ Union, Baton Rouge, pp. 666-674.

    Google Scholar 

  • Mount, L. E., 1979, Adaptation to Thermal Environment, Edward Arnold, London, pp. 1-333.

    Google Scholar 

  • Murrish, D. E., 1973, Respiratory heat and water exchange in penguins, Respir. Physiol. 19:262-270.

    PubMed  CAS  Google Scholar 

  • Nagy, K. A., 1987, Field metabolic rate and food requirement scaling in mammals and birds, Ecol. Monogr. 57:111-128.

    Google Scholar 

  • Nagy, K. A., Peterson, C. C., 1988, Scaling Water Flux Rate in Animals, University of California Press, Berkeley.

    Google Scholar 

  • Noy-Meir, I., 1973, Desert ecosystems: environment and producers, Annu. Rev. Ecol. Syst. 4:25-41.

    Google Scholar 

  • Nuttonson, M. Y., 1958, The Physical Environment and Agriculture of Australia with Special Reference to its Winter Rainfall Regions, American Institute of Crop Ecology, Washington, D.C.

    Google Scholar 

  • Ohmart, R. D., and Lasiewski, R. C., 1971, Roadrunners: energy conservation by hypothermia and absorption of sunlight, Science 172:67-69.

    PubMed  CAS  Google Scholar 

  • Pagel, M. D., and Harvey, P. H., 1988, Recent developments in the analysis of comparative data, Q. Rev. Biol. 63:413-440.

    PubMed  CAS  Google Scholar 

  • Peltonen, L., Arieli, Y., and Marder, J., 1998, Adaptive changes in the epidermal structure of the heat-acclimated Rock Pigeon (Columba livia): a comparative electron microscopy study, J. Morphol. 235:17-29.

    Google Scholar 

  • Piersma, T., Bruinzeel, L., Drent, R., Kersten, M., van der Meer, J., and Wiersma, P., 1996, Variability in basal metabolic rate of a long-distance migrant shorebird (Red Knot, Calidris canutus) reflects shifts in organ sizes, Physiol. Zool. 69:191-217.

    Google Scholar 

  • Porter, W. P., and Gates, D. M., 1969, Thermodynamic equilibria of animals with environment, Ecol. Monogr. 39:227-244.

    Google Scholar 

  • Prinzinger, R., Prebmar, A., and Schleucher, E., 1991, Body temperature in birds, Comp. Biochem. Physiol. 99A:499-506.

    Google Scholar 

  • Prosser, C. L., 1986, Adaptational Biology: Molecules to Organisms, John Wiley and Sons, New York.

    Google Scholar 

  • Ramsay, D. J., and Thrasher, T. N., 1984, The defense of plasma osmolality, J. Physiol. (Paris) 79:416-420.

    Google Scholar 

  • Randall, D., Burggren, W., and French, K., 1997, Animal Physiology: Mechanisms and Adaptations, W. H. Freeman and Company, New York.

    Google Scholar 

  • Rauh, W., 1985, The Peruvian-Chilean deserts, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, and D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 239-268.

    Google Scholar 

  • Rawles, M. E., 1960, The integumentary system, in: Biology and Comparative Physiology of Birds (A. J. Marshall, ed.), Academic Press, New York, pp. 189-240.

    Google Scholar 

  • Richards, S. A.,1976, Evaporative water loss in domestic fowls and its partition in relation to ambient temperature, J. Agric. Sci. 87:527-532.

    Google Scholar 

  • Ricklefs, R. E., and Hainsworth, F. R., 1968, Temperature dependent behavior of the Cactus Wren, Ecology 49:227-233.

    Google Scholar 

  • Ricklefs, R. E., and Starck, J. M., 1996, Applications of phylogenetically independent contrasts: a mixed progress report, Oikos 77:167-172.

    Google Scholar 

  • Robinson, D. E., Campbell, G. S., and King, J. R., 1976, An evaluation of heat exchange in small birds, J. Comp. Physiol. 105:153-166.

    Google Scholar 

  • Rolfe, D. F. S., and Brown, G. C., 1997, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol. Rev. 77:731-758.

    PubMed  CAS  Google Scholar 

  • Salzman, A. G., 1982, The selective importance of heat stress in gull nest location, Ecology 63:742-751.

    Google Scholar 

  • Schleucher, E., Prinzinger, R., and Withers, P. C., 1991, Life in extreme environments: investigations on the ecophysiology of a desert bird, the Australian Diamond Dove (Geopelia cuneata Latham), Oecologia 88:72-76.

    Google Scholar 

  • Schmidt-Nielsen, K., 1964, Desert Animals, Dover Publications, Inc., New York.

    Google Scholar 

  • Schmidt-Nielsen, K., 1981, Counter-current systems in animals, Sci. Am. 244:118-128.

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen, K., 1984a, Scaling. Why is Animal Size so Important?, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schmidt-Nielsen, K., 1984b, Animal Physiology: Adaptation and Environment, 3rd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Schmidt-Nielsen, K., 1997, Animal Physiology: Adaptation and Environment, 4th ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Schmidt-Nielsen, B., and O’Dell, R., 1961, Structure and concentrating mechanism in the mammalian kidney, Am. J. Physiol. 200:1119-1124.

    PubMed  CAS  Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L., 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull. 99:237-258.

    PubMed  CAS  Google Scholar 

  • Schulz, H., and Seddon, P., 1996, Biology and status of the Houbara Bustard, in: Propagation of the Houbara Bustard (M. Saint Jaime, and Y. Van Heezik, eds.), Kegan Paul International and National Wildlife Research Center, London.

    Google Scholar 

  • Scott, I. M., Yousef, M. K., and Johnson, H. D., 1976, Plasma thyroxine levels of mammals: desert and mountain, Life Sci. 19:807-812.

    PubMed  CAS  Google Scholar 

  • Seely, M. K., 1978, The Namib dune desert: an unusual ecosystem, J. Arid Environ. 1: 117-128.

    Google Scholar 

  • Serventy, D. L., 1971, Biology of desert birds, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 287-339.

    Google Scholar 

  • Seymour, R. S., 1972, Convective heat transfer in the respiratory systems of panting animals, J. Theor. Biol. 35:119-127.

    PubMed  CAS  Google Scholar 

  • Shantz, H. L., 1956, History and problems of arid lands development, in: The Future of Arid Lands (G. F. White, ed.), American Association for the Advancement of Science, Washington, D.C., pp. 3-25.

    Google Scholar 

  • Shmida, A:, 1985, Biogeography of the desert flora, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 23-77.

    Google Scholar 

  • Shobrak, M., 1998, Notes on the breeding and cooling behaviour of Hoopoe Larks Alaemon alaudipes in central Saudi Arabia, Sandgrouse 20:53-55.

    Google Scholar 

  • Sibley, C. G., and Ahlquist, J. E., 1990, Phylogeny and Classification of Birds: A Study in Molecular Evolution, Yale University Press, New Haven.

    Google Scholar 

  • Skadhauge, E., 1981, Osmoregulation in Birds, Springer-Verlag, Berlin.

    Google Scholar 

  • Smith, G., 1984, Climate, in: Sahara Desert (J. L. Cloudsley-Thompson, ed.), Pergamom Press, Oxford, pp. 17-30.

    Google Scholar 

  • Smith, R. M., 1969, Cardiovascular, respiratory, temperature, and evaporative water loss responses of pigeons to varying degrees of heat stress, Ph.D. dissertation, Indiana University, Bloomington.

    Google Scholar 

  • Sperber, I., 1944, Studies on the mammalian kidney, Zool. Bidr. Uppsala 22:249-432.

    Google Scholar 

  • Stallone, J. N., and Braun, E. J., 1985, Contributions of glomerular and tubular mechanisms to antidiuresis in conscious domestic fowl, Am. J. Physiol. 249:F842-F850.

    PubMed  CAS  Google Scholar 

  • Starck, J. M., 1998, Non-independence of data in biological comparisons: a critical appraisal of current concepts, assumptions, and solutions, Theor. Biosci. 117:109-138.

    Google Scholar 

  • Taylor, C. R., Dmi’el, R., Fedak, M., and Schmidt-Nielsen, K., 1971, Energetic cost of running and heat balance in a large bird, the Rhea, Am. J. Physiol. 221:597-601.

    PubMed  CAS  Google Scholar 

  • Thomas, D. G., 1997, Arid environments: their nature and extent, in: Arid Zone Geomorphology: Process, Form and Change in Drylands (D. G. Thomas, ed.), John Wiley, New York, pp. 2-12.

    Google Scholar 

  • Thornthwaite, C. W., 1948, An approach toward a rational classification of climate, Geogr. Rev. 38:55-94.

    Google Scholar 

  • Tieleman, B. I., and Williams, J. B., 1999, The role of hyperthermia in the water economy of desert birds, Physiol. Biochem. Zool. 72:87-100.

    Google Scholar 

  • Tieleman, B. I., and Williams, J. B., 2000, The adjustment of avian metabolic rates and water fluxes to desert environments, Physiol. Biochem. Zool. 73:461-479.

    PubMed  CAS  Google Scholar 

  • Tieleman, B. I., Williams, J. B., Michaeli, G., and Pinshow, B., 1999, The role of the nasal passages in the water economy of Crested Larks and Desert Larks, Physiol. Biochem. Zool. 72:219-226.

    PubMed  CAS  Google Scholar 

  • Tracy, C. R., 1982, Biophysical modeling in reptilian physiology and ecology, in: Biology of the Reptilia (C. Gans and F. H. Pough, eds.), Academic Press, London, pp. 275-321.

    Google Scholar 

  • Valtin, H., 1983, Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health, Little, Brown and Company, Boston.

    Google Scholar 

  • van Devender, T. R., and Spaulding, W. G., 1983, Development of vegetation and climate in the southwestern United States, in: Origin and Evolution of Deserts (S. G. Wells and D. R. Haragan, eds.), University of New Mexico Press, Albuquerque, pp. 131-156.

    Google Scholar 

  • Walker, C. A., 1981, New subclass of birds from the Cretaceous of South America, Nature 292:51-53.

    Google Scholar 

  • Walsberg, G. E., 1977, Ecology and energetics of contrasting social systems in Phainopepla nitens (Aves: Ptilogonatidae), Univ. Calif. Publ. Zool. 108:1-63.

    Google Scholar 

  • Walsberg, G. E., 1983, Avian ecological energetics, in: Avian Biology (D. S. Farner and J. R. King, eds.), Academic Press, New York, pp. 161-220.

    Google Scholar 

  • Walsberg, G. E., 1986, Thermal consequences of roost-site selection: the relative importance of three modes of heat conservation, Auk 103:1-7.

    Google Scholar 

  • Walsberg, G. E., 1990, Communal roosting in a very small bird: consequences for the thermal and respiratory gas environments, Condor 92:795-798.

    Google Scholar 

  • Walsberg, G. E., 1993, Thermal consequences of diurnal microhabitat selection in a small bird, Omis Scand. 24:174-182.

    Google Scholar 

  • Walsberg, G. E., and King, J. R., 1978, The relationship of the external surface area of birds to skin surface and body mass, J. Exp. Biol. 76:185-189.

    Google Scholar 

  • Walsberg, G. E., and Wolf, B. 0., 1996, An appraisal of operative temperature mounts as tools for studies of ecological energetics, Physiol. Zool. 69:658-681.

    Google Scholar 

  • Walter, H., 1986, The Namib Desert, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 245-282.

    Google Scholar 

  • Weathers, W. W., 1979, Climatic adaptation in avian standard metabolic rate, Oecologia 42:81-89.

    Google Scholar 

  • Weathers, W. W., 1981, Physiological thermoregulation in heat-stressed birds: consequences of body size, Physiol. Zool. 54:345-361.

    Google Scholar 

  • Weathers, W. W., and Caccamise, D. F., 1975, Temperature regulation and water require ments of the Monk parakeet, Myiopsitta monachus, Oecologia 18:329-342.

    Google Scholar 

  • Weathers, W. W., and Schoenbaechler, D. C., 1976, Regulation of body temperature in the Budgerigar, Melopsittacus undulatus, Aust. J. Zool. 24:39-47.

    Google Scholar 

  • Weathers, W. W., and Siegel, R. B., 1995, Body size establishes the scaling of avian postnatal metabolic rate: an interspecific analysis using phylogenetically independent contrasts, Ibis 137:532-542.

    Google Scholar 

  • Webster, M. D., and Bernstein, M. H., 1987, Ventilated capsule measurements of cutaneous evaporation in Mourning Doves, Condor 89:863-868.

    Google Scholar 

  • Webster, M. D., and King, J. R., 1987, Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia, J. Comp. Physiol. B 157: 253-260.

    PubMed  CAS  Google Scholar 

  • Webster, M. D., and Weathers, W.W.,1988, Effect of wind and air temperature on metabolic rate in Verdins, Auriparus flaviceps,Physiol. Zool. 61:543-554.

    Google Scholar 

  • Webster, M. D., Campbell, G. S., King, J. R., 1985, Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage, Physiol. Zool. 58:58-70.

    Google Scholar 

  • Welch, W. R., and Tracy, C. R., 1977, Respiratory water loss: a predictive model, J. Theor. Biol. 65:253-265.

    PubMed  CAS  Google Scholar 

  • Wells, S. G., Bullard, T. F., Smith, L. N., 1982, Origin and evolution of deserts in the basin and range of Colorado plateau provinces of western North America, in: The Geological Story of the World’s Deserts (T. L. Smiley, ed.), Striae 17, Uppsala, pp. 101-111.

    Google Scholar 

  • Werger, M. A., 1986, The Karoo and southern Kalahari, in: Hot Deserts and Arid Shrub-lands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 283-354.

    Google Scholar 

  • Westoby, M., Leishman, M. R., and Lord, J. M., 1995, On misinterpreting the “phylogenetic correction”, J. Ecol. 83:531-534.

    Google Scholar 

  • Williams, J. B., 1996, A phylogenetic perspective of evaporative water loss in birds, Auk 113:457-472.

    Google Scholar 

  • Williams, J. B., 1999, Heat production and evaporative water loss of Dune Larks from the Namib desert, Condor 101:432-438.

    Google Scholar 

  • Williams, J. B., Pacelli, M. M., and Braun, E. J., 1991, The effect of water deprivation on renal function in conscious unrestrained Gambel’s Quail (Callipepla gambelii), Physiol. Zool. 64:1200-1216.

    Google Scholar 

  • Williams, J. B., Bradshaw, D., and Schmidt, L., 1995, Field metabolism and water requirements of Spinifex Pigeons (Geophaps plumifera) in Western Australia, Aust. J. Zool. 43:1-15.

    Google Scholar 

  • Williams, J. B., Tieleman, B. I., and Shobrak, M., 1999, Lizard burrows provide thermal refugia for larks in the Arabian desert, Condor 101:714-717.

    Google Scholar 

  • Williams, O. B., Calaby, J. H., 1985, The hot deserts of Australia, in: Hot Deserts and Arid Shrublands (M. Evenari, I. Noy-Meir, D. W. Goodall, eds.), Elsevier, Amsterdam, pp. 269-299.

    Google Scholar 

  • Willoughby, E. J., 1971, Biology of larks (Aves: Alaudidae) in the central Namib Desert, Zool. Afr. 6:133-176.

    Google Scholar 

  • Withers, P. C., and Williams, J. B., 1990, Metabolic rate and respiratory physiology of an arid-adapted Australian bird, the Spinifex Pigeon, Condor 92:961-969.

    Google Scholar 

  • Withers, P. C., Siegfried, W. R., and Louw, G. N., 1981, Desert Ostrich exhales unsaturated air, S. Afr. J. Sci. 77:569-570.

    Google Scholar 

  • Wolf, B. O., and Walsberg, G. E., 1996a, Thermal effects of radiation and wind on a small bird and implications for microsite selection, Ecology 77:2228-2236.

    Google Scholar 

  • Wolf, B. O., and Walsberg, G. E., 1996b, Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird, J. Exp. Biol. 199:451-457.

    Google Scholar 

  • Wolf, B. O., Wooden, D. M., and Walsberg, G. E., 1996, The use of thermal refugia by two small desert birds, Condor 98:424-428.

    Google Scholar 

  • Wright, P. A., 1995, Nitrogen excretion: three end products, many physiological roles, J. Exp. Biol. 198: 273-281.

    PubMed  CAS  Google Scholar 

  • Yousef, M. K., and Johnson, H. D., 1975, Thyroid activity in desert rodents: a mechanism for lowered metabolic rate, Am. J. Physiol. 229:427-431.

    PubMed  CAS  Google Scholar 

  • Zubakov, V. A., Borzenkova, I. I., 1990, Global Paleoclimate of the Late Cenozoic, Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, J.B., Tieleman, B.I. (2001). Physiological Ecology and Behavior of Desert Birds. In: Nolan, V., Thompson, C.F. (eds) Current Ornithology. Current Ornithology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1211-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1211-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5443-7

  • Online ISBN: 978-1-4615-1211-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics