Attributes and Neural Substrates
  • Gordon M. Burghardt
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)


Play is an important aspect of neurobehavioral development. While many agree (e.g., [Byers, 1998]; [Fagen, 1981]), the lack of attention to play has prompted one eminent neuroscience researcher to write, “It is sad that play research has not been of greater interest for neuroscientists… the modern search for the mythological fountain of youth’ should focus as much on the neurobiological nature of mental youthfulness and play as on ways to extend longevity” ([Panksepp, 1998], p. 281). Underscoring the dearth of work in this area, a major compendium on cognitive neuroscience ([Gazzaniga, 1995]) lacks a single index reference to play, curiosity, or even exploration! To add another small voice to the call to make play a fruitful neurobiological pursuit, the present review develops and extends themes of play that I have broached previously in this format ([Burghardt, 1988]), but more specifically addresses neurobiological correlates. The evolutionary neural model of play suggested below in broad strokes is presented here in a condensed, verbal manner. It is an uneasy union of a developmental proximate scheme (the mechanisms and ontogenic processes of play in individuals) with an evolutionary scheme (how play originated in ancestral species and diversified, gaining new functions facilitating behavioral, emotional, and cognitive complexity).


Basal Ganglion Parental Care Limbic System Brain Size Neural Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abetes, M, (1991). Corticonics Cambridge: Cambridge University PressGoogle Scholar
  2. Allen, C., & Bekoff, M. (1998). Species of mind Cambridge, MA: MIT PressGoogle Scholar
  3. Aubert, A. (1999). Sickness and behavior in animals: A motivational perspective. Neuroscience and Biobehavioral Reviews, 23, 1029–1036PubMedGoogle Scholar
  4. Barber, N. (1991). Play and energy regulation in mammals. Quarterly Review of Biology, 66, 129–147PubMedGoogle Scholar
  5. Beiser, D. G., & Houk, J. C. (1998). Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events. Journal of Neurophysiology, 79, 3168–3188PubMedGoogle Scholar
  6. Bekoff, M., & Allen, C. (1998). Intentional communication and social play: How and why animals negotiate and agree to play. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary,comparative, and ecological perspectives (pp. 97–114). Cambridge: Cambridge University PressGoogle Scholar
  7. Bekoff, M., & Byers, J. A. (Eds.). (1998). Animal play: Evolutionary, comparative, and ecological perspectives Cambridge: Cambridge University PressGoogle Scholar
  8. Bekoff, M., Byers, J. A., & Bekoff, A. (1980). Prenatal motility and postnatal play: Functional continuity? Developmental Psychobiology, 13, 225–228PubMedGoogle Scholar
  9. Bell, C., Cordo, P, & Hamad, S. (1996). Controversies in neuroscience IV: Motor learning and synaptic plasticity in the cerebellum: Introduction. Behavioral and Brain Sciences, 19, v-viGoogle Scholar
  10. Bennett, A. F. (1982). The energetics of reptilian activity In C. Gans & F. H. Pough (Eds.), Biology of the Reptilia (Vol. 13, pp. 155–199). London: Academic PressGoogle Scholar
  11. Reran, M. J., Gobson, K. R., & Rumbaugh, D. M. (1999). Predicting hominid intelligence from brain size. In M. C. Corballis & S. E. G. Lea (Eds.), The descent of mind: Psychological perspectives on hominid evolution (pp. 88–97). Oxford: Oxford University PressGoogle Scholar
  12. Berg, C. L. v. d., Hol, T., Everts, H., Koolhaas, J. M., van Ree, J. M., & Spruijt, B. M. (1999). Play is indispensable for an adequate development of coping with social challenges in the rat. Developmental Psychobiology, 34, 129–138Google Scholar
  13. Bernard, L. L. (1924). Instinct: A study in social psychology London: George Allen and UnwinGoogle Scholar
  14. Berns, G. S., Cohen, J. D., & Mintun, M. A. (1997). Brain regions responsive to novelty in the absence of awareness. Science, 276, 1272–1275 PubMedGoogle Scholar
  15. Besheer, J., Jensen, H. C., & Bevins, R. A. (1999). Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats. Behavioural Brain Research, 103,35–44PubMedGoogle Scholar
  16. Biben, M. (1998). Squirrel monkey play fighting: Making the case for a cognitive training function of play. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary, comparative, and ecological perspectives (pp. 161–182). Cambridge: Cambridge University PressGoogle Scholar
  17. Biben, M., & Champoux, M. (1999). Play and stress: Cortisol as a negative correlate of play in Saimiri In S. Reifel (Ed.), Play and culture studies (Vol. 2, pp. 191–208). Stamford, CT: AblexGoogle Scholar
  18. Blakemore, S.J., Wolpert, D. M., & Frith, C. D. (1999). The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neurolmage,10, 448–459Google Scholar
  19. Blessing, W. W. (1997). Inadequate frameworks for understanding bodily homestasis. Trends in Neuroscience, 20, 235–239Google Scholar
  20. Bowers, B. B., & Burghardt, G. M. (1992). The scientist and the snake: Relationships with reptiles. In H. Davis & D. Balfour (Eds.), The inevitable bond (pp. 250–263). Cambridge: Cambridge University PressGoogle Scholar
  21. Braitenberg, V., Heck, D., & Sultan, F. (1997). The detection and generation of sequences as a key to cerebellar function: Experiments and theory. Behavioral and Brain Sciences, 20, 229–277PubMedGoogle Scholar
  22. Bullock, T. H. (1977). Introduction to nervous systems San Francisco: FreemanGoogle Scholar
  23. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186PubMedGoogle Scholar
  24. Burghardt, G. M. (1973). Instinct and innate behavior: Toward an ethological psychology. In J. A. Nevin & G. S. Reynolds (Eds.), The study of behavior: Learning,motivation, emotion, and instinct (pp. 322–400). Glenview, IL: Scott, ForesmanGoogle Scholar
  25. Burghardt, G. M. (1984). On the origins of play. In P. K. Smith (Ed.), Play in animals and humans (pp. 5–41). Oxford: BlackwellGoogle Scholar
  26. Burghardt, G. M. (1985). Animal awareness: Current perceptions and historical perspective. American Psychologist, 40, 905–919Google Scholar
  27. Burghardt, G M. (1988). Precocity, play, and the ectotherm-endotherm transition: Superficial adapta-don or profound reorganization? In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9 Developmental psychobiology and behavioral ecology (pp. 107–148). New York: PlenumGoogle Scholar
  28. Burghardt, G. M. (1998a). The evolutionary origins of play revisited: Lessons from turtles. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary,comparative, and ecological perspectives (pp. 1–26). Cambridge: Cambridge University PressGoogle Scholar
  29. Burghardt, G. M. (1998b). Play. In G. Greenberg & M. Haraway (Eds.), Comparative psychology: A handbook (pp. 757–767). New York: Garland PressGoogle Scholar
  30. Burghardt, G. M. (1999). Conceptions of play and the evolution of animal minds. Evolution and Cognition, 5, 115–123Google Scholar
  31. Burghardt, G. M., Ward, B., & Rosccoe, R. (1996). Problem of reptile play: Environmental enrichment and play behavior in a captive Nile soft-shelled turtle (Trionyx triunguis). Zoo Biology,15, 223–238Google Scholar
  32. Burghardt, G. M. (in press). The genesis of animal play: Testing the limits. Cambridge, MA: MIT PressGoogle Scholar
  33. Burghardt, G. M., & Krause, M. A. (1999). Plasticity of foraging behavior in garter snakes (Thamnophis sirtalis) reared on different diets. Journal of Comparative Psychology, 113, 277–285Google Scholar
  34. Buss, D. M. (1999). Evolutionary psychology New York: Allyn and BaconGoogle Scholar
  35. Butler, A. B., & Hodos, W. (1996). Comparative vertebrate neuroanatomy: Evolution and adaptation New York: Wiley-LissGoogle Scholar
  36. Byers, J. A. (1998). Biological effects of locomotor play: Getting into shape, or something more specific? In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary, comparative, and ecological perspectives (pp. 205–220). Cambridge: Cambridge University PressGoogle Scholar
  37. Byers, J. A. (1999). The distribution of play behaviour among Australian marsupials. Journal of Zoology, London, 247, 349–356Google Scholar
  38. Byers, J. A., & Walker, C. (1995). Refining the motor training hypothesis for the evolution of play. American Naturalist, 146, 25–40Google Scholar
  39. Cabanac, M. (1999). Emotion and phylogeny. Journal of Consciousness Studies, 6, 176–190Google Scholar
  40. Carmichael, L. (1954). The onset and early development of behavior. In L. Carmichael (Ed.), Manual of child psychology, 2nd ed. (pp. 60–185). New York: WileyGoogle Scholar
  41. Chiszar, D. (1985), Ontogeny of communicative behaviors. In E. S. Gollin (Ed.), The comparative development of adaptive skills: Evolutionary implications Hillsdale, NJ: ErlbaumGoogle Scholar
  42. Colombo, J. (1993). Infant cognition: Predicting later intellectual functioning London: SageGoogle Scholar
  43. Compayré, G. (1902). Development of the child in later infancy. New York: D. AppletonGoogle Scholar
  44. Coppinger, R., & Coppinger, L. (1998). Differences in the behavior of dog breeds. In J. Serpell (Ed.),Genetics and the behavior of domestic animals (pp. 167–202). New York: Academic PressGoogle Scholar
  45. Coppinger, R. P., & Smith, C. K. (1989). A model for understanding the evolution of mammalian behavior. In H. Genoways (Ed.), Current mammalogy (Vol. 2, pp. 335–374). New York: Plenum PressGoogle Scholar
  46. Courchesne, E. (1997). Prediction and preparation: Anticipatory role of the cerebellum in diverse neurobehavioral functions. Behavioral and Brain Sciences, 20, 248–249Google Scholar
  47. Damasio, A. R. (1995). Descartes error: Emotion, reason,and the human brain. New York: AvonGoogle Scholar
  48. Damasio, A. R. (1999). The feeling of what happens New York: Harcourt BraceGoogle Scholar
  49. Dave, A. S., Yu, A. C., & Margoliash, D. (1998). Behavioral state modulation of auditory activity in a vocal motor system. Science, 282, 2250–2254PubMedGoogle Scholar
  50. Deacon, T. W. (1990). Rethinking mammalian brain evolution. American Zoologist, 30, 629–705Google Scholar
  51. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–568PubMedGoogle Scholar
  52. Durant, J. R. (1985). The science of sentiment: The problem of the cerebral localization of emotion. Perspectives in Ethology, 6, 1–31Google Scholar
  53. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiolagy, 73, 2608–2611Google Scholar
  54. Fagen, R. M. (1974). Selective and evolutionary aspects of animal play. American Naturalist, 108, 850–858Google Scholar
  55. Fagen, R. (1981). Animal play behavior New York: Oxford University PressGoogle Scholar
  56. Fagen, R. (1984). Play and behavioural flexibility. In P. K. Smith (Ed.), Play in animals and humans (pp. 159–173). Oxford: BlackwellGoogle Scholar
  57. Ficken, M. S. (1977). Avian play. Auk, 94, 573–582Google Scholar
  58. Font, E., García-Verdugo, J. M., Desfilis, E. & Pérez-Cañellas, M. (1995). Neuron-glia interrelations during 3-acetylpyridine-induced degeneration and regeneration in the adult lizard brain. In A. Vernadakis & B. Roots (Eds.), Neuron-glia interrelations during plasticity: II. Plasticity and regeneration (pp. 275–302). Totowa, NJ: Humana PressGoogle Scholar
  59. Font, E., Desfilis, E., Pérez-Cañellas, M., Alcántara, S., & García-Verdugo, J. M. (1997). 3-Acetylpyridineinduced degeneration and regeneration in the adult lizard brain: A qualitative and quantitative analysis. Brain Research, 754, 245–259PubMedGoogle Scholar
  60. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 1155–1158PubMedGoogle Scholar
  61. Frith, C. D & Frith, U. (1999). Interacting minds-A biological basis. Science, 286, 1692–1695PubMedGoogle Scholar
  62. Fromberg, D. P., & Bergen, D. (Eds.). (1998). Play from birth to twelve and beyond New York: Garland PressGoogle Scholar
  63. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortexBrain, 119, 593–609PubMedGoogle Scholar
  64. Gandelman, R. (1992). The psychobiology of behavioral development New York: Oxford University PressGoogle Scholar
  65. Gazzaniga, M. S. (Ed.). (1995). The cognitive neurosciences Cambridge, MA: MIT PressGoogle Scholar
  66. Gottlieb, G. (1992). Individual development and evolution: The genesis of novel behavior New York: Oxford University PressGoogle Scholar
  67. Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5, 733–711PubMedGoogle Scholar
  68. Graybiel, A. M. (1997). The basal ganglia and cognitive pattern generators. Schizophrenia Bulletin, 23, 459–469PubMedGoogle Scholar
  69. Greenberg, N., Font, E., & Switzer, R. (1988). The reptilian striatum revisited, In W. K. Schwerdtfeger and W. J. A. J. Smeets (Eds.), The forebrain of reptiles: Current concepts of structure and function (pp. 162–177). Basal: Karger-VerlagGoogle Scholar
  70. Grier, J. M., & Burk, T. (1992). Biology of animal behavior, 2nd ed. St. Louis, MO: Mosby Year BookGoogle Scholar
  71. Griffiths, M. (1978). The biology of the monotremes New York: Academic PressGoogle Scholar
  72. Groenewegen, H. J., Wright, C. I., & Beijer, A. V. J. (1996). The nucleus accumbens: Gateway for limbic structures to reach the motor system? Progress in Brain Research, 107, 485–511PubMedGoogle Scholar
  73. Groos, K. (1898). The play of animals New York: D. AppletonGoogle Scholar
  74. Gross, C. G. (2000). Neurogenesis in the adult brain: Death of a dogma. Nature Reviews Neuroscience, I, 67–73Google Scholar
  75. Halgren, E., & Marinkovic, K. (1995). Neurophysiological networks integrating human emotions. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1137–1151). Cambridge, MA: MIT PressGoogle Scholar
  76. Hall, G. S. (1904). Adolescence: Its psychology and its relations to physiology, anthropology, sociology, sex,crime, religion and education New York: D. AppletonGoogle Scholar
  77. Hall, S. L. (1998). Object play in adult animals. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary, comparative, and ecological perspectives (pp. 45–60). Cambridge: Cambridge University PressGoogle Scholar
  78. Halloy, M., & Burghardt, G. M. (1990). Ontogeny of fish capture and ingestion in four species of garter snakes (Thamnophis). Behaviour, 112, 299–318Google Scholar
  79. Hartley, R. E., Frank, L. K., & Goldenson, R. M. (1952). Understanding children’s play NewYork: Columbia University PressGoogle Scholar
  80. Heinrich, B., & Smolker, R. (1998). Play in common ravens (Corvus corax) In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary,comparative, and ecological perspectives (pp. 27–44). Cambridge: Cambridge University PressGoogle Scholar
  81. Hogan, J. A. (1988). Cause and function in the development of behavior systems. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology, pp. 63–106). New York: Plenum PressGoogle Scholar
  82. Hol, T., Berg, C. L. v. d., van Ree,J. M., & Sprujt, B. M. (1999). isolation during the play period in infancy decreases adult social interaction in rats, Behavioural Brain Research, 100, 91–97Google Scholar
  83. Houk, J. C., Buckingham, J. T., &Barto, A. G. (1996). Models of the cerebellum and motor learning. Behavioral and Brain Sciences, 19, 368–383Google Scholar
  84. Ikemoto, S. & Panksepp, J. (1992). The effects of early social isolation on the motivation for social play in rats, Developmental Psychobiology, 25, 261–274PubMedGoogle Scholar
  85. Iwaniuk, A. N., Nelson, J. E., & Pellis, S. M. (2001). Do big-brained animals play more? Comparative analyses of play and relative brain size in mammals. Journal of Comparative Psychology, 115, 29–41PubMedGoogle Scholar
  86. Jarvis, E. D., Ribeiro, S., da Silva, M. L., Ventura, D., Vielliard, J., & Mello, C. V. (2000). Behaviorally driven gene expression reveals song nuclei in hummingbird brain. Nature, 406, 628–632PubMedGoogle Scholar
  87. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–245Google Scholar
  88. Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel, A. M. (1999). Building neural representations of habits. Science, 286, 1745–1749PubMedGoogle Scholar
  89. Johnson, J. E., Christie, J. F., Sc Yawkey, T. D. (1999). Play and early childhood development New York: LongmanGoogle Scholar
  90. Katz, P. S., & Harris-Warrick, R. M. (1999). The evolution of neuronal circuits underlying species-specific behavior. Current Opinion in Neurobiology, 9, 628–633Google Scholar
  91. Kempermann, G., Kuhn, H. G., &Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495PubMedGoogle Scholar
  92. Klein’, J. A., Swain, R. A., Armstrong, K. A., Napper, R. M. A., Jones, T. A., & Greenough, W. T. (1998). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of Learning and Memory, 69, 274–289Google Scholar
  93. Kolb, B & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual Review of Psychology, 49, 43–64PubMedGoogle Scholar
  94. Kosslyn, S. M., & Sussman, A. L. (1995). Role of imagery in perception: Or, there is no such thing as immaculate perception. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1035–1042). Cambridge, MA: MIT PressGoogle Scholar
  95. Kramer, M., & Burghardt, G. M. (1998). Precocious courtship and play in emydid turtles. Ethology, 104, 38–56Google Scholar
  96. Krause, M. A., Burghardt, G. M., &Lentini, A. (1999). Improving the lives of captive reptiles: Object provisioning in Nile soft-shelled turtles (Trionyx triunguis). Lab Animal, 2, 38–41Google Scholar
  97. Kruijt, J. P. (1964). Ontogeny of social behaviour in Burmese red jungle fowl (Gallus gallus spadiceus). Behaviour Supplement, 12, 1–201Google Scholar
  98. Kruska, D. (1987). How fast can total brain size change in mammals? Journal für Hirnforschung, 28, 59–70PubMedGoogle Scholar
  99. Kruska, D. (1988). Mammalian domestication and its effect on brain structure and behavior. In H. J. Jerison and I. Jerison (Eds.), Intelligence and Evolutionary Biology NATO ASI series, Vol. G17, pp. 211–250. Berlin: Springer-VerlagGoogle Scholar
  100. Le Doux, J. E. (1991). Emotion and the limbic system concept. Concepts in Neuroscience, 2, 169–199Google Scholar
  101. Lefebre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549–560Google Scholar
  102. Lewis, K. P. (2000). A comparative study of primate play behaviour: Implications for the study of cognition. Folia Primatologica, 71, 417–421Google Scholar
  103. Lorenz, K. Z. (1981). The foundations of ethology New York: Springer-VerlagGoogle Scholar
  104. Lovell, G., & Collins, D. The mediating role of sex upon the relationship between mental imagery ability and movement acquisition rate. Journal of Human Movement Studies, 32, 187–210Google Scholar
  105. MacLean, P. (1985). Brain evolution relating to family, play and the separation call. Archives of General Psychiatry, 42, 405–417PubMedGoogle Scholar
  106. MacLean, P. (1990). The triune brain in evolution New York: Plenum PressGoogle Scholar
  107. Maier, S. F., & Watkins, L. R (1998). Cytokines for psychologists: Implications of bidirectional immuneto-brain communication for understanding behavior, mood, and cognition. Psychological Review, 105, 83–107PubMedGoogle Scholar
  108. Marín, O., Smeets, W. J. A. J., & González, A. (1998). Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neuroscience, 21, 487–494Google Scholar
  109. Martin, P., & Caro, T. M. (1985). On the function of play and its role in behavioral development. Advances in the Study of Behavior, 15, 59–103Google Scholar
  110. Mather, J. A., & Anderson, R. C. (1999). Exploration, play, and habituation in octopuses (Octopus dofleini). Journal of Comparative Psychology, 113, 333–338Google Scholar
  111. McGraw, M. B. (1943). The neuromuscular maturation of the human infant New York: Columbia University PressGoogle Scholar
  112. Meaney, M. J., Dodge, A. M., & Beatty, W. W. (1981). Sex-dependent effects of amygdaloid lesions on the social play of pubertal rats. Physiology and Behavior, 26, 467–472PubMedGoogle Scholar
  113. Meder, E. (1958). Gnathonemus petersii (Günter). Zeitschrift für Vivaristik, 4, 161–171Google Scholar
  114. Meer, A. L. H. v. d., Weel, F. R. v. d., & Lee, D. N. (1995). The functional significance of arm movements in infants. Science, 267, 693–695Google Scholar
  115. Melzack, R., & Thompson, W. R. (1956). Effects of early experience on social behavior. Canadian journal of Psychology, 10, 82–90PubMedGoogle Scholar
  116. Meyer-Holzapfel, M. (1960). Liber das Spiel bei Fischen, insbesondere beim Tapirrilsselfisch (Mormyrus kannume Forskál). Zoologische Garten, 25, 189–202Google Scholar
  117. Miklosi, A. (1999). The ethological analysis of imitation. Biological Review, 74, 347–374Google Scholar
  118. Mitchell, E. D., & Mason, B. S. (1934). The theory of play. New York: A. S. BarnesGoogle Scholar
  119. Mitchell, R. W. (1990). A theory of play. In M. Bekoff & D. Jamieson (Eds.), Interpretation and explanation in the study of animal behavior, Volume 1, Interpretation, intentionality,and communication (pp. 197–227). Boulder, CO: Westview PressGoogle Scholar
  120. Orofino, A. G., Ruarte, M. B., & Alvarez, E. O. (1999). Exploratory behaviour after intraaccumbens histamine and/or histamine antagonists injection in the rat. Behavioural Brain Research,102, 171–180 PubMedGoogle Scholar
  121. Ortega, J. C., & Bekoff, M. (1987). Avian play: Comparative evolutionary and developmental trends. Auk, 104, 338–341Google Scholar
  122. Page, S. J. (2000). Imagery improves upper extremity motor function in chronic stroke patients: A pilot study. Occupational Therapy Journal of Research, 20, 200–215Google Scholar
  123. Panksepp, J. (1998). Affective neuroscience New York: Oxford University PressGoogle Scholar
  124. Panksepp, J. (2000). the riddle of laughter. Current Directions in Psychological Science, 9, 183–186Google Scholar
  125. Panksepp, J., & Burgdorf, J. (2000). 50-khz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: Effects of social housing and genetic variables. Behavioral Brain Research, 115, 25–38Google Scholar
  126. Panksepp, J., Siviy, S., & Normansell, L. (1984). The psychobiology of play: Theoretical and methodological perspectives. Neuroscience and Biobehavioral Reviews, 8, 465–92PubMedGoogle Scholar
  127. Panksepp, J., Normansell, L, Cox, J. E, & Siviy, S. M. (1994). Effects of neonatal decortication on the social play of juvenile rats. Physiology and Behavior, 56, 429–443PubMedGoogle Scholar
  128. Parker, S. T., & McKinney, M. L. (1999). Origins of intelligence: The evolution of cognitive development in monkeys, apes, and humans. Baltimore, MD: Johns Hopkins University PressGoogle Scholar
  129. Paulin, M. G. (1993). The role of the cerebellum in motor control and perception. Brain, Behavior and Evolution, 41, 39–50Google Scholar
  130. Pellegrini, A. D., & Smith, P. K. (1998). Physical activity play: The nature and function of a neglected aspect of play. Child Development, 69, 577–598PubMedGoogle Scholar
  131. Pellis, S. M. (1993). Sex and the evolution of play fighting: A review and model based on the behavior of muroid rodents. Play Theory and Research, 1, 55–75Google Scholar
  132. Pellis, S. M., & Iwaniuk, A. N. (2000). Comparative analyses of the role of postnatal development on the expression of play fighting. Developmental Psychobiology, 36, 136–147PubMedGoogle Scholar
  133. Pellis, S. M., & Pellis, V. C. (1998a). Play fighting of rats in comparative perspective: A schema for neurobehavioral analysis. Neuroscience and Biobehavioral Reviews, 23, 87–101Google Scholar
  134. Pellis, S. M., & Pellis, V. C. (1998b). Structure-function interface in the analysis of play fighting. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary, comparative, and ecological perspectives (pp. 115–140). Cambridge: Cambridge University PressGoogle Scholar
  135. Pellis, S. M., O’Brien, D. P., Pellis, V. C., Teitlebaum, P., Wolgin, D. L., & Kennedy, S. (1988). Escalation of feline predation along a gradient from avoidance through “play” to killing. Behavioral Neuroscience, 102, 760–777PubMedGoogle Scholar
  136. Pellis, S. M., Pellis, V. C., &Whishaw, I. Q. (1992). The role of the cortex in play fighting by rats: Developmental and evolutionary implications. Brain, Behavior and Evolution, 39, 270–284Google Scholar
  137. Pennisi, E. (2000). In nature, animals that stop and start win the race. Science, 288, 83–85PubMedGoogle Scholar
  138. Pham, T. M., Sóderstrüm, S., Winblad, B., & Mohammed, A. H. (1999). Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats, Behavioural Brain Research, 103, 63–70Google Scholar
  139. Piaget, J. (1962). Play, dreams and imitation in chilhood New York: NortonGoogle Scholar
  140. Power, T. G. (2000). Play and exploration in children and animals Mahwah, NJ: ErlbaumGoogle Scholar
  141. Previc, E H. (1999). Dopamine and the origins of human intelligence. Brain and Cognition, 41, 299–350PubMedGoogle Scholar
  142. Price, E. O. (1984). Behavioral aspects of domestication. Quarterly Review of Biology, 59, 1–32Google Scholar
  143. Punzo, F. (1985). Neurochemical correlates of learning and role of the basal forebrain in the brown anole, Anolis sagcei (Lacertilia:Iguanidae). Cepeia, 1985, 409–414Google Scholar
  144. Rasa, O. A. E. (1984). A motivational analysis of object play in juvenile dwarf mongooses (Helogale undulata rufula). Animal Behaviour,32, 579–589Google Scholar
  145. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111, 246–252Google Scholar
  146. Robbins, T. W., & Everitt, B. J. (1995). Arousal systems and attention. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 703–720). Cambridge, MA: MIT PressGoogle Scholar
  147. Schultz, W., Dayan, P., & Montague, P. R (1997). Aneural substrate of prediction and reward. Science, 275, 1593–1599PubMedGoogle Scholar
  148. Sherry, D. F., Jacobs, L. F., & Gaulin, S. J. C. (1992). Spatial memory and adaptive specialization of the hippocampus. Trends in Neuroscience, 15, 298–303Google Scholar
  149. Shine, R. (1988). Parental care in reptiles. In C. Gans & R B. Huey (Eds.), Biology of the Reptilia, Volume 16, Ecology B (pp. 275–329). New York: LissGoogle Scholar
  150. Sih, A. (1992). Prey uncertainty and the balancing of antipredator and feeding needs. American Naturalist, 139, 1052–1069Google Scholar
  151. Siviy, S. M. (1998). Neurobiological substrates of play behavior: Glimpses into the structure and function of mammalian playfulness. In M. Bekoff & J. A. Byers (Eels.), Animal play: Evolutionary,comparative, and ecological perspectives (pp. 221–242). Cambridge: Cambridge University PressGoogle Scholar
  152. Siviy, S. M., Baliko, C. N., &Bowers, S. (1997). Rough-and-tumble play behavior in Fischer-344 and buffalo rats: Effects of social isolation. Physiology and Behavior, 61, 597–602PubMedGoogle Scholar
  153. Smeets, W. J. H. J., and González, H. (2000). Catecholamine systems in the brain of vertebrates: New perspectives through a comparative approach. Brain Research Reviews, 33, 308–379Google Scholar
  154. Smith, P. K. (1988). Children’s play and its role in early development: A reevaluation of the ‘play ethos’. In A. D. Pellegrini (Ed.), Psychological bases for early education (pp. 207–226). Chichester, England: WileyGoogle Scholar
  155. Smith, P. K. (1996), Play, ethology, and education: A personal account. In A. D, Pellegrini (Ed.), The future of play theory (pp. 3–21). Albany, NY: SUNY PressGoogle Scholar
  156. Spear, L. P. (2000a). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9, 111–114Google Scholar
  157. Spanagel, R & Weiss, F. (1999). The dopamine hypothesis of reward: Past and current status. Trends in Neuroscience, 22, 521–527Google Scholar
  158. Spear, L. P. (2000a). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9, 111–114Google Scholar
  159. Spear, L. P. (2000b). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417–463Google Scholar
  160. Spencer, H. (1872). Principles of psychology, Vol. 2, 2nd ed. New York: D. AppletonGoogle Scholar
  161. Sperry, R. W. (1951). Mechanisms of neural maturation. In S. S. Stevens (Ed.), Handbook of experimental psychology (pp. 236–303). New York: WileyGoogle Scholar
  162. Spinka, M., Newberry, R. C., & Behoff, M. (in press). Mammalian play: Can training for misfortune be fun? Quarterly Review of Biology Google Scholar
  163. Sutton-Smith, B. (1999). Evolving a consilience of play definitions: Playfully. In S. Reifel (Ed.), Play and culture studies (Vol. 2, pp. 239–256). Stamford, CT: AblexGoogle Scholar
  164. Sutton-Smith, B. (in press), Play as a tertiary emotion. In J. L. Roopnarine (Ed.), Play and culture studies (Vol. 4). Stamford, CT: AblexGoogle Scholar
  165. Swanson, L. W., & Petrovich, G. D. (1998). What is the amygdala? Trends in Neuroscience, 21, 323–331Google Scholar
  166. Tang, Y.-P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., & Tslen, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69PubMedGoogle Scholar
  167. Thelen, E. (1995). Motor development: A new synthesis. American psychologist, 50, 79–95PubMedGoogle Scholar
  168. Thompson, K. V. (1998). Self assessment in juvenile play. In M. Bekoff & J. A. Byers (Eds.), Animal play: Evolutionary,comparative, and ecological perspectives (pp. 183–204). Cambridge: Cambridge University PressGoogle Scholar
  169. Tinbergen, N. (1951). The study of instinct Oxford: Clarendon PressGoogle Scholar
  170. Toni, B., Buchs, P.A., Nikonenko, L, Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402, 421–425PubMedGoogle Scholar
  171. Trut, L. N. (1999). Early canid domestication: The farm-fox experiment. American Scientist, 87, 160–169Google Scholar
  172. Vanderschuren, L. J. M. J., Niesink, R. J. M., & Van Ree, J. M. (1997). The neurobiology of social play behavior in rats. Neuroscience and Biobehavioral Reviews, 21, 309–326Google Scholar
  173. Whishaw, I. Q., Morino, D., Mittleman, G., & Castaneda, E. (1992). Do forebrain structures compete for behavior expression? Evidence from amphetamine-induced behavior, microdialysis, and caudateaccumbans lesions in medial frontal cortex damaged rats. Brain Research,576, 1–11PubMedGoogle Scholar
  174. Wilczynski, W. (1984). Central neural systems subserving a homoplasous periphery. American Zoologist, 24, 755–763Google Scholar
  175. Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584PubMedGoogle Scholar
  176. Willingham, D. B.(1999). The neural basis of motor-skill learning. Current Directions in Psychological Science, 6, 178–182Google Scholar
  177. Wilson, E. O. (1975). Sociobiology: The new synthesis Cambridge, MA: Belknap PressGoogle Scholar
  178. Yágilez, L., Nagel, D., Hoffman, H., Canavan, A. G. M., Wist, E., & Hamberg, V. (1998). A mental route to motor learning in improving trajectorial kinematics through imagery training. Behavioral Brain Research, 90, 95–106Google Scholar
  179. Yágüez, L., Canavan, A. G. M., Lange, H. W., & Hómberg, V. (1999). Motor learning by imagery is differentially affected in Parkinson’s and Huntington’s diseases. Behavioural Brain Research, 102, 115–127PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gordon M. Burghardt
    • 1
  1. 1.Departments of Psychology and Ecology & Evolutionary BiologyUniversity of TennesseeKnoxville

Personalised recommendations