Tunable Seers

Activity-Dependent Development of Vision in Fly and Cat
  • Helmut V. B. Hirsch
  • Suzannah Bliss. Tieman
  • Martin Barth
  • Helen Ghiradella
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)


Programs guiding nervous system development must achieve two goals. First, they must generate the species-specific behaviors needed for survival and procreation. Second, they must incorporate into the nervous system information about the environment in order to “tune” the organism to current conditions. Such “experience-dependent assembly” of the nervous system has long been seen as a hallmark of development among the vertebrates (especially mammals), whereas “hardwiring” and inflexibility were seen as hallmarks of development among invertebrates


Nerve Growth Factor Visual Cortex Lateral Geniculate Nucleus Mushroom Body Optic Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R., & Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88, 615–626PubMedGoogle Scholar
  2. Abeliovich, A., Chen, C., Goda, Y., Silva, A J., Stevens, C. F., & Tonegawa, S. (1993). Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell, 75, 1253–1262PubMedGoogle Scholar
  3. Akaneya, Y., Tsumoto, T., Kinoshita, S., & Hatanaka, H. (1997). Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. Journal of Neuroscience, 17, 6707–6716PubMedGoogle Scholar
  4. Albus, K. (1979). 14C-deoxyglucose mapping of orientation subunits in the cat’s visual cortical areas. Experimental Brain Research, 37, 609–613Google Scholar
  5. Allendoerfer, K. L., Cabelli, R. J., Escandön, E., Kaplan, D. R., Nikolics, K., & Shatz, C. J. (1994). Regulation of neurotrophin receptors during the maturation of the mammalian visual system. Journal of Neuroscience, 14, 1795–1811PubMedGoogle Scholar
  6. Antonini, A., & Stryker, M. P. (1993a). Rapid remodeling of axonal arbors in the visual cortex. Science, 260, 1819–1821Google Scholar
  7. Antonini, A., & Stryker, M. P. (1993b). Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. Journal of Neuroscience, 13, 3549–3573Google Scholar
  8. Antonini, A., & Stryker, M. P. (1996). Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. Journal of Comparative Neurology, 369, 64–82Google Scholar
  9. Antonini, A., & Stryker, M. P. (1998). Effect of sensory disuse on geniculate afferents to cat visual cortex. Visual Neuroscience, 15, 401–409PubMedGoogle Scholar
  10. Archer, S. M., Dubin, M. W., & Stark, L. A. (1982). Abnormal development of kitten retinogeniculate connectivity in the absence of action potentials. Science, 217, 743–745PubMedGoogle Scholar
  11. Artola, A., Sc Singer, W. (1987). Long-term potentiation and NMDA receptors in rat visual cortex. Nature, 330, 649–652PubMedGoogle Scholar
  12. Averhoff, W. W., Sc Richardson, R. H. (1974). Pheromonal control of mating patterns in Drosophila melanogaster. Behavior Genetics, 4, 207–225Google Scholar
  13. Bailey, C. H., & Chen, M. (1988). Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons. Proceedings of the National Academy of Sciences of the USA, 85, 2373–2377PubMedGoogle Scholar
  14. Bailey, C. H., & Chen, M. (1991). Morphological aspects of synaptic plasticity in Aplysia: An anatomical substrate for long-term memory. Annals of the New York Academy of Sciences, 627, 181–196PubMedGoogle Scholar
  15. Balling, A., Technau, G. M, &Heisenberg, M. (1987). Are the structural changes in adult Drosophila mushroom bodies memory traces? Studies on biochemical learning mutants. Journal ofNeurogenetics, 4, 65–73Google Scholar
  16. Barinaga, M. (1995). Focusing on the eyeless gene. Science, 267, 1766–1767PubMedGoogle Scholar
  17. Barth, M. (1997). The flexible fly: Experience-dependent plasticity of brain and behavior in the laboratory fruitfly Drosophila melanogaster 1–112. Unpublished doctoral dissertation. Bayerischen JuliusMaximilians—Universität, Würzburg, GermanyGoogle Scholar
  18. Barth, M., & Heisenberg, M. (1997). Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learning and Memory, 4, 219–229Google Scholar
  19. Barth, M., Hirsch, H. V. B., & Heisenberg, M. (1997). Rearing in different light regimes affects courtship in Drosophila melanogaster. Animal Behavior, 53, 25–38Google Scholar
  20. Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A., & Heisenberg, M. (1997). Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. Journal of Neuroscience, 17, 1493–1504Google Scholar
  21. Bear, M. F., & Colman, H. (1990). Binocular competition in the control of geniculate cell size depends upon visual cortical ALmethyl-n-aspartate receptor activation. Proceedings of the National Academy of Sciences of the USA, 87, 9246–9249PubMedGoogle Scholar
  22. Bear, M. F., & Singer, W. (1986). Modulation of visual cortical plasticity by acetylcholine and nor-adrenaline. Nature, 320, 172–176PubMedGoogle Scholar
  23. Bear, M. F., Kleinschmidt, A., Gu, Q., & Singer, W. (1990). Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. Journal of Neuroscience, 10, 909–925PubMedGoogle Scholar
  24. Belvin, M. P., & Yin, J. C. (1997). Drosophila learning and memory: Recent progress and new approaches. BioEssays, 19, 1083–1089PubMedGoogle Scholar
  25. Berardi, N., Domenici, L., Parisi, V., Pizzorusso, T., Cellerino, A., & Maffei, L. (1993). Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex. Proceedings of the Royal Society of London [Biology], 251, 17–23Google Scholar
  26. Berardi, N., Cellerino, A., Domenici, L., Fagiolini, M., Pizzorusso, T., Cattaneo, A., & Maffei, L. (1994). Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system. Proceedings of the National Academy of Sciences of the USA, 91, 684–688PubMedGoogle Scholar
  27. Berman, N. E. J., & Payne, B. R. (1989). Modular organization of on and off responses in the cat lateral geniculate nucleus. Neuroscience, 32, 721–737PubMedGoogle Scholar
  28. Bickford, M. E., Günliik, A. E., Guido, W., & Sherman, S. M. (1993). Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral gesticulate nucleus of the cat. Journal of Comparative Neurology, 334, 410–430PubMedGoogle Scholar
  29. Bisti, S., Gargini, C., & Chalupa, L. M. (1998). Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. Journal of Neuroscience, 18, 5019–5025PubMedGoogle Scholar
  30. Blake, R., & Hirsch, H. V. B. (1975). Deficits in binocular depth perception in cats after alternating monocular deprivation. Science, 192, 1114–1116Google Scholar
  31. Blakely, R. D., & Coyle, J. T. (1988), The neurobiology of ALacetylaspartylglutamate. International Review of Neurobiology, 30, 39–100PubMedGoogle Scholar
  32. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478PubMedGoogle Scholar
  33. Blasdel, G. G., Mitchell, D. E., Muir, D. W., & Pettigrew, J. D. (1977). A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. Journal of Physiology (London), 265, 615–636Google Scholar
  34. Bloch], A., & Thoenen, H. (1995). Characterization of nerve growth factor (NGF) release from hippocampal neurons: Evidence for a constitutive and an unconventional sodium-dependent regulated pathway. European Journal of Neuroscience, 7, 1220–1228Google Scholar
  35. Blochl, A., & Thoenen, H. (1996). Localization of cellular storage compartments and sites of constitutive and activity-dependent release of nerve growth factor (NGF) in primary cultures of hippocampal neurons. Molecular and Cellular Neuroscience, 7, 173–190PubMedGoogle Scholar
  36. Bloom, J. W., & Atwood, H. L. (1980). Effects of altered sensory experience on the responsiveness of the locust descending contralateral movement detector neuron. Journal of Comparative Physiology A, 135, 191–199Google Scholar
  37. Bloom, J. W., & Atwood, H. L. (1981). Reversible ultrastructural changes in the rhabdom of the locust eye are induced by long term light deprivation. Journal of Comparative Physiology, 144, 357–365Google Scholar
  38. Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., & Pak, W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila,norpA, and its role in photo-transduction. Cell, 54, 723–733PubMedGoogle Scholar
  39. Bodnarenko, S. R., & Chalupa, L. M. (1993). Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature, 364, 144–146PubMedGoogle Scholar
  40. Bodnarenko, S. R., Jeyarasasingam, G., & Chalupa, L. M. (1995). Development and regulation of den-dritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. Journal of Neuros-cience, 15, 7037–7045Google Scholar
  41. Bolshakov, V. Y., Golan, H., Kandel, E. R., & Siegelbaum, S. A. (1997). Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3–CCA1 synapses in the hippo-campus. Neuron, 19, 635–651PubMedGoogle Scholar
  42. Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353, 429–431PubMedGoogle Scholar
  43. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., Sc Silva, A. J. (1994). Deficient longterm memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68PubMedGoogle Scholar
  44. Bowling, D. B., & Caverhill, J. I. (1989). ON/OFF organization in the cat lateral geniculate nucleus: Sublaminae vs. columns. Journal of Comparative Neurology, 283, 161–168PubMedGoogle Scholar
  45. Bowling, D. B., & Wieniawa-Narkiewicz, E. (1986). The distribution of on-and off-centre X- andY-like cells in the A layers of the cat’s lateral geniculate nucleus. journal of Physiology (London), 375, 561–572Google Scholar
  46. Budnik, V., Zhong, Y., & Wu, C. F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768PubMedGoogle Scholar
  47. Bullier, J., & Norton, T. T. (1979). Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. journal of Neurophysiology, 42, 274–291PubMedGoogle Scholar
  48. Burke, R., & Basler, K. (1997). Hedgehog signaling in Drosophila eye and limb development—Conserved machinery, divergent roles? Current Opinions in Neurobiology, 7, 55–61Google Scholar
  49. Byers, D., Davis, R. L., &Kiger, J. A., Jr. (1981). Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature, 289, 79–81Google Scholar
  50. Cabelli, R. J., Hohn, A., & Shatz, C. J. (1995). Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science, 267, 1662–1666PubMedGoogle Scholar
  51. Cabelli, R. J., Allendoerfer, K. L., Radeke, M. J., Welcher, A. A., Feinstein, S. C., & Shatz, C. J. (1996). Changing patterns of expression and subcellular localization of trkB in the developing visual system. journal of Neuroscience, 16, 7965–7980PubMedGoogle Scholar
  52. Cabelli, R. J., Shelton, D. L., Segal, R. A., & Shatz, C J. (1997). Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron, 19, 63–76PubMedGoogle Scholar
  53. Calleja, M., Moreno, E., Pelaz, S., & Morata, G. (1996). Visualization of gene expression in living adult Drosophila. Science, 274, 252–255Google Scholar
  54. Canossa, M., Griesbeck, O., Berninger, B., Campana, G., Kolbeck, R., & Thoenen, H. (1997). Neurotrophin release by neurotrophins: Implications for activity-dependent neuronal plasticity. Proceedings of the National Academy of Sciences of the USA, 94, 13279–13286PubMedGoogle Scholar
  55. Carmignoto, G., Pizzorusso, T., Tia, S., & Vicini, S. (1997). Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. journal of Physiology (London), 498, 153–164Google Scholar
  56. Carter, C. S., & Getz, L. L. (1993). Monogamy and the prairie vole. Scientific American, 268, 100–106PubMedGoogle Scholar
  57. Castrén, E., Zafra, F., Thoenen, H., & Lindholm, D. (1992). Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proceedings of the National Academy of Sciences of the USA, 89, 9444–9448Google Scholar
  58. Castrén, E., Pitkanen, M., Sirvio, J., Parsadanian, A., Lindholm, D., Thoenen, H., & Riekkinen, P. J. (1993). The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. NeuroReport, 4, 895–898PubMedGoogle Scholar
  59. Chapman, B., & Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proceedings of the National Academy of Sciences of the USA, 95, 2609–2614PubMedGoogle Scholar
  60. Chapman, B., Stryker, M. P. & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16, 6443–6453PubMedGoogle Scholar
  61. Charii, F., & Lambin, M. (1988). Ontogenàse du contrôle visuel de la marche orientée chez le grillon Gryllus bimaculatus. Biology of Behavior,13, 49–58Google Scholar
  62. Chen, C., & Tonegawa, S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annual Review of Neuroscience, 20, 157–184PubMedGoogle Scholar
  63. Chen, K S., Nishimura, M. C., Armanini, M. P., Crowley, C., Spencer, S. D., &Phillips, H. S. (1997). Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergie neurons and memory deficits. Journal of Neuroscience, 17, 7288–7296PubMedGoogle Scholar
  64. Cheyette, B. N., Green, P. J., Martin, K., Garren, H., Hartenstein, V., & Zipursky, S. L. (1994). The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron, 12, 977–996PubMedGoogle Scholar
  65. Chittka, L., Williams, N. M., Rasmussen, H., & Thomson, J. D. (1999). Navigation without vision: Bumblebee orientation in complete darkness. Proceedings of the Royal Society of London, B. Biological Science, 266, 45–50Google Scholar
  66. Clayton, K. N., & Kamback, N. (1966). Successful performance by cats on several colour discrimination problems. Canadian Journal of Psychology, 20, 173–182PubMedGoogle Scholar
  67. Cleland, B. G., Dubin, M. W., & Levick, W. R. (1971). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. Journal of Physiology (London), 217, 473–496Google Scholar
  68. Collingridge, G. L, Bliss, T.V.P. (1987). NMDAreceptors—Their role in long-term potentiation. Trends in Neurosciences, 10, 288–293Google Scholar
  69. Coppola, D. M., White, L. E., Fitzpatrick, D., & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex. Proceedings of the National Academy of Sciences of the USA, 95, 2621–2623PubMedGoogle Scholar
  70. Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570PubMedGoogle Scholar
  71. Cramer, K S., & Sur, M. (1997). Blockade of afferent impulse activity disrupts on/off sublamination in the ferret lateral geniculate nucleus. Developmental Brain Research, 98, 287–290PubMedGoogle Scholar
  72. Crooks, J., & Morrison, J. D. (1989). Synapses of the inner plexiform layer of the area centralis of kitten retina during postnatal development: A quantitative study. Journal of Anatomy, 163, 33–47PubMedGoogle Scholar
  73. Cutforth, T., & Gaul, U. (1997). The genetics of visual system development in Drosophila: Specification, connectivity and asymmetry. Current Opinions in Neurobiology, 7, 48–54Google Scholar
  74. Dash, P. K., Hochner, B., & Kandel, E. R. (1990). Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature, 345, 718–721PubMedGoogle Scholar
  75. Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R., & Kandel, E. R. (1991). cAMP response element-binding protein is activated by Ca2+/calmodulin-as well as cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the USA, 88, 5061–5065PubMedGoogle Scholar
  76. Dauwalder, B., & Davis, R. L. (1995). Conditional rescue of the dunce learning/memory and female fertility defects with Drosophila or rat transgenes. Journal of Neuroscience, 15, 3490–3499PubMedGoogle Scholar
  77. Davis, R. L. (1996). Physiology and biochemistry of Drosophila learning mutants. Physiological Reviews, 76, 299–317PubMedGoogle Scholar
  78. Davis, R L., Cherry, J., Dauwalder, B., Han, P. L., & Skoulakis, E. (1995). The cyclic AMP system and Drosophila learning. Molecular and Cellular Biochemistry, 149, 271–278PubMedGoogle Scholar
  79. de Belle, J. S. (1995). Drosophila mushroom body subdomains: Innate or learned representations of odor preference and sexual orientation? Neuron, 15, 245–247PubMedGoogle Scholar
  80. de Belle, J. S & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 263, 692–695PubMedGoogle Scholar
  81. Deimel, E., & Kral, K. (1992). Long-term sensitivity adjustment of the compound eyes of the housefly Musca domestica during early adult life. Journal of Insect Physiology, 38, 425–430Google Scholar
  82. Deisseroth, K., Heist, E. K., & Tsien, R. W. (1998). Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 392, 198–202PubMedGoogle Scholar
  83. DeLotto, Y., & DeLotto, R. (1998). Proteolytic processing of the Drosophila Spatzle protein by easier generates a dimeric NGF-like molecule with ventralising activity. Mechanisms of Development, 72, 141–148PubMedGoogle Scholar
  84. Deruntz, P., Palévody, C., & Lambin, M. (1994). Effect of dark rearing on the eye of Cryllus bitnaculatus crickets. Journal of Experimental Zoology, 268, 421–427Google Scholar
  85. Desmond, N. L., & Weinberg, R. J. (1998). Enhanced expression of AMPA receptor protein at perforated axospinous synapses. NeuroReport, 9, 857–860PubMedGoogle Scholar
  86. Distler, C., & Hoffmann, K-P. (1991). Depth perception and cortical physiology in normal and innate microstrabismic cats. Visual Neuroscience, 6, 25–41PubMedGoogle Scholar
  87. Domenici, L., Cellerino, A., & Maffei, L. (1993). Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus. Proceedings of the Royal Society of London [Biology], 251, 25–31Google Scholar
  88. Domenici, L., Fontanesi, G., Cattaneo, A., Bagnoli, P., & Maffei, L. (1994). Nerve growth factor (NGF) uptake and transport following injection in the developing rat visual cortex. Visual Neuroscience, 11, 1093–1102PubMedGoogle Scholar
  89. Douglass, J. K., &Strausfeld, N.J. (1998). Functionally and anatomically segregated visual pathways in the tabula complex of a calliphorid fly. Journal of Comparative Neurology, 396, 84–104PubMedGoogle Scholar
  90. Dowling, J. E. (1987). The retina: An approachable part of the brain Cambridge MA: Belknap/Harvard University PressGoogle Scholar
  91. Dragunow, M., Beilharz, E., Mason, B., Lawlor, P., Abraham, W., & Gluckman, P. (1993). Brain-derived neurotrophic factor expression after long-term potentiation. Neuroscience Letten, 160, 232–236Google Scholar
  92. Dreher, B., Leventhal, A. G., &Hale, P, T. (1980). Geniculate input to cat visual cortex: A comparison of area 19 with areas 17 and 18. Journal of Neurophysiology, 44, 804–826PubMedGoogle Scholar
  93. Dubin, M. W., Stark, L. A., &Archer, S. M. (1986). A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. Journal of Neuroscience, 6, 1021–1036PubMedGoogle Scholar
  94. Dudai, Y., Uzzan, A., & Zvi, S. (1983). Abnormal activity of adenylate cyclase in the Drosophila memory mutant rutabaga. Neuroscience Letters, 42, 207–212PubMedGoogle Scholar
  95. Duncan, M. K, Kos, L., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., & Tomarev, S. I. (1997). Eyes absent: A gene family found in several metazoan phyla. Mammalian Genome, 8, 479–485PubMedGoogle Scholar
  96. Dyson, S. E., & Jones, D. G. (1980). Quantitation of terminal parameters and their interrelationships in maturing central synapses: A perspective for experimental studies. Brain Research,183, 43–59PubMedGoogle Scholar
  97. Dyson, S. E., & Jones, D. G. (1984). Synaptic remodelling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity. Developmental Brain Research, 13, 125–137Google Scholar
  98. Easter, S. S., Jr., Purves, D., Rakic, P., & Spitzer, N. C. (1985). The changing view of neural specificity. Science, 230, 507–511PubMedGoogle Scholar
  99. Fahrbach, S. E., & Robinson, G. E. (1995). Behavioral development in the honey bee: Toward the study of learning under natural conditions. Learning and Memory, 2, 199–224PubMedGoogle Scholar
  100. Fainzilber, M., Smit, A. B., Syed, N. I., Wildering, W. C., Hermann, P. M., van der Schors, R C., Jiménez, C., Li, K. W., van Minnen, J., Bulloch, A. G. M., Ibáñez, C. F., & Geraerts, W. P. M. (1996). CRNF, a molluscan neurotrophic factor that interacts with the p75 neurotrophin receptor. Science, 274,1540–1543PubMedGoogle Scholar
  101. Famiglietti, E. V., Jr., & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research,84, 293–300PubMedGoogle Scholar
  102. Famiglietti, E. V., Jr., & Kolb, H. (1976). Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science, 194, 193–195PubMedGoogle Scholar
  103. Feany, M. B., & Quinn, W. G. (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science, 268, 869–873PubMedGoogle Scholar
  104. Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., & Shatz, C J. (1996). Requirement for cholinergie synaptic transmission in the propagation of spontaneous retinal waves. Science, 272, 1182–1187PubMedGoogle Scholar
  105. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706–709PubMedGoogle Scholar
  106. Fillion, T. J.,Blass, E. M, (1986). Infantile experience with suckling odors determines adult sexual behavior in male rats. Science, 231, 729–731PubMedGoogle Scholar
  107. Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., & Greenberg, M. E. (1997). CREB: A major mediator of neuronal neurotrophin responses. Neuron, 19, 1031–1047PubMedGoogle Scholar
  108. Fiorentini, A., & Maffei, L. (1978). Selective impairment of contrast sensitivity in kittens exposed to periodic gratings. Journal of Physiology (London), 277, 455–466Google Scholar
  109. Fiorentini, A., Berardi, N,& Maffei, L. (1995). Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens. Visual Neuroscience, 12, 51–55PubMedGoogle Scholar
  110. Fischbach, K. E (1983). Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. Developmental Biology, 95, 1–18Google Scholar
  111. Fischbach, K. F., & Heisenberg, M. (1984). Neurogenetics and behaviour in insects. Journal ofExperimental Biology, 112, 63–95Google Scholar
  112. Flood, D. G., & Coleman, P. D. (1979). Demonstration of orientation columns with [14C] 2deoxyglucose in a cat reared in a striped environment. Brain Research, 173, 538–542Google Scholar
  113. Ford, S. C., Napolitano, L. M., McRobert, S. P., & Tompkins, L. (1989). Development of behavioral competence in young Drosophila melanogaster adults. Journal of Insect Behavior, 2, 575–588Google Scholar
  114. Frank, D. A., & Greenberg, M. E. (1994). CREB: A mediator of long-term memory from mollusks to mammals. Cell, 79, 5–8PubMedGoogle Scholar
  115. Frégnac, Y., & Imbert, M. (1978). Early development of visual cortical cells in normal and dark-reared kittens: Relationship between orientation selectivity and ocular dominance. Journal of Physiology (London), 278, 27–44Google Scholar
  116. Frégnac, Y., Shulz, D., Thorpe, S., & Bienenstock, E. (1988). Acellular analogue of visual cortical plasticity. Nature, 333, 367–370PubMedGoogle Scholar
  117. Friedlander, M. J., Lin, C.-S., Stanford, L. R., & Sherman, S. M. (1981). Morphology of functionally identified neurons in the lateral geniculate nucleus of the cat. Journal of Neurophysiology, 46, 80–129PubMedGoogle Scholar
  118. Fukuda, Y., Hsia, A. Y., & Watanabe, M. (1985). Morphological correlates of Y, X and W type ganglion cells in the cat’s retina. Vision Research, 25, 319–327PubMedGoogle Scholar
  119. Galuske, R. A. W., Kim, D. S., Castrñ, E, Thoenen, H., & Singer, W. (1996). Brain-derived neurotrophic factor reverses experience-dependent synaptic modifications in kitten visual cortex. European Journal of Neuroscience, 8, 1554–1559PubMedGoogle Scholar
  120. Ganz, L., Hirsch, H. V. B., & Tieman, S. B. (1972). The nature of perceptual deficits in visually deprived cats. Brain Research, 44, 547–568PubMedGoogle Scholar
  121. Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F., & Di Luca, M. (1998). Calcium/ calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of Neurochemistry, 71, 1733–1741PubMedGoogle Scholar
  122. Garraghty, P. E. (1995). Connectional specificity in the cat’s retinogeniculate system. InternationalJournal of Neuroscience, 80, 31–40Google Scholar
  123. Garraghty, P. E., Sur, M., Weller, R. E., & Sherman, S. M. (1986). Morphology of retinogeniculate x and y axon arbors in monocularly enucleated cats. Journal of Comparative Neurology, 251, 198–215PubMedGoogle Scholar
  124. Geinisman, Y., De Toledo-Morrell, L., & Morrell, F. (1986). Loss of perforated synapses in the dentate gyrus: Morphological stubstrate of memory deficit in aged rats. Proceedings of the National Academy of Sciences of the USA, 83, 3027–3031PubMedGoogle Scholar
  125. Geinisman, Y., Morrell, F., & De Toledo-Morrell, L. (1990). Increase in the relative proportion of perforated axospinous synapses following hippocampal kindling is specific for the synaptic field of stimulated axons. Brain Research, 507, 325–331PubMedGoogle Scholar
  126. Geinisman, Y., De Toledo-Morrell, L., & Morrell, F. (1991). Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Research, 566, 77–88PubMedGoogle Scholar
  127. Gilbert, C. D., & Kelly, J. P. (1975). The projections of cells in the different layers of the cat’s visual cortex. Journal of Comparative Neurology, 163, 81–105PubMedGoogle Scholar
  128. Goodhill, G. J. (1993). Topography and ocular dominance: A model exploring positive correlations. Biological Cybernetics, 69, 109–118PubMedGoogle Scholar
  129. Goodwin, S. F., Del Vecchio, M., Velinzon, K., Hogel, C., Russell, S. R. H., Tully, T., & Kaiser, K.Defective: learning in mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase. Journal of Neuroscience, 17, 8817–8827Google Scholar
  130. Gordon, B., & Bremiller, R. (1992). Decreasing the cortical response to monocular deprivation need not decrease cell shrinkage in cat lateral geniculate nucleus. Experimental Brain Research, 92, 79–84Google Scholar
  131. Gordon, J. A., & Stryker, M. P. (1996). Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. Journal of Neuroscience, 16, 3274–3286PubMedGoogle Scholar
  132. Gordon, J. A., Cioffi, D., Silva, A. J., & Stryker, M. P. (1996). Deficient plasticity in the primary visual cortex of a-calcium/calmodulindependent protein kinase II mutant mice. Neuron, 17, 491–499PubMedGoogle Scholar
  133. Green, P., Hartenstein, A. Y., & Hartenstein, V. (1993). The embryonic development of the Drosophila visual system. Cell and Tissue Research, 273, 583–598PubMedGoogle Scholar
  134. Greenough, W. T., West, R. W., & De Voogd, T. J. (1978). Subsynaptic plate perforations: Changes with age and experience in the rat. Science 202, 1096–1098PubMedGoogle Scholar
  135. Gregory, R. L. (1978). Eye and brain: The psychology of seeing New York: McGraw-HillGoogle Scholar
  136. Griffith, L. C., Verselis, L. M., Aitken, K. M., Kyriacou, C. P., Danho, W., & Greenspan, R. J. (1993), Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron, 10, 501–509PubMedGoogle Scholar
  137. Gu, Q., Bear, M. F., & Singer, W. (1989). Blockade of NMDA-receptors prevents ocularity changes in kit-ten visual cortex after reversed monocular deprivation. Developmental Brain Research, 47, 281–288PubMedGoogle Scholar
  138. Guido, W., Schemer, C. A., Mize, R. R., & Kratz, K. E. (1997), Developmental changes in the pattern of NADPH-diaphorase staining in the cat’s lateral geniculate nucleus. Visual Neuroscience, 14,1167–1173PubMedGoogle Scholar
  139. Guillery, R. W. (1972a). Binocular competition in the control of geniculate cell growth. Journal of Comparative Neurology, 144, 117–130Google Scholar
  140. Guillery, R W. (1972b). Experiments to determine whether retinogeniculate axons can form translaminar collateral sprouts in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 146, 407–420Google Scholar
  141. Guillery, R. W., & Stelzner, D. J. (1970). The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology,139, 413–422Google Scholar
  142. Günlük, A. E., Bickford, M. E., & Sherman, S. M. (1994). Rearing with monocular lid suture induces abnormal NADPH-diaphorase staining in the lateral geniculate nucleus of cats. Journal of Comparative Neurology, 350, 215–228PubMedGoogle Scholar
  143. Gustafson, K., & Boulianne, G. L. (1996). Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome, 39, 174--182PubMedGoogle Scholar
  144. Guzowski, J. F., & Mc Gaugh, J. L. (1997). Antisense oligodeoxynucleotide-mediated disruption of hippo-campal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proceedings of the National Academy of Sciences of the USA, 94, 2693–2698PubMedGoogle Scholar
  145. Hahm, J.-O., Langdon, R. B., &Sur, M. (1991). Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature, 351, 568–570PubMedGoogle Scholar
  146. Haider, G., Cahaerts, P., & Gehring, W. J. (1995). Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science, 267, 1788–1792Google Scholar
  147. Hall, J. C. (1982). Genetics of the nervous system in Drosophila. Quarterly Review of Biophysics, 15, 223–479Google Scholar
  148. Haller, J. Cote, S., Bronner, G., & Jackie, H. (1987). Dorsal and neural expression of a tyrosine kinase-related Drosophila gene during embryonic development. Genes and Development, 1, 862–867PubMedGoogle Scholar
  149. Han, P. L., Levin, L.., Reed, R. R., Sc Davis, R. L. (1992). Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron, 9, 619–627PubMedGoogle Scholar
  150. Hardie, R. C. (1987). Is histamine a neurotransmitter in insect photoreceptors? Journal of Comparative Physiology [A]. 161, 201–213Google Scholar
  151. Harris, A. E., Ermentrout, G. B., Sc Small, S. L. (1997). A model of ocular dominance column development by competition for trophic factor. Proceedings of the National Academy of Sciences of the USA, 94, 9944–9949PubMedGoogle Scholar
  152. Hata, Y., & Stryker, M. P. (1994). Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. Science, 265, 1732–1735PubMedGoogle Scholar
  153. Hata, Y., Tsumoto, T., Sc Stryker, M. P. (1999). Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited. Neuron, 22, 375–381PubMedGoogle Scholar
  154. Hauser-Holschuh, H. (1975). Vergleichende quantitative Untersuchungen an den Sehganglien der Fliege Musca domestica and Drosophila melanogaster. Unpublished doctoral dissertation. EberhardKarls-Universität, Tübingen, GermanyGoogle Scholar
  155. Heisenberg, M. (1979). Genetic approach to a visual system. In H. Antrum (Ed.), Handbook of Sensory Physiology (pp. 665–679). New York: Springer-VerlagGoogle Scholar
  156. Heisenberg, M., & Wolf, R. (1984). Vision in Drosophila: Genetics of microbehavior, Vol. 12 In V. Braitenberg (Series Ed.), Studies of brain function Berlin: Springer-VerlagGoogle Scholar
  157. Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2, 1–30PubMedGoogle Scholar
  158. Henry, G. H., Mustari, M. J., Sc Bullier, J. (1983). Different geniculate inputs to B and C cells of cat striate cortex. Experimental Brain Research, 52, 179–189Google Scholar
  159. Hensch, T. K, Gordon, J. A., Brandon, E. P., McKnight, G. S., Idzerda, R. L., & Stryker, M. P. (1998). Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIB-deficient mice. Journal of Neuroscience, 18, 2108–2117PubMedGoogle Scholar
  160. Hertel, H. (1982). The effect of spectral light deprivation on the spectral sensitivity of the honey bee. Journal of Comparative Physiology, 147, 365–369Google Scholar
  161. Hertel, H. (1983). Change of synapse frequency in certain photoreceptors of the honeybee after chromatic deprivation. Journal of Comparative Physiology, 151, 477–482Google Scholar
  162. Hickey, T. L., & Guillery, R. W. (1974). An autoradiographic study of retinogeniculate pathways in the cat and the fox. Journal of Comparative Neurology, 156, 239–254PubMedGoogle Scholar
  163. Hickey, T. L., Spear, P. D., & Kratz, K. E. (1977). Quantitative studies of cell size in the cat’s dorsal lateral geniculate nucleus following visual deprivation. Journal of Comparative Neurology, 172, 265–282PubMedGoogle Scholar
  164. Hirsch, H. V. B. (1972). Visual perception in cats after environmental surgery. Experimental Brain Research, 15, 405–423Google Scholar
  165. Hirsch, H. V. B. (1985). The tunable seer. Activity-dependent development of vision, In E. M. Blass (Ed.), Handbook of behavioral neurobiology (pp. 237–295). New York: Plenum PressGoogle Scholar
  166. Hirsch, H. V. B., & Spinelli, D. N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 168, 869–871PubMedGoogle Scholar
  167. Hirsch, H. V. B., & Tieman, S. B. (1987). Perceptual development and experience-dependent changes in cat visual cortex. In M. Bornstein (Ed.), Sensitive periods in development: Interdisciplinary perspectives (pp. 39–79), Hillsdale, NJ: ErlbaumGoogle Scholar
  168. Hirsch, H. V. B., & Tompkins, L. (1994). The flexible fly: Experience-dependent development of complex behaviors in Drosophila melanogaster. Journal of Experimental Biology, 195, 1–18Google Scholar
  169. Hirsch, H. V. B., Leventhal, A. G., McCall, M. A., & Tieman, D.G. (1983). Effects of exposure to lines of one or two orientations on different cell types in striate cortex of cat. Journal of Physiology (London), 337, 241–255Google Scholar
  170. Hirsch, H. V. B., Tieman, D. G., Tieman, S. B., & Tumosa, N. (1987). Unequal alternating exposure: Effects during and after the classical critical period. In J. P. Rauschecker, & P. Marier (Eds.), Imprinting and cortical plasticity (pp. 286–320). New York: WileyGoogle Scholar
  171. Hirsch, H. V. B., Potter, D., Zawierucha, D., Choudhri, T., Glasser, A., Murphey, R. K, & Byers, D. (1990). Rearing in darkness changes visually-guided choice behavior in Drosophila. Visual Neuroscience, 5, 281–289Google Scholar
  172. Hirsch, H. V. B., Barth, M., Luo, S., Sambaziotis, H., Huber, M., Possidente, D., Ghiradella, H., & Tompkins, L. (1995). Early visual experience affects mate choice of Drosophila melanogaster. Animal Behavior, 50, 1211–1217Google Scholar
  173. Hoffmann, K-P., Stone, J., & Sherman, S. M. (1972). Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. Journal of Neurophysiodogy, 35, 518–5MGoogle Scholar
  174. Huang, Y. Y., Li, X. C., &Kandel, E. R. (1994). cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell, 79, 69–79PubMedGoogle Scholar
  175. Huang, Y. Y., Kandel, E. R., Varshaysky, L., Brandon, E. P., Qi, M., Idzerda, R. L., Mc Knight, G. S., & Bourtchouladze, R. (1995). A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell, 83, 1211–1222PubMedGoogle Scholar
  176. Hubel, D. H. (1982). Exploration of the primary visual cortex, 1955–1978. Nature, 299, 515–524PubMedGoogle Scholar
  177. Hubel, D. H., & Livingstone, M. S. (1987). Segregation of form color, and stereopsis in primate area 18. Journal of Neuroscience, 7, 3378–3415PubMedGoogle Scholar
  178. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London), 160, 106–154 Google Scholar
  179. Hubel, D. H., Sc Wiesel, T. N. (1963a). Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of NauraphysioIogy, 26, 994–1002Google Scholar
  180. Hubel, D. H., & Wiesel, T. N. (1963b). Shape and arrangement of columns in cat’s striate cortex. Journal of Physiology (London), 165, 559–568Google Scholar
  181. Hubel, D. H., & Wiesel, T. N. (1965a). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiodogy, 28, 229–289Google Scholar
  182. Hubel, D. H., & Wiesel, T N. (1965b). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiodogy, 28, 1041–1059Google Scholar
  183. Jarvis, C. R., Xiong, Z. G., Plant, J. R., Churchill, D., Lu, W. Y, Mac Vicar, B. A., & Mac Donald, J. F. (1997). Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. Journal of Neurophysiology, 78, 2363–2371PubMedGoogle Scholar
  184. Joiner, M. L. A., & Griffith, L. C. (1997). CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. Journal of Neuroscience, 17, 9384–9391PubMedGoogle Scholar
  185. Jones, J. S., Bryant, S. H., Lewontin, R. C., Moore, J. A., & Prout, T. (1981). Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. Genetics, 98, 157–178Google Scholar
  186. Kaang, B.-K., Kandel, E. R., &Grant, S. G. (1993). Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron, 10, 427–435PubMedGoogle Scholar
  187. Kalil, R. (1978). Dark rearing in the cat: Effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus. Journal of Comparative Neurology, 178, 451–467PubMedGoogle Scholar
  188. Kandel, E. R., & O’Dell, T. J. (1992). Are adult learning mechanisms also used for development? Science, 258, 243–245PubMedGoogle Scholar
  189. Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662PubMedGoogle Scholar
  190. Kang, H. J., & Schuman, E. M. (1996). A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science, 273, 1402–1406PubMedGoogle Scholar
  191. Kang, H., Jia, L. Z., Su, K. Y., Tang, L., & Schuman, E. M. (1996). Determinants of BDNF induced hippocampal synaptic plasticity: Role of the trk B receptor and the kinetics of neurotrophin delivery. Learning and Memory, 3, 188–196PubMedGoogle Scholar
  192. Kato, N., Artola, A., & Singer, W. (1991). Developmental changes in the susceptibility to long-term potentiation of neurones in rat visual cortex slices. Developmental Brain Research, 60, 43–50PubMedGoogle Scholar
  193. Kennedy, M. B., Bennett, M. K., & Erondu, N. E. (1983). Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proceedings of the National Academy of Sciences of the USA, 80, 7357–7361PubMedGoogle Scholar
  194. Kirkwood, A., Lee, H.-K, & Bear, M. F. (1995). Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature, 37g, 328–331Google Scholar
  195. Kirkwood, A., Silva, A., & Bear, M. E (1997). Age-dependent decrease of synaptic plasticity in the neocortex of aCaMKII mutant mice. Proceedings of the National Academy of Sciences of the USA, 94, 3380–3383PubMedGoogle Scholar
  196. Klauck, T. M., & Scott, J. D. (1995). The postsynaptic density: A subcellular anchor for signal transduction enzymes. Cellular Signaling, 7, 747–757Google Scholar
  197. Kleinschmidt, A., Bear, M. F., & Singer, W. (1987). Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten visual cortex. Science, 238, 355–358PubMedGoogle Scholar
  198. Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G., & Silva, A. J. (1997). Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 7, 1–11PubMedGoogle Scholar
  199. Korte, M., Carroll, P., Wolf, E., Brent, G., Thoenen, H., & Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the USA, 92, 8856–8860PubMedGoogle Scholar
  200. Korte, M., Staiger, V., Griesbeck, O., Thoenen, H., & Bonhoeffer, T. (1996). The involvement of brain-derived neurotrophic factor in hippocampal long-term potentiation revealed by gene targeting experiments. Journal de Physiologie, 90, 157–164Google Scholar
  201. Kral, K, & Meinertzhagen, I. A. (1989). Anatomical plasticity of synapses in the lamina of the optic lobe of the fly. Philosophical Transactions of the Royal Society of London, Series B [Biological], 323, 155–183Google Scholar
  202. Kratz, K E. (1982). Spatial and temporal sensitivity of lateral geniculate cells in dark-reared cats. Brain Research, 251, 55–63PubMedGoogle Scholar
  203. Kratz, K. E., Sherman, S. M., & Kalil, R. (1979). Lateral geniculate nucleus of dark reared cats: Loss of Y cells without changes in cell size. Science, 203, 1353–1355PubMedGoogle Scholar
  204. Lambin, M., Charii, F., Meille, O., & Campan, R. (1990). Effets de la privation précoce de lumiàre sur l’orientation viuso-guidée chez un grillon Gryllus bimaculatus. Behavioral Processes, 22, 165–176Google Scholar
  205. Laughlin, S. (1981a). Neural principles in the peripheral visual systems of invertebrates. In H. Antrum (Ed.), Handbook of sensory physiology (pp. 133–280). New York: Springer-VerlagGoogle Scholar
  206. Laughlin, S. (1981b). A simple coding procedure enhances a neuron’s information capacity. Zeitschrift fair Naturforschung, 36c, 910–912Google Scholar
  207. Law, M. I., Zahs, K. R., & Stryker, M. P. (1988), Organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology, 278, 157–180PubMedGoogle Scholar
  208. Lawrence, P. A. (1992). The making of a fly Boston: BlackwellGoogle Scholar
  209. Le Vay, S., & Gilbert, C. D. (1976). Laminar patterns of geniculocortical projection in the cat. Brain Research, 113, 1–19Google Scholar
  210. Le Vay, S., Stryker, M. P., & Shatz, C.J. (1978). Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. Journal of Comparative Neurology, 179, 223–244Google Scholar
  211. Leventhal, A. G., & Hirsch, H. V. B. (1975). Cortical effect of early selective exposure to diagonal lines. Science, 190, 902–904PubMedGoogle Scholar
  212. Leventhal, A. G., & Hirsch, H. V. B. (1977). Effects of early experience upon orientation sensitivity and binocularity of neurons in visual cortex of cats. Proceedings of the National Academy of Sciences of the USA, 74, 1272–1276PubMedGoogle Scholar
  213. Leventhal, A. G., & Hirsch, H. V. B. (1980). Receptive field properties of different classes of neurons in the visual cortex of normal and dark-reared cats. Journal of Neurophysiology, 43, 1111–1132PubMedGoogle Scholar
  214. Levin, L. R., Han, P. L., Hwang, P. M., Feinstein, P. G., Davis, R. L., & Reed, R. R. (1992). The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell, 68, 479–489PubMedGoogle Scholar
  215. Levine, E. S., Dreyfus, C. F., Black, I. B., & Plummer, M. R. (1995). Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proceedings of the National Academy of Sciences of the USA, 92, 8074–8077PubMedGoogle Scholar
  216. Linden, D. C., Guillery, R. W., & Cucchiaro, J. (1981). The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. Journal of Comparative Neurology, 203, 189–211PubMedGoogle Scholar
  217. Lindholm, D., Castrén, E., Berzaghi, M., Blóchl, A., & Thoenen, H. (1994). Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain—Implications for neuronal plasticity. Journal of Neurobiology, 25, 1362–1372PubMedGoogle Scholar
  218. Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 3416–3468PubMedGoogle Scholar
  219. Lledo, P. M., Hjelmstad, G. O., Mukherji, S., Soderling, T. R., Malenka, R. C., & Nicoll, R. A. (1995). Calcium calmodulindependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proceedings of the National Academy of Sciences of the USA, 92, 11175–11179PubMedGoogle Scholar
  220. Lledo, P. M., Zhang, X. Y., Südhof, T. C., Malenka, R. C., & Nicoll, R. A. (1998). Postsynaptic membrane fusion and long-term potentiation. Science, 279, 399–403PubMedGoogle Scholar
  221. Lnenicka, G. A. (1991). Activity-dependent development of synaptic varicosities at terminals of an identified crayfish motoneuron. Annals of the New York Academy of Sciences, 627, 197–211PubMedGoogle Scholar
  222. Lnenicka, G. A., & Atwood, H. L. (1985). Age-dependent long-term adaptation of crayfish phasic motor axon synapses to altered activity. Journal of Neuroscience, 5, 459–467PubMedGoogle Scholar
  223. Lnenicka, G. A., Atwood, H. L., & Mann, L. (1986). Morphological transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation. Journal of Neuroscience, 6, 2252–2258PubMedGoogle Scholar
  224. Loop, M. S., Bruce, L. L., & Petuchowski, S. (1979). Cat color vision: The effect of stimulus size, shape and viewing distance. Vision Research, 19, 507–513PubMedGoogle Scholar
  225. Löwel, S. (1994). Ocular dominance column development: Strabismus changes the spacing of adjacent columns in cat visual cortex. Journal of Neuroscience, 14, 7451–7468PubMedGoogle Scholar
  226. Löwe!, S., & Singer, W. (1993). Monocularly induced 2-deoxyglucose patterns in the visual cortex and lateral geniculate nucleus of the cat: II. Awake animals and strabismic animals. European Journal of Neuroscience, 5, 857–869Google Scholar
  227. Macdonald, R., & Wilson, S. W. (1996). Pax proteins and eye development. Current Opinions in Neurobiology, 6, 49–56Google Scholar
  228. Maffei, L., & Galli-Resta, L. (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proceedings of the National Academy of Sciences of the USA, 87, 2861–2864PubMedGoogle Scholar
  229. Maffei, L., Berardi, N., Domenici, L., Parisi, V., & Pizzorusso, T. (1992). Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Journal of Neuroscience, 12, 4651–4662PubMedGoogle Scholar
  230. Maletic-Savatic, M., & Malinow, R. (1998). Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part 1: Trans-Golgi network-derived organelles undergo regulated exocytosis. Journal of Neuroscience, 18, 6803–6813PubMedGoogle Scholar
  231. Malinow, R., Schulman, H., & Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866PubMedGoogle Scholar
  232. Mansfield, R.J.W. (1974). Neural basis of orientation perception in primate vision. Science, 186, 1133–1135. Mansfield, R.J. W., & Ronner, S. F. (1978). Orientation anistropy in monkey visual cortex. Brain Research,149, 229–234Google Scholar
  233. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R., & Bach, M. E. (1998). Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to longterm memory. Cell, 92, 39–49PubMedGoogle Scholar
  234. Markow, T. A. (1981). Genetic and sensory aspects of mating success of phototactic strains of Drosophila melanogaster. Behavior Genetics,11, 273–279Google Scholar
  235. Markow, T. A. (1987). Behavioral and sensory basis of courtship success in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 84, 6200–6204PubMedGoogle Scholar
  236. Marks, M. J., Robinson, S. F., & Collins, A. C. (1996). Nicotinic agonists differ in activation and desensitization of 86Rb+ efflux from mouse thalamic synaptosoxnes. Journal of Pharmacology and Experimental Therapeutics, 277, 1383–1396Google Scholar
  237. Martin, K. A. C., & Whitteridge, D. (1984). Form, function, and intracortical projections of spiny neu-rones in the striate cortex of the cat. Journal of Physiology (London), 353, 463–504Google Scholar
  238. Maslim, J., & Stone, J. (1986). Synaptogenesis in the retina of the cat. Brain Research,373, 35–48PubMedGoogle Scholar
  239. Maslim, J., & Stone, J. (1988). Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat. Developmental Brain Research, 44, 87–93PubMedGoogle Scholar
  240. Mason, C. A. (1982). Development of terminal arbors of retino-geniculate axons in the kitten. I. Light microscopical observations. Neuroscience, 2, 541–559Google Scholar
  241. Matsumoto, S. G., & Murphey, R. K. (1977). Sensory deprivation during development decreases the responsiveness of cricket giant interneurones. Journal of Physiology (London), 268, 533–548Google Scholar
  242. Matsumoto, S. G., & Murphey, R. K (1978). Sensory deprivation in the cricket nervous system: Evidence for a critical period. Journal of Physiology (London), 285, 159–170Google Scholar
  243. Matthies, H., & Reymann, K. G. (1993). Protein kinase A inhibitors prevent the maintenance of hippo-campal long-term potentiation. NeuroReport,4, 712–714PubMedGoogle Scholar
  244. McDonald, J., & Parsons, P. A. (1973). Dispersal activities of the sibling species Drosophila melanogasterand Drosophila simulans. Behavior Genetics, 3, 293–301Google Scholar
  245. McKay, R. R., Chen, D. M., Miller, K, Kim, S., Stark, W. S., & Shortridge, R. D. (1995). Phospholipase C rescues visual defect in norpA mutant of Drosophila melanogaster. Journal of Biological Chemistry, 270, 13271–13276PubMedGoogle Scholar
  246. McRobert, S. P., & Tompkins, L. (1983). Courtship of young males is ubiquitous in Drosophila melanogaster. Behavior Genetics, 13, 517–523Google Scholar
  247. McRobert, S. P., & Tompkins, L. (1988). Two consequences of homosexual courtship performed by Drosophila melanogaster and Drosophila affenis males. Evolution, 42, 1093–1097Google Scholar
  248. Meille, O., Campan, R., & Lambin, M. (1994). Effects of light deprivation on visually guided behavior early in the life of Cryllus Bimaculatus (Orthoptera: Gryllidae). Annals of the Entomological Society of America, 87, 133–142Google Scholar
  249. Meinertzhagen, I. A. (1989). Fly photoreceptor synapses: Their development, evolution, and plasticity. Journal of Neurobiology, 20, 276–294PubMedGoogle Scholar
  250. Meinertzhagen, I. A., & Hanson, T. E. (1993). The development of the optic lobe. In The development of Drosophila melangaster (pp. 1363–1491). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory PressGoogle Scholar
  251. Meinertzhagen, I. A., & O’Neil, S. D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. Journal of Comparative Neurology, 305, 232–263Google Scholar
  252. Mello, N. K., & Peterson, N. J. (1964). Behavioral evidence for color discrimination in the cat. Journal of Neurophysiology, 27, 323–323Google Scholar
  253. Melzig, J., Buchner, S., Wiebel, F., Wolf, R., Burg, M., Pak, W. L., & Buchner, E. (1996). Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior. Journal of Comparative Physiology, 179, 763–773PubMedGoogle Scholar
  254. Merlio, J. P., Ernfors, P., Jaber, M., Sc Persson, H. (1992). Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience,51, 513–532PubMedGoogle Scholar
  255. Meyerowitz, E. M., & Kankel, D. R. (1978). A genetic analysis of visual system development in Drosophilia melanogaster. Developmental Biology, 62, 112–142Google Scholar
  256. Miller, K. D., Keller, J. B., & Stryker, M. P. (1989). Ocular dominance column development Analysis and simulation. Science, 245, 605–615PubMedGoogle Scholar
  257. Mimura, K. (1986). Development of visual pattern discrimination in the fly depends on light experience. Science, 232, 83–85PubMedGoogle Scholar
  258. Mitchell, D. E. (1988). The extent of visual recovery from early monocular or binocular visual deprivation in kittens. Journal of Physiology (London), 395, 639–660Google Scholar
  259. Mobbs, P. G. (1982). The brain of the honey bee Apis mellifera The connections and spatial organization of the mushroom bodies. Philosophical Transactions of the Royal Society of London, Series B [Biological], 298, 309–345Google Scholar
  260. Mooney, R., Penn, A. A., Gallego, R. & Shatz, C. J. (1996). Thalamic relay of spontaneous retinal activity prior to vision. Neuron, 17, 863–874PubMedGoogle Scholar
  261. Moore, C. L. (1992). The role of maternal stimulation in the development of sexual behavior and its neural basis. Annals of the New York Academy of Sciences, 662, 160–177Google Scholar
  262. Moore, A. N., Waxham, M. N., &Dash, P. K. (1996). Neuronal activity increases the phosphorylation of the transcription factor cAMP response element-binding protein (CREB) in rat hippocampus and cortex. Journal of Biological Chemistry, 271, 14214–14220PubMedGoogle Scholar
  263. Mower, G. D., Caplan, C. J., & Letsou, G. (1982). Behavioral recovery from binocular deprivation in the cat. Behavioural Brain Research, 4, 209–215PubMedGoogle Scholar
  264. Mower, G. D., Caplan, C.J., Christen, W. G., Sc Duffy, F. H. (1985). Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Journal of Comparative Neurology, 235, 448–466PubMedGoogle Scholar
  265. Muir, D. W., & Mitchell, D. E. (1973). Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation. Science, 180, 420–422PubMedGoogle Scholar
  266. Muir, D. W. & Mitchell, D. E. (1975). Behavioral deficits in cats following early selected visual exposure to contours of a single orientation. Brain Research,85, 459–477PubMedGoogle Scholar
  267. Mukhopadhyay, M., & Campos, A. R. (1995). The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Developmental Biology, 169, 629–643Google Scholar
  268. Murphey, R. K. (1986a). Competition and the dynamics of axon arbor growth in the cricket. Journal of Comparative Neurology, 251, 100–110Google Scholar
  269. Murphey, R. K. (1986b). The myth of the inflexible invertebrate: Competition and synaptic remodeling in the development of invertebrate nervous systems. Journal of Neurobiology, 17, 585–591Google Scholar
  270. Murphey, R. K., & Chiba, A. (1990). Assembly of the cricket cercal sensory system: Genetic and epigenetic control. Journal of Neurobiology, 21, 120–137PubMedGoogle Scholar
  271. Murphey, R. K., & Hirsch, H. V. B. (1982). From cat to cricket: The genesis of response selectivity of interneurons. Current Topics in Developmental Biology,17, 241–256PubMedGoogle Scholar
  272. Murphey, R. K., & Lemere, C. A. (1984). Competition controls the growth of an identified axonal arborization. Science, 224, 1352–1355PubMedGoogle Scholar
  273. Müller, L., Pattiselanno, A., & Vrensen, G. (1981). The postnatal development of the presynaptic grid in the visual cortex of rabbits and the effect of dark-rearing. Brain Research, 205, 39–48PubMedGoogle Scholar
  274. Mustari, M. J Bullier, J., & Henry, G. H. (1982). Comparison of response properties of three types of monosynaptic S-cell in cat striate cortex. Journal of Neurophysiology, 47, 439–454Google Scholar
  275. Nelson, R., Famiglietti, E. V., Jr., & Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. Journal of Neurophysiology, 41, 472–483PubMedGoogle Scholar
  276. Nguyen, P. V., & Kandel, E. R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. Journal of Neuroscience, 16, 3189–3198PubMedGoogle Scholar
  277. Nighorn, A., Healy, M. J., & Davis, R. L. (1991). The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron, 6, 455–467PubMedGoogle Scholar
  278. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462–465PubMedGoogle Scholar
  279. O’Dell, T. J., Kandel, E. R., & Grant, S. G. N. (1991). Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature, 353 558–560PubMedGoogle Scholar
  280. Oishi, I., Sugiyama, S., Liu, Z J, Yamamura, H., Nishida, Y., & Minami, Y. (1997). A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling. Journal of Biological Chemistry, 272 11916–11923PubMedGoogle Scholar
  281. Osorio, D., Srinivasan, M. V., &Pinter, R. B. (1990). What causes edge fixation in walking flies? Journal of Experimental Biology, 149 281–292PubMedGoogle Scholar
  282. Otmakhov, N., Griffith, L. C., &Lisman, J. E. (1997). Postsynaptic inhibitors of calcium/calmodulindependent protein kinase type H block induction but not maintenance of pairing-induced long-term potentiation. Journal of Neuroscience, 17 5357–5365PubMedGoogle Scholar
  283. Packwood, J., & Gordon, B. (1975). Stereopsis in normal domestic cat, Siamese cat, and cat raised with alternating monocular occlusion. Journal of Neurophysiology, 38 1485–1499PubMedGoogle Scholar
  284. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A., & Bothwell, M. (1992). Neurotrophin expression in rat hippocampal slices: A stimulus paradigm inducing LTP in CAI evokes increases in BDNF and NT-3 mRNAs. Neuron, 9 1081–1088PubMedGoogle Scholar
  285. Patterson, S. L., Abel, T., Deuel, T. A. S., Martin, K. C., Rose, J. C., & Kandel, E. R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 16 1137–1145PubMedGoogle Scholar
  286. Pearlman, A. L., & Daw, N. W. (1971). Behavioral and neurophysiological studies on cat color vision. International Journal of Neuroscience, 1 357–360PubMedGoogle Scholar
  287. Penn, A. A., Wong, R. O. L,, & Shatz, C. J. (1994). Neuronal coupling in the developing mammalian retina. Journal of Neuroscience, 14 3805–3815Google Scholar
  288. Penn, A. A., Riquelme, P. A., Feller, M. B., & Shatz, C. J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science, 279 2108–2112PubMedGoogle Scholar
  289. Pham, T. A., Impey, S., Storm, D. R., & Stryker, M. P. (1999). CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron, 22 63–72PubMedGoogle Scholar
  290. Phelps, C. B., & Brand, A. H. (1998). Ectopic gene expression in Drosophila using GAL4 system. Methods 14 367–379PubMedGoogle Scholar
  291. Powell, J. R., Dobzhansky, T., Hook, J. E., & Wistrand, H. (1976). Genetics of natural populations. XLIII. Further studies on rates of dispersal of Drosophila pseudoobscura and its relatives. Genetics, 82 493–506PubMedGoogle Scholar
  292. Pulido, D., Campuzano, S., Koda, T., Modolell, J., & Barbacid, M. (1992). Dirk a Drosophila gene related to the trk family of neurotrophin receptors, encodes a novel class of neural cell adhesion molecule. EMBO Journal, 11 391–404PubMedGoogle Scholar
  293. Qi, M., Zhuo, M., Skalhegg, B. S., Brandon, E. P., Kandel, E. R., Mc Knight, G. S., & Idzerda, R. L. (1996). Impaired hippocampal plasticity in mice lacking the Cß catalytic subunit of cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the USA, 93 1571–1576PubMedGoogle Scholar
  294. Quiring, R., Walldorf, U., Kloter, U., & Gehring, W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science, 265 785–789PubMedGoogle Scholar
  295. Racine, R., & Zaide, J. (1978). A further investigation into the mechanisms underlying the kindling phenomenon. In K. E. Livingston & O. Hornykiewicz (Eds.). Limbic mechanisms: The continuing evolution of the limbic system concept (pp. 457–493). New York: Plenum PressGoogle Scholar
  296. Rauschecker, J. P., & Singer, W. (1981). The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. Journal of Physiology (London), 310 215–239Google Scholar
  297. Reiter, H. O., & Stryker, M. P. (1988). Neural plasticity without postsynaptic action potentials: Less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proceedings of the National Academy of Sciences of the USA, 85 3623–3627PubMedGoogle Scholar
  298. Riccio, A., Pierchala, B. A., Ciarallo, C. L., & Ginty, D. D. (1997). An NGF-TrkA mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science, 277 1097–1100PubMedGoogle Scholar
  299. Riddle, D. R., Lo, D. C., &Katz, L. C. (1995). NTA-mediated rescue of lateral geniculate neurons from effects of monocular deprivation. Nature, 378 189–191PubMedGoogle Scholar
  300. Ringo, J. L., &Wolbarsht, M. L. (1986). Spectral coding in cat retinal ganglion cell receptive fields., journal of Neurophysiology 55, 320–330Google Scholar
  301. Ringo, J., Wolbarsht, M. L., Wagner, H. G., Crocker, R., & Amthor, E (1977). Trichromatic vision in the cat. Science, 198 753–755PubMedGoogle Scholar
  302. Roberson, E. D., & Sweatt, J. D. (1996). Transient activation of cyclic AMP-dependent protein kinase during hippocampal long-term potentiation. Journal of Biological Chemistry, 271 30436–30441PubMedGoogle Scholar
  303. Roberts, E. B., Meredith, M. A., &Ramoa, A. S. (1998). Suppression of NMDA receptor function using antisense DNA blocks ocular dominance plasticity while preserving visual responses. Journal of Neurophysiology, 80 1021–1032PubMedGoogle Scholar
  304. Roberts, L. A., Higgins, M. J., O’Shaughnessy, C. T., Stone, T. W., & Morris, B. J. (1996). Changes in hippocampal gene expression associated with the induction of long-term potentiation. Molecular Brain Research, 42 123–127PubMedGoogle Scholar
  305. Roberts, L. A., Large, C. H., Higgins, M. J., Stone, T. W., O’Shaughnessy, C. T., & Morris, B. J. (1998). Increased expression of dendritic mRNA following the induction of long-term potentiation. Molecular Brain Research, 56 38–44PubMedGoogle Scholar
  306. Rodieck, R. W. (1979). Visual pathways. Annual Review of Neuroscience, 2 193–225PubMedGoogle Scholar
  307. Rogers, S. M., & Simpson, S. J. (1997). Experience-dependent changes in the number of chemosensory sensilla on the mouthparts and antenna of Locusta migratoria. Journal of Experimental Biology, 200 2313–2321Google Scholar
  308. Rorth, E, Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., & Cohen, S. M. (1998). Systematic gain-of-function genetics in Drosophila. Development, 125 1049–1057Google Scholar
  309. Rotenberg, A., Mayford, M., Hawkins, R. D., Kandel, E. R., & Muller, R. U. (1996). Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell, 87 1351–1361PubMedGoogle Scholar
  310. Rybak, J., & Meinertzhagen, I. A, (1997). The effects of light reversals on photoreceptor synaptogenesis in the fly Musca domestica. European Journal of Neuroscience, 9 319–333Google Scholar
  311. Saito, H.-A. (1983). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology, 221 279–288PubMedGoogle Scholar
  312. Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y Sugiyama, H., & Mishina, M. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor el subunit. Nature, 373 151–155PubMedGoogle Scholar
  313. Sanderson, K. J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology, 143 101–118PubMedGoogle Scholar
  314. Schacher, S. M., Holtzman, E., & Hood, D. C. (1974). Uptake of horseradish peroxidase by frog photoreceptor synapses in the dark and in the light. Nature, 249 261–263PubMedGoogle Scholar
  315. Schacher, S., Castellucci, V. F., & Kandel, E. R. (1988). cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis. Science, 240 1667–1669PubMedGoogle Scholar
  316. Schäffel, F., & Willmund, R. (1985). Visual signals in the courtship of Drosophila melanogaster Mutant analysis. Journal of Insect Physiology, 31 899–907Google Scholar
  317. Schmidt, J. T. (1985). Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism. Cellular and Molecular Neurobiology, 5 65–83PubMedGoogle Scholar
  318. Schmidt, J. T. (1990). Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish; Common sensitive period and sensitivity to NMDA blockers. Journal of Neuroscience, 10 233–246PubMedGoogle Scholar
  319. Schmidt, J. T., & Tiernan, S. B. (1985). Eye-specific segregation of optic afferents in mammals, fish, and frogs: The role of activity. Cellular and Molecular Neurobiology, 5 5–34PubMedGoogle Scholar
  320. Schneider, G. E. (1969). Two visual systems. Science, 163 895–902PubMedGoogle Scholar
  321. Schoppmann, A., & Stryker, M. P. (1981). Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Nature, 293 574–576PubMedGoogle Scholar
  322. Schoups, A. A., Elliott, R C., Friedman, W. J., & Black, I. B. (1995). NGF and BDNF are differentially modulated by visual experience in the developing geniculocortical pathway. Developmental Brain Research, 86 326–334PubMedGoogle Scholar
  323. Schulz, S., Siemer, H., Krug, M., & Hölt, V. (1999). Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. Journal of Neuroscience, 19 5683–5692Google Scholar
  324. Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin H controls synaptic stabilization and growth. Neuron, 17 641–654PubMedGoogle Scholar
  325. Shatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron, 5 745–756PubMedGoogle Scholar
  326. Shatz, C.J. (1996). Emergence of order in visual system development. Proceedings of the National Academy of Sciences of the USA, 93 602–608PubMedGoogle Scholar
  327. Shatz, C.J., & Stryker, M. P. (1978). Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. Journal of Physiology (London), 281 267–283Google Scholar
  328. Shatz, C.J., & Stryker, M. P. (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science, 242 87–89PubMedGoogle Scholar
  329. Shatz, C.J., Lindström, S., & Wiesel, T. N. (1977). The distribution of afferents representing the right and left eyes in the cat’s visual cortex. Brain Research, 131 103–116PubMedGoogle Scholar
  330. Shaw, S. R. (1984). Early visual processing in insects. Journal of Experimental Biology, 112 225–251PubMedGoogle Scholar
  331. Shepherd, D., & Murphey, R. K. (1986). Competition regulates the efficacy of an identified synapse in crickets. Journal of Neuroscience, 6 3152–3160PubMedGoogle Scholar
  332. Sherman, S. M. (1973). Visual field defects in monocularly and binocularly deprived cats. Brain Research, 49 25–45Google Scholar
  333. Sherman, S. M. (1985), Functional organization of the W-, X-, andY-cell pathways in the cat: A review and hypothesis. In J. M. Sprague & A. N. Epstein (Eds.) Progress in psychobiology and physiological psychology (Vol. 11, pp. 233–314). New York: Academic PressGoogle Scholar
  334. Sherman, S. M. & Spear, P. D. (1982). Organization of visual pathways in normal and visually deprived cats. Physiological Reviews, 62 738–855PubMedGoogle Scholar
  335. Shieh, P. B., Hu, S. C., Bobb, K, Timmusk, T., & Ghosh, A. (1998). Identification of a signaling pathway involved in calcium regulation of BD1VE expression. Neuron, 20 727–740PubMedGoogle Scholar
  336. Silva, A.J., Stevens, C. F., Tonegawa, S., & Wang, Y. (1992). Deficient hippocampal long-term potentiation in a—calcium—calmodulin kinase II mutant mice. Science, 257 201–206PubMedGoogle Scholar
  337. Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREE and memory. Annual Review of Neuroscience, 21 127–148PubMedGoogle Scholar
  338. Singer, W., Tretter, E, & Cynader, M. (1975). Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections. Journal of Neurophysiology, 38 1080–1098PubMedGoogle Scholar
  339. Singer, W., Holländer, H., & Vanegas, H. (1977). Decreased peroxidase labeling of lateral geniculat neurons following deafferentation. Brain Research, 120 133–137PubMedGoogle Scholar
  340. Singer, W., Freeman, B., & Rauschecker, J. (1981). Restriction of visual experience to a single orientation affects the organization of orientation columns in cat visual cortex. A study with deoxyglucose. Experimental Brain Research, 41 199–215Google Scholar
  341. Slack, J. R., & Walsh, C. (1995). Effects of a cAMP analogue simulate the distinct components of long-term potentiation in CA1 region of rat hippocampus. Neuroscience Letters, 201 25–28PubMedGoogle Scholar
  342. Smetters, D. K, Hahm, J., & Sur, M. (1994). An /methyl-n-aspartate receptor antagonist does not pre-vent eye-specific segregation in the ferret retinogeniculate pathway. Brain Research, 658 168–178PubMedGoogle Scholar
  343. Smith, D. C., Lorber, R., Stanford, L. R., & Loop, M. S. (1980). Visual acuity following binocular depriva-tion in the cat. Brain Research, 183 1–11PubMedGoogle Scholar
  344. Son, H., Hawkins, R. D., Martin, K, Kiebler, M., Huang, P. L., Fishman, M, C., & Kandel, E. R, (1996). Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell, 87 1015–1023Google Scholar
  345. Spieth, H. T., & Ringo, J. M. (1983). Mating behavior and sexual isolation in Drosophila In M. Ashburner, H. L. Carlson, & J. J. Thompson, Jr. (Eds.) The genetics and biology of Drosophila (pp. 223–284). New York: Academic PressGoogle Scholar
  346. Sretavan, D. W., & Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat’s lateral geniculate nucleus. Journal of Neuroscience 6, 234–251PubMedGoogle Scholar
  347. Stanford, L. R., & Sherman, S M (1984). Structure/function relationships of retinal ganglion cells in the cat. Brain Research, 297 381–386PubMedGoogle Scholar
  348. Stanford, L. R, Friedlander, M.J., & Sherman, S. M. (1983). Morphological and physiological properties of geniculate W-cells of the cat: A comparison with X- and Y-cells. Journal of Neurophysiology, 50 582–608PubMedGoogle Scholar
  349. Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proceedings of the National Academy of Sciences of the USA, 70 997–1001PubMedGoogle Scholar
  350. Sterling, P., Freed, M., & Smith, R. G. (1986). Microcircuitry and functional architecture of the cat retina. Trends in Neurosciences, 9 186–192Google Scholar
  351. Stevens, C. E, Tonegawa, S., & Wang, Y. (1994). The role of calciumcalmodulin kinase II in three forms of synaptic plasticity. Current Biology 4, 687–693PubMedGoogle Scholar
  352. Stone, J., Dreher, B., & Leventhal, A. (1979). Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Research Reviews, 1 345–394Google Scholar
  353. Strausfeld, N. J., & Campos-Ortega, J. A. (1977). Vision in insects: Pathways possibly underlying neural adaptation and lateral inhibition. Science, 195 894–897PubMedGoogle Scholar
  354. Strausfeld, N. J., & Lee, J. K. (1991). Neuronal basis for parallel visual processing in the fly. Visual Neuroscience 2,13–33Google Scholar
  355. Strausfeld, N. J. & Nássel, D. R. (1981). Neuroarchitectures serving compound eyes of crustacea and insects. In H. Autrum (Ed.) Handbook of sensory physiology (pp. 1–132). New York: Springer-VerlagGoogle Scholar
  356. Stryker, M. P., & Harris, W. A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. Journal of Neuroscience, 60 2117–2133Google Scholar
  357. Stryker, M. P., & Zahs, K. R. (1983). On and off sublaminae in the lateral geniculate nucleus of the ferret. Journal of Neuroscience, 3 1943–1951PubMedGoogle Scholar
  358. Suzuki, T, Usuda, N., Ishiguro, H., Mitake, S., Nagatsu, T., & Okumura-Noji, K. (1998). Occurrence of a transcription factor, cAMP response element-binding protein (CREB), in the postsynaptic sites of the brain. Molecular Brain Research, 61 69–77PubMedGoogle Scholar
  359. Sweatt, J. D., & Kandel, E. R. (1989). Persistent and transcriptionally-dependent increase in protein phosphorylation in long-term facilitation of Aplysia sensory neurons. Nature, 339 51–54PubMedGoogle Scholar
  360. Swindale, N. V. (1980). A model for the formation of ocular dominance stripes. Proceedings of the Royal Society of London [Biology], 208 243–264Google Scholar
  361. Swindale, N. V. (1981). Absence of ocular dominance patches in dark reared cats. Nature, 290 332–333PubMedGoogle Scholar
  362. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., & Greenberg, M. E. (1998). Cat+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 20 709–726PubMedGoogle Scholar
  363. Taylor, C. E., Powell, J. R., Kekic, V., Andjelkovic, & Burla, H. (1984). Dispersal rates of species of the Drosophila obscura group: Implications for population structure. Evolution, 38 1397–1401Google Scholar
  364. Technau, G. M. (1984). Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. Journal of Neurogenetics, 1 113–126PubMedGoogle Scholar
  365. Thibos, L. N., & Levick, W. R. (1982). Astigmatic visual deprivation in cat: Behavioral, optical and retinophysiological consequences. Vision Research, 22 43–53PubMedGoogle Scholar
  366. Tieman, D. G., Tumosa, N., & Tieman, S. B. (1983). Behavioral and physiological effects of monocular deprivation: A comparison of rearing with occlusion and diffusion. Brain Research, 280 41–50PubMedGoogle Scholar
  367. Tieman, S. B. (1984). Effects of monocular deprivation on geniculocortical synapses in the cat. Journal of Comparative Neurology, 222 166–176Google Scholar
  368. Tieman, S. B. (1985). The anatomy of geniculocortical connections in monocularly deprived cats. Cellular and Molecular Neurobiology, 5 35–45PubMedGoogle Scholar
  369. Tieman, S. B. (1991). Morphological changes in the geniculocortical pathway associated with monocular deprivation. Annals of the New York Academy of Sciences, 627 212–230PubMedGoogle Scholar
  370. Tieman, S. B., & Hirsch, H. V. B. (1982). Exposure to lines of only one orientation modifies dendrite morphology of cells in the visual cortex of the cat. Journal of Comparative Neurology, 211 353–362PubMedGoogle Scholar
  371. Tieman, S. B., & Tumosa, N. (1983). [14C]-2-Deoxyglucose demonstration of the organization of ocular dominance in areas 17 and 18 of the normal cat. Brain Research, 267 35–46PubMedGoogle Scholar
  372. Tieman, S. B., & Tumosa, N. (1997). Alternating monocular exposure alters the spacing of ocularity domains in area 17 of cat. Visual Neuroscience, 14 929–938PubMedGoogle Scholar
  373. Timney, B., Mitchell, D. E., & Giffin, F. (1978). The development of vision in cats after extended periods of dark-rearing. Experimental Brain Research, 31 547–560Google Scholar
  374. Tokuda, M., Ahmed, B. Y., Lu, Y. E, Matsui, H., Miyamoto, O., Yamaguchi, F., Konishi, R., & Hatase, O. (1997). Involvement of calmodulin-dependent protein kinases-I and -IV in long-term potentiation. Brain Research 755, 162–166PubMedGoogle Scholar
  375. Tomarev, S. I., Callaerts, P., Kos, L., Zinovieva, R., Haider, G., Gehring, W., & Piatigorsky, J. (1997). Squid Pax-6 and eye development. Proceedings of the National Academy of Sciences of the USA 94, 2421–2426PubMedGoogle Scholar
  376. Tompkins, L. (1984). Genetic analysis of sex appeal in Drosophila. Behavior Genetics, 14, 411–440PubMedGoogle Scholar
  377. Tompkins, L., Hall, J. C., & Hall, L. M. (1980). Courtship-stimulating volatile compounds from normal and mutant Drosophila. Journal of Insect Physiology, 26, 689–697Google Scholar
  378. Tompkins, L., Gross, A. C., Hall, J. C., Gailey, D. A., & Siegel, R. W. (1982). The role of female movement in the sexual behavior of Drosophila melanogaster. Behavior Genetics, 12 295–307Google Scholar
  379. Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31 299–337. Tully, T., Preat, T., Boynton, S. C., & Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell, 79 35–47Google Scholar
  380. Tumosa, N., Tiernan, S. B., &Hirsch, H. V. B. (1982). Visual field deficits in cats reared with unequal alternating monocular exposure. Experimental Brain Research, 47 119–129Google Scholar
  381. Tumosa, N., Nunberg, S., Hirsch, H. V. B., & Tiernan, S. B. (1983). Binocular exposure causes suppression of the less experienced eye in cats previously reared with unequal alternating monocular exposure. Investigative Ophthalmology and Visual Science, 24 496–506PubMedGoogle Scholar
  382. Tumosa, N., Tieman, S. B., & Tiernan, D. G. (1989). Binocular competition affects the pattern and intensity of ocular activation columns in the visual cortex of cats. Visual Neuroscience 2, 391–407PubMedGoogle Scholar
  383. Tusa, R. J., Palmer, L. A., &Rosenquist, A. C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology, 177 213–236PubMedGoogle Scholar
  384. Tusa, R.J., Rosenquist, A. C., & Palmer, L. A. (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology, I85 657–678Google Scholar
  385. van Hof-van Duin, J. (1977). Visual field measurements in monocularly deprived and normal cats. Experimental Brain Research, 30 353–368Google Scholar
  386. van Kesteren, R E., Fainzilber, M., Hauser, G., van Minnen, J., Vreugdenhil, E., Smit, A. B., Ibanez, C. E, Geraerts, W. P. M., & Bulloch, A. G. M. (1998). Early evolutionary origin of the neurotrophin receptor family. EMBO journal, 17 2534–2542PubMedGoogle Scholar
  387. Vaney, D. I. (1991). Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neuroscience Letters, 125 187–190PubMedGoogle Scholar
  388. Vaney, D. k (1994). Patterns of neuronal coupling in the retina. Progress in Retinal and Eye Research, 13 301–355Google Scholar
  389. Vardi, N., & Smith, R. G. (1996). The aII amacrine network: Coupling can increase correlated activity. Vision Research, 36 3743–3757PubMedGoogle Scholar
  390. von der Malsburg, C. (1979). Development of ocularity domains and growth behavior of axon terminals. Biological Cybernetics, 32 49–62PubMedGoogle Scholar
  391. von der Malsburg, C., & Willshaw, D.J. (1976). A mechanism for producing continuous neural mappings: Ocularity dominance stripes and ordered retinotectal projections. Experimental Brain Research, 1(Supplement) 463–469Google Scholar
  392. Vrensen, G., & Nunes Cardozo, J. (1981). Changes in size and shape of synaptic connections after visual training: An ultrastructural approach of synaptic plasticity. Brain Research, 218 79–97PubMedGoogle Scholar
  393. Wark, R. C., & Peck, C. K. (1982). Behavioral consequences of early visual exposure to contours of a single orientation. Developmental Brain Research 5, 218–221Google Scholar
  394. Wässle, H. (1982). Morphological types and central projections of ganglion cells in the cat retina. In N. Osborne & G. Chader (Eds.). Progress in retinal research (pp. 125–152). New York: Pergamon PressGoogle Scholar
  395. Wehner, R (1972). Spontaneous pattern preferences of Drosophila melanogaster to black areas in various parts of the visual field. Journal of Insect Physiology, 18 1531–1543PubMedGoogle Scholar
  396. Wehner, R. (1981). Spatial vision in arthropods. In H. Antrum (Ed.). Handbook of sensory physiology (pp. 287–616). New York: Springer-VerlagGoogle Scholar
  397. Wehner, R., & Horn, E. (1975). The effect of object distance on pattern preferences in the walking fly (Drosophila melanogaster). Experientia, 31 641–643Google Scholar
  398. Wehner, R., Gartenmann, G., & Jungi, T. (1969). Contrast perception in eye color mutants of Drosophila melanogaster and Drosophila subobscura. Journal of Insect Physiology, 15 815–823Google Scholar
  399. Wehner, R., & Wehner-von Segesser, S. (1973). Calculation of visual receptor spacing in Drosophila melanogaster by pattern recognition experiments. Journal of Comparative Physiology, 82 165–177Google Scholar
  400. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A., & Nicoll, R. A. (1994). Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science, 265 1878–1882PubMedGoogle Scholar
  401. Weliky, M., & Katz, L. C. (1999). Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science, 285 599–604Google Scholar
  402. West, M.J., King, A. P., & Arberg, A. A. (1988). An inheritance of niches: The role of ecological legacies in ontogeny. In E. M. Blass (Ed.), Developmental psychobiology and behavioral ecology (pp. 41–62). NewYork: Plenum PressGoogle Scholar
  403. Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299 583–591PubMedGoogle Scholar
  404. Wiesel, T. N., & Hubel, D. H. (1963a). Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. Journal of Neurophysiology, 26 978–993Google Scholar
  405. Wiesel, T. N., & Hubel, D. H. (1963b). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26 1003–1017Google Scholar
  406. Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 28 1029–1040PubMedGoogle Scholar
  407. Willmund, R, & Ewing, A. W. (1982). Visual signals in the courtship of Drosophila melanogaster. Animal Behavior, 30 209–215Google Scholar
  408. Wilson, P. D., & Stone, J. (1975). Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Research, 92 472–478PubMedGoogle Scholar
  409. Wolfe, T., Martin, K. A., Rubin, G. M., & Zipursky, S. L. (1997). The development of the Drosophila visual system. In W. M. Cowan, T. M. Jessel, & S. L. Zipursky (Eds.). Molecular and cellular approaches to neural development (pp. 474–508). New York: Oxford University PressGoogle Scholar
  410. Wolpaw, J. R., & Schmidt, J. T. (1991). Preface. Annals of the New York Academy of Sciences, 627ix-xi Google Scholar
  411. Wong, R. O. L., Meister, M., & Shatz, C.J. (1993). Transient period of correlated bursting activity during development of the mammalian retina. Neuron, 11 923–938PubMedGoogle Scholar
  412. Wu, C.-F., Renger, J. J., &Engel, J. E. (1998). Activity-dependent functional and developmental plasticity of Drosophila neurons In P. D. Evans (Ed.). Advances in insect physiology (pp. 385–440). San Diego, CA: Academic PressGoogle Scholar
  413. Xing, L.-C. S., & Tieman, S. B. (1993). Relay cells, not interneurons, of cat’s lateral geniculate nucleus contain Nacetylaspartylglutamate. Journal of Comparative Neurology, 330 272–285PubMedGoogle Scholar
  414. Yan, H. Q., Mazow, M. L., &Dafny, N. (1996). NGF prevents the changes induced by monocular deprivation during the critical period in rats. Brain Research, 706 318–322PubMedGoogle Scholar
  415. Ym, J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, EL, Quinn, W. G., & Tully, T. (1994). Induction of a dominant negative CREE transgene specifically blocks long-term memory in Drosophila Cell 79, 49–58Google Scholar
  416. Yin, J. C., Del Vecchio, M., Zhou, H., & Tully, T. (1995). CREB as a memory modulator: Induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell, 81 107–115Google Scholar
  417. Young, D. (1989). Nerve cells and animal behavior Cambridge: Cambridge University PressGoogle Scholar
  418. Zafra, F., Castrén, E., Thoenen, H., & Lindholm, D. (1991). Interplay between glutamate and gamma aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proceedings of the National Academy of Sciences of the USA, 88 10037–10041PubMedGoogle Scholar
  419. Zafra, F., Lindholm, D., Castrén, E., Hartikka, J., & Thoenen, H. (1992). Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. Journal of Neuroscience, 12 4793–4799PubMedGoogle Scholar
  420. Zec, N., & Tieman, S. B. (1994). Development of the dendritic fields of layer 3 pyramidal cells in the kitten’s visual cortex. Journal of Comparative Neurology, 339 288–300PubMedGoogle Scholar
  421. Zuker, C. (1994). On the evolution of eyes: Would you like it simple or compound? Science, 265 742–743PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Helmut V. B. Hirsch
    • 1
  • Suzannah Bliss. Tieman
    • 1
  • Martin Barth
    • 1
  • Helen Ghiradella
    • 2
  1. 1.Neurobiology Research Center and Department of Biological SciencesThe University at Albany, State University of New YorkAlbany
  2. 2.Friedrich-Miescher-Laboratorium der Max-Planck-GesellschaftTübingenGermany

Personalised recommendations