Skip to main content

Spatial Coding in the Olfactory System

The Role of Early Experience

  • Chapter
Developmental Psychobiology

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 13))

  • 248 Accesses

Abstract

Infant rats are born with a functional olfactory system ([Guthrie & Gall, 1999]). Within the first days of their life they begin to approach the odor of their mother in preference to the odor of a virgin female ([Leon & Moltz, 1971]). These preferences can be seen when the pups are placed in an apparatus designed to allow them to approach one of two areas on the basis of odor cues alone. Such a preference also can be induced when the natural situation is mimicked experimentally by pairing a nonmaternalodor (such as peppermint extract) with tactile stimulation of the kind that a mother might impose on her pups ([Coopersmith & Leon, 1984]). These data indicate that pups acquire their preference for the mother’s odor postnatally, rather than being born with that ability. In addition, the individuality of the odor of one mother compared to another is due to differences in their diet; mothers with identical diets are equally approached by their pups ([Leon, 1975])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkasab, T. K., Bozza, T. C., Cleland, T. A., Dorries, K. M., Pearce, T. C., White, J., & Kauer, J. S. (1999). Characterizing complex chemosensors: information-theoretic analysis of olfactory systems. Trends in Neurosciences, 22, 102–108

    Article  PubMed  CAS  Google Scholar 

  • Astic, L., & Cattarelli, M. (1982). Metabolic mapping of functional activity in the rat olfactory system after a bilateral transection of the lateral olfactory tract. tram Research, 245, 17–25

    CAS  Google Scholar 

  • Astic, L. & Sacier, D. (1986). Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Brain Research Bulletin, 16, 445–454

    Article  PubMed  CAS  Google Scholar 

  • Axel, R. (1995). The molecular logic of smell. Scientific American, 273, 154–159

    Article  PubMed  CAS  Google Scholar 

  • Bell, G. A., Laing, D. G., & Panhuber, H. (1987). Odour mixture suppression: Evidence for a peripheral mechanism in human and rat. Brain Research, 426, 8–18

    Article  PubMed  CAS  Google Scholar 

  • Bozza, T. C., & Kauer,J. S. (1998). Odorant response properties of convergent olfactory receptor neurons. Journal of Neuroscience, 18, 4560–4569

    PubMed  CAS  Google Scholar 

  • Buck, L. B. (1996). Information coding in the vertebrate olfactory system. Annual Review of Neuroscience, 19, 517–544

    Article  PubMed  CAS  Google Scholar 

  • Buck, L. B., & Axel, R. (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65, 175–187

    Article  PubMed  CAS  Google Scholar 

  • Buonviso, N., & Chaput, M. A. (1990). Response similarity to odors in olfactory bulb output cells presumed to be connected to the same glomerulus: Electrophysiological study using simultaneous single-unit recordings. Journal of Neurophysiology, 63, 447–454

    PubMed  CAS  Google Scholar 

  • Cain, W. S. (1979). To know with the nose: Keys to odor identification. Science, 203, 467–470

    Article  PubMed  CAS  Google Scholar 

  • Cain, W. S., & Potts, B. C. (1996). Switch and bait: Probing the discriminative basis of odor identification via recognition memory. Chemical Senses, 21, 35–44

    Article  PubMed  CAS  Google Scholar 

  • Chess, A., Simon, I., Cedar, H., & Axel, R. (1994). Allelic inactivation regulates olfactory receptor gene expression. Cell, 78, 823–834

    Article  PubMed  CAS  Google Scholar 

  • Cinelli, A. R., Hamilton, K. A., Kauer, J. S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of Neurophysiology, 73, 2053–2071

    PubMed  CAS  Google Scholar 

  • Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., & Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron, 22, 327–338

    CAS  Google Scholar 

  • Cometto-Muñiz, J. E., Cain, W. S., & Abraham, M. H. (1998). Nasal pungency and odor of homologous aldehydes and carboxylic acids. Experimental Brain Research, 118, 180–188

    Article  Google Scholar 

  • Coopersmith, R., & Leon, M. (1984). Enhanced neural response to familiar olfactory cues. Science, 225, 849–851

    Article  PubMed  CAS  Google Scholar 

  • Coopersmith, R., & Leon, M. (1986). Enhanced neural response by adult rats to odors experienced early in life. Brain Research, 371, 400–403

    Article  PubMed  CAS  Google Scholar 

  • Coopersmith, R., Henderson, S. R., & Leon, M. (1986). Odor specificity of the enhanced neural response following early odor experience in rats. Developmental Brain Research, 27, 191–197

    Article  Google Scholar 

  • Dean, P. M. (1987). Molecular foundations of drug—receptor interaction Cambridge: Cambridge University Press

    Google Scholar 

  • Dickinson, T. A., White, J., Kauer, J. S., Sc Walt, D. R. (1998). Current trends in ‘artificial-nose’ technology. Trends in Biotechnology, 16, 250–258

    Article  PubMed  CAS  Google Scholar 

  • Do, J. T., Sullivan, R. M., & Leon, M. (1988). Behavioral and neural correlates of postnatal olfactory conditioning: II. Respiration during conditioning. Developmental Psychobiology, 21, 591–600

    Article  PubMed  CAS  Google Scholar 

  • Domes, K. M. (1998). Olfactory coding: Time in a model. Neuron, 20, 7–10

    Article  Google Scholar 

  • Dôving, K. B. (1966). An electrophysiological study of odour similarities of homologous substances. Journal of Psychology, 186, 97–109

    Google Scholar 

  • Eisthen, H. L. (1997). Evolution of vertebrate olfactory systems. Brain Behavior and Evolution, 50, 222–233

    Article  CAS  Google Scholar 

  • Firestein, S., Picco, C., & Menini, A. (1993). The relation between stimulus and response in olfactory receptor cells of the tiger salamander. Journal of Physiology, 468, 1–10

    PubMed  CAS  Google Scholar 

  • Freeman W. J., & Skarda, C. A. (1985). Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view. Brain Research, 357, 147–175

    PubMed  CAS  Google Scholar 

  • Friedrich, R. W., & Korsching, S. I, (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 18, 737–752

    Article  PubMed  CAS  Google Scholar 

  • Galizia, C. G., Menzel, R., & Holldobler, B. (1999). Optical imaging of odor-evoked glomerular activity patterns in the antenna] lobes of the ant Camponotus rufipes. Naturwissenschaften, 86, 533–537

    Article  CAS  Google Scholar 

  • Galizia, C. G., Sachse, S., Rappert, A., & Menzel, R. (1999). The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neuroscience,2, 473–478

    Article  CAS  Google Scholar 

  • Guthrie, K. M., & Gall, C. (1995). Functional mapping of odor-activated neurons in the olfactory bulb. Chemical Senses, 20, 271–282

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, K. M., & Gall, C. (1999). Functional mapping of the developing olfactory bulb. 21st Annual Meeting of the Association for Chemoreception Sciences (AChemS), Abstracts, p. 17

    Google Scholar 

  • Guthrie, K. M., Anderson, A. J., Leon, M., & Gall, C. (1993). Odor-induced increases in c foc mRNA expression reveal an anatomical unit for odor processing in olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 90, 3329–3333

    Article  PubMed  CAS  Google Scholar 

  • Haberly L. B., & Bower, J. M. (1989). Olfactory cortex: Model circuit for study of associative memory? Trends in Neuroscience, 12, 258–264

    Article  CAS  Google Scholar 

  • Haberly L. B., & Price, J. L. (1977). The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Research,129, 152–157

    Article  PubMed  CAS  Google Scholar 

  • Imamura, K., Mataga, N., & Mori, K. (1992). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. Journal of Neurophysiology, 68, 1986–2002

    PubMed  CAS  Google Scholar 

  • Joerges, J., Kintner, A., Galizia, C. G., & Menzel, R. (1997). Representations of odours and odour mixtures visualized in the honeybee brain. Nature, 387, 285–288

    Article  CAS  Google Scholar 

  • Johnson, B. A., & Leon, M. (1996). Spatial distribution of [14C] 2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early olfactory preference learning. Journal of Comparative Neurology, 376, 557–566

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., & Leon, M. (2000) Modular glomerular representations of odorants in the rat olfactory bulb: The effects of stimulus concentration. Journal of Comparative Neurology, 426, 496–509

    Article  Google Scholar 

  • Johnson, B. A., Woo, C. C., Duong, H., Nguyen, V., & Leon, M. (1995). A learned odor evokes an en-hanced Fos-like glomerular response in the olfactory bulb of young rats. Brain Research,699,192–200

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., Woo, C. C., & Leon, M. (1998). Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. Journal of Comparative Neurology, 393, 457–471

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., Woo, C. C., Hingco, E. E., Pham, K. L., & Leon, M. (1999). Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. Journal of Comparative Neurology, 409, 529–548

    Article  PubMed  CAS  Google Scholar 

  • Jourdan, F., Duveau, A., Astic, L., & Holley, A. (1980). Spatial distribution of [14C12-deoxyglucose uptake in the olfactory bulbs of rats stimulated with two different odours. Brain Research, 188, 139–154

    Article  PubMed  CAS  Google Scholar 

  • Katoh, K., Koshimoto, H., Tani, A., & Mori, K. (1993). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. Journal of Neurophysiology, 70, 2161–2175

    PubMed  CAS  Google Scholar 

  • Kauer, J. S. (1987). Coding in the olfactory system. In T. E. Finger & W. S. Silder (Eds.), Neurobiology of taste and smelt (pp. 205–231). New York: Wiley

    Google Scholar 

  • Kauer, J. S., & Cinelli, A. R. (1993). Are there structural and functional modules in the vertebrate olfactory bulb? Microscopy Research and Technique, 24, 157–167

    Article  PubMed  CAS  Google Scholar 

  • Krautwurst D., Yau, K. W., & Reed, R. R (1998). Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 95, 917–926

    Article  PubMed  CAS  Google Scholar 

  • Laska, M, & Teubner, P. (1998). Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. American Journal of Physiology, 274, R1639–R1645

    PubMed  CAS  Google Scholar 

  • Laurent, G. (1997). Olfactory processing: Maps, time and codes. Current Opinion in Neurobiology, 7, 547–553

    Article  PubMed  CAS  Google Scholar 

  • Laurent, G., & Naraghi, M. (1994). Odorant-induced oscillations in the mushroom bodies of the locust. Journal of Neuroscience, 14, 2993–3004

    PubMed  CAS  Google Scholar 

  • Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal representations of odors in an olfactory network. Journal of Neuroscience, 16, 3837–3847

    PubMed  CAS  Google Scholar 

  • Leon, M. (1975). Dietary control of maternal pheromone in the lactating rat. Physiology and Behavior, 14, 311–319

    Article  PubMed  CAS  Google Scholar 

  • Leon, M. (1987). Plasticity of olfactory output circuits related to early olfactory learning. Trends in Neurosciences, 10, 434–438

    Article  Google Scholar 

  • Leon, M., & Moltz, H. (1971). Maternal pheromone: Discrimination by preweanling albino rats. Physiology and Behavior, 7, 265–267

    Article  PubMed  CAS  Google Scholar 

  • Lu, X.-C. M., & Slotnick, B. M. (1994). Recognition of propionic acid vapor after removal of the olfactory bulb area associated with high 2-DG uptake. Brain Research,639, 26–32

    Article  PubMed  CAS  Google Scholar 

  • Lu, X.-C. M., & Slotnick, B. M. (1998). Olfaction in rats with extensive lesions of the olfactory bulbs: Implications for odor coding. Neuroscience,84, 849–866

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., & Davis, B.J. (1983). The olfactory bulb. In P. C. Emson (Ed.), Chemical neuroanatomy (pp. 391–426). New York: Raven Press

    Google Scholar 

  • Malnic, B., Hirono, J., Sato, T, & Buck, L. (1999). Combinatorial receptor codes for odors. Cell, 96, 713–723

    Article  PubMed  CAS  Google Scholar 

  • Matsutani, S., & Leon, M. (1993). Elaboration of glial cell processes in the rat olfactory bulb associated with early learning. Brain Research,613, 317–320

    Article  PubMed  CAS  Google Scholar 

  • McCollum, J. F., Woo, C. C., & Leon, M. (1997). Granule and mitral cell densities are unchanged following early olfactory preference training. Developmental Brain Research, 99, 118–120

    Article  PubMed  CAS  Google Scholar 

  • Michel, W. C., & Ache, B. W. (1994). Odor-evoked inhibition in primary olfactory receptor neurons. Chemical Senses, 19, 11–24

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts, P., Wang, E, Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmonson, J., & Axel, R. (1996a). Visualizing an olfactory sensory map. Cell, 87, 675–686

    Article  CAS  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmonson, J., & Axel, R. (1996b). The molecular biology of olfactory perception. Cold Spring Harbor Symposium on Quantitative Biology, 61, 135–145

    Article  CAS  Google Scholar 

  • Mori, K. (1987). Membrane and synaptic properties of identified neurons in the olfactory bulb. Progress in Neurobiology, 29, 275–320

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., & Yoshihara, Y. (1995). Molecular recognition and olfactory processing in the mammalian olfactory system. Progress in Neurobiology, 45, 585–619

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Mataga, N., & Imamura, K. (1992). Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. Journal of Neurophysiology, 67, 786–789

    PubMed  CAS  Google Scholar 

  • Motokizawa, F. (1996). Odor representation and discrimination in mitral/tufted cells of the rat olfactory bulb. Experimental Brain Research, 112, 24–34

    Article  CAS  Google Scholar 

  • Nieuwenhuys, R. (1967). Comparative anatomy of olfactory centres and tracts. In Y. Zotterman (Ed.), Progress in brain research (pp. 1–64). New York: Elsevier

    Google Scholar 

  • Ottoson, D. (1958). Studies on the relationship between olfactory stimulating effectiveness and physicochemical properties of odorant compounds. Acta Physiologica Scandanavica, 43, 167–181

    Article  CAS  Google Scholar 

  • Puche, A., Aroniadou-Anderjaska, V., & Shipley, M. (1998). Olfactory bulb-olfactory cortex slices in the study of central olfactory CNS circuits. Society for Neuroscience Abstracts, 34, 1885

    Google Scholar 

  • Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79, 1245–1255

    Article  PubMed  CAS  Google Scholar 

  • Royet, J. P., Sicard, G., Souchier, C., & Jourdan, F. (1987). Specificity of spatial patterns of glomerular activation in the mouse olfactory bulb: Computer-assisted image analysis of 2deoxyglucose auto-radiograms. Brain Research, 417, 1–11

    Article  PubMed  CAS  Google Scholar 

  • Rubin, B. D., & Katz, L. C. (1999). Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron, 23, 499–511

    Article  PubMed  CAS  Google Scholar 

  • Sallaz, M., & Jourdan, F. (1993). C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rats. NeuroReport,4, 55–58

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Hirono, J., Tonoike, M., & Takebayashi, M. (1994). Tuning specificities to aliphatic odorants in mouse olfactory receptor neurons and their local distribution. Journal of Neurophysiology, 72, 2980–2989

    PubMed  CAS  Google Scholar 

  • Shepherd, G. M. (1991). Computational structure of the olfactory system. In J. Davis and H. Eichenbaum (Eds.), Olfaction as a model system for computational neuroscience (pp. 3–41).Cambridge, MA: MIT Press

    Google Scholar 

  • Shepherd, G. M. (1994). Discrimination of molecular signals by the olfactory receptor neuron. Neuron, 13, 771–790

    Article  PubMed  CAS  Google Scholar 

  • Slotnick, B. M., Graham, S., Laing, D. G., & BeIl, G. A. (1987). Detection of propionic acid vapor by rats with lesions of olfactory bulb areas associated with high 2-DG uptake. Brain Research, 417, 343–346

    Article  PubMed  CAS  Google Scholar 

  • Slotnick, B. M., Panhuber, H., Bell, G. A., & Laing, D. G. (1989). Odor-induced metabolic activity in the olfactory bulb of rats trained to detect propionic acid vapor. Brain Research, 500, 161–168

    Article  PubMed  CAS  Google Scholar 

  • Slotnick, B. M., Bell, G. A., Panhuber, H., & Laing, D. G. (1997). Detection and discrimination of proplonic acid after removal of its 2-DG identified major focus in the olfactory bulb: A psychophysical analysis. Brain Research, 762, 89–96

    Article  PubMed  CAS  Google Scholar 

  • Stevens, D. A., & O’Connell, R. J. (1995). Enhanced sensitivity to androstenone following regular exposure to pemenone. Chemical Senses, 20, 413–419

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. B., Kauer, J. S., & Shepherd, G. M. (1979). Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. Journal of Comparative Neurology, 185, 715–734

    Article  PubMed  CAS  Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B. H., & Laurent, G. (1997) Impaired odour discrimination on de-synchronization of odour-encoding neural assemblies. Nature, 390, 70–74

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, R. M., & Leon, M. (1986). Early olfactory learning induces an enhanced olfactory bulb response in young rats. Developmental Brain Research, 27, 278–282

    Article  Google Scholar 

  • Sullivan, R. M., & Wilson, D. A. (1991). Neural correlates of conditioned odor avoidance in infant rats. Behavioral Neuroscience, 103, 307–312

    Article  Google Scholar 

  • Sullivan, R. M., Wilson, D. A., Kim, M. H., & Leon, M. (1988). Behavioral and neural correlates of postnatal olfactory conditioning: I. Effect of respiration on conditioned neural responses. Physiology and Behavior, 44, 85–90

    CAS  Google Scholar 

  • Sullivan, R M., Wilson, D. A., & Leon, M. (1989). Norepinephrine and learning-induced plasticity in infant rat olfactory system. Journal of Neuroscience, 9, 3998–4006

    PubMed  CAS  Google Scholar 

  • Sullivan, R. M., Wilson, D. A., Wong, R., Correa, A., & Leon, M. (1990). Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Developmental Brain Research, 53, 243–247

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, S. L., & Dyer, L. (1996). Information processing in mammalian olfactory system. Journal of Neurobiology, 30, 20–36

    Article  CAS  Google Scholar 

  • Tsuboi, A., Yoshihara, S., Yamazaki, N., Kasai, H., Asai-Tsuboi, H., Komatsu, M., Serizawa, S., Ishii, T., Matsuda, Y., Nagawa, F., & Sakano, H. (1999). Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. Journal of Neuroscience, 19, 8409–8418

    PubMed  CAS  Google Scholar 

  • Vassar, R., Chao, S. K, Sitcheran, R., Nuñez, J. M., Vosshall, L. B., & Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell; 79, 981–991

    Article  PubMed  CAS  Google Scholar 

  • Vickers, N. J., & Christensen, T. A. (1998). A combinatorial model of odor discrimination using a small array of contiguous, chemically defined glomeruli. Annals of the New York Academy of Sciences, 855, 514–516

    Article  PubMed  CAS  Google Scholar 

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96, 725–736

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.-W., Wysocki, C. J., & Gold, G. H. (1993). Induction of olfactory receptor sensitivity in mice. Science, 260, 998–1000

    Article  PubMed  CAS  Google Scholar 

  • Wang, E, Nemes, A., Mendelsohn, M., & Axel, R. (1998). Odorant receptors govern the formation of a precise topographic map. Cell, 93, 47–60

    Article  PubMed  CAS  Google Scholar 

  • Wehr, M., & Laurent, G. (1996). Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. A., & Leon, M. (1988). Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats. Journal of Neurophysiolcgy, 59, 1770–1782

    CAS  Google Scholar 

  • Wilson, D. A., Sullivan, R. M., & Leon, M. (1987). Single-unit analysis of postnatal olfactory learning: Modified olfactory bulb output response patterns to learned attractive odors. Journal of Neuroscience, 7, 3154–3162

    PubMed  CAS  Google Scholar 

  • Woo, C. C., & Leon, M. (1991). Increase in a focal population ofjuxtaglomerular cells in the olfactory bulb associated with early learning. Journal of Comparative Neurology, 305, 49–56

    Article  PubMed  CAS  Google Scholar 

  • Woo, C. C., & Leon, M. (1995a). Distribution and development of beta-adrenergic receptorsinthe rat olfactory bulb. Journal of Comparative Neurology, 352, 1–10

    Article  CAS  Google Scholar 

  • Woo, C. C., & Leon, M. (1995b). Early olfactory enrichment and deprivation both decrease fl-adrenergic receptor density in the main olfactory bulb of the rat. Journal of Comparative Neurology, 360, 634–642

    Article  CAS  Google Scholar 

  • Woo, C. C., Coopersmith, R., & Leon, M. (1987). Localized changes in olfactory bulb morphology associated with early olfactory learning. Journal of Comparative Neurology, 263, 113–125

    Article  PubMed  CAS  Google Scholar 

  • Woo, C. C., Oshita, M. H., & Leon, M. (1996). A learned odor decreases the number of Fos-immunopositive granule cells in the olfactory bulb of young rats. Brain Research,716, 149–156

    Article  PubMed  CAS  Google Scholar 

  • Wysocki, C. J, Dorries, K. M., & Beauchamp, G. K (1989). Ability to perceive androstenone can be acquired by ostensibly anosmic people. Proceedings of the National Academy of Sciences of the USA, 86, 7976–7978

    Article  PubMed  CAS  Google Scholar 

  • Yokoi, M., Mori, K, & Nakanishi, S. (1995). Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 92, 3371–3375

    Article  PubMed  CAS  Google Scholar 

  • Youngentob, S. L., & Kent, P E (1995). Enhancement of odorant-induced mucosal activity patterns in rats trained on an odorant identification task. Brain Research, 670, 82–88

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., Ivic, L, Otaki, J. M., Hashimoto, M., Mikoshiba, K, & Firestein, S. (1998). Functional expression of a mammalian odorant receptor. Science, 279, 237–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, B.A., Leon, M. (2001). Spatial Coding in the Olfactory System. In: Blass, E.M. (eds) Developmental Psychobiology. Handbook of Behavioral Neurobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1209-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1209-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5442-0

  • Online ISBN: 978-1-4615-1209-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics