Spatial Coding in the Olfactory System

The Role of Early Experience
  • Brett A. Johnson
  • Michael Leon
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)


Infant rats are born with a functional olfactory system ([Guthrie & Gall, 1999]). Within the first days of their life they begin to approach the odor of their mother in preference to the odor of a virgin female ([Leon & Moltz, 1971]). These preferences can be seen when the pups are placed in an apparatus designed to allow them to approach one of two areas on the basis of odor cues alone. Such a preference also can be induced when the natural situation is mimicked experimentally by pairing a nonmaternalodor (such as peppermint extract) with tactile stimulation of the kind that a mother might impose on her pups ([Coopersmith & Leon, 1984]). These data indicate that pups acquire their preference for the mother’s odor postnatally, rather than being born with that ability. In addition, the individuality of the odor of one mother compared to another is due to differences in their diet; mothers with identical diets are equally approached by their pups ([Leon, 1975])


Olfactory Bulb Olfactory Receptor Olfactory System Odorant Receptor Spatial Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkasab, T. K., Bozza, T. C., Cleland, T. A., Dorries, K. M., Pearce, T. C., White, J., & Kauer, J. S. (1999). Characterizing complex chemosensors: information-theoretic analysis of olfactory systems. Trends in Neurosciences, 22, 102–108PubMedCrossRefGoogle Scholar
  2. Astic, L., & Cattarelli, M. (1982). Metabolic mapping of functional activity in the rat olfactory system after a bilateral transection of the lateral olfactory tract. tram Research, 245, 17–25Google Scholar
  3. Astic, L. & Sacier, D. (1986). Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Brain Research Bulletin, 16, 445–454PubMedCrossRefGoogle Scholar
  4. Axel, R. (1995). The molecular logic of smell. Scientific American, 273, 154–159PubMedCrossRefGoogle Scholar
  5. Bell, G. A., Laing, D. G., & Panhuber, H. (1987). Odour mixture suppression: Evidence for a peripheral mechanism in human and rat. Brain Research, 426, 8–18PubMedCrossRefGoogle Scholar
  6. Bozza, T. C., & Kauer,J. S. (1998). Odorant response properties of convergent olfactory receptor neurons. Journal of Neuroscience, 18, 4560–4569PubMedGoogle Scholar
  7. Buck, L. B. (1996). Information coding in the vertebrate olfactory system. Annual Review of Neuroscience, 19, 517–544PubMedCrossRefGoogle Scholar
  8. Buck, L. B., & Axel, R. (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65, 175–187PubMedCrossRefGoogle Scholar
  9. Buonviso, N., & Chaput, M. A. (1990). Response similarity to odors in olfactory bulb output cells presumed to be connected to the same glomerulus: Electrophysiological study using simultaneous single-unit recordings. Journal of Neurophysiology, 63, 447–454PubMedGoogle Scholar
  10. Cain, W. S. (1979). To know with the nose: Keys to odor identification. Science, 203, 467–470PubMedCrossRefGoogle Scholar
  11. Cain, W. S., & Potts, B. C. (1996). Switch and bait: Probing the discriminative basis of odor identification via recognition memory. Chemical Senses, 21, 35–44PubMedCrossRefGoogle Scholar
  12. Chess, A., Simon, I., Cedar, H., & Axel, R. (1994). Allelic inactivation regulates olfactory receptor gene expression. Cell, 78, 823–834PubMedCrossRefGoogle Scholar
  13. Cinelli, A. R., Hamilton, K. A., Kauer, J. S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of Neurophysiology, 73, 2053–2071PubMedGoogle Scholar
  14. Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., & Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron, 22, 327–338Google Scholar
  15. Cometto-Muñiz, J. E., Cain, W. S., & Abraham, M. H. (1998). Nasal pungency and odor of homologous aldehydes and carboxylic acids. Experimental Brain Research, 118, 180–188CrossRefGoogle Scholar
  16. Coopersmith, R., & Leon, M. (1984). Enhanced neural response to familiar olfactory cues. Science, 225, 849–851PubMedCrossRefGoogle Scholar
  17. Coopersmith, R., & Leon, M. (1986). Enhanced neural response by adult rats to odors experienced early in life. Brain Research, 371, 400–403PubMedCrossRefGoogle Scholar
  18. Coopersmith, R., Henderson, S. R., & Leon, M. (1986). Odor specificity of the enhanced neural response following early odor experience in rats. Developmental Brain Research, 27, 191–197CrossRefGoogle Scholar
  19. Dean, P. M. (1987). Molecular foundations of drug—receptor interaction Cambridge: Cambridge University PressGoogle Scholar
  20. Dickinson, T. A., White, J., Kauer, J. S., Sc Walt, D. R. (1998). Current trends in ‘artificial-nose’ technology. Trends in Biotechnology, 16, 250–258PubMedCrossRefGoogle Scholar
  21. Do, J. T., Sullivan, R. M., & Leon, M. (1988). Behavioral and neural correlates of postnatal olfactory conditioning: II. Respiration during conditioning. Developmental Psychobiology, 21, 591–600PubMedCrossRefGoogle Scholar
  22. Domes, K. M. (1998). Olfactory coding: Time in a model. Neuron, 20, 7–10CrossRefGoogle Scholar
  23. Dôving, K. B. (1966). An electrophysiological study of odour similarities of homologous substances. Journal of Psychology, 186, 97–109Google Scholar
  24. Eisthen, H. L. (1997). Evolution of vertebrate olfactory systems. Brain Behavior and Evolution, 50, 222–233CrossRefGoogle Scholar
  25. Firestein, S., Picco, C., & Menini, A. (1993). The relation between stimulus and response in olfactory receptor cells of the tiger salamander. Journal of Physiology, 468, 1–10PubMedGoogle Scholar
  26. Freeman W. J., & Skarda, C. A. (1985). Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view. Brain Research, 357, 147–175PubMedGoogle Scholar
  27. Friedrich, R. W., & Korsching, S. I, (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 18, 737–752PubMedCrossRefGoogle Scholar
  28. Galizia, C. G., Menzel, R., & Holldobler, B. (1999). Optical imaging of odor-evoked glomerular activity patterns in the antenna] lobes of the ant Camponotus rufipes. Naturwissenschaften, 86, 533–537CrossRefGoogle Scholar
  29. Galizia, C. G., Sachse, S., Rappert, A., & Menzel, R. (1999). The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neuroscience,2, 473–478CrossRefGoogle Scholar
  30. Guthrie, K. M., & Gall, C. (1995). Functional mapping of odor-activated neurons in the olfactory bulb. Chemical Senses, 20, 271–282PubMedCrossRefGoogle Scholar
  31. Guthrie, K. M., & Gall, C. (1999). Functional mapping of the developing olfactory bulb. 21st Annual Meeting of the Association for Chemoreception Sciences (AChemS), Abstracts, p. 17Google Scholar
  32. Guthrie, K. M., Anderson, A. J., Leon, M., & Gall, C. (1993). Odor-induced increases in c foc mRNA expression reveal an anatomical unit for odor processing in olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 90, 3329–3333PubMedCrossRefGoogle Scholar
  33. Haberly L. B., & Bower, J. M. (1989). Olfactory cortex: Model circuit for study of associative memory? Trends in Neuroscience, 12, 258–264CrossRefGoogle Scholar
  34. Haberly L. B., & Price, J. L. (1977). The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Research,129, 152–157PubMedCrossRefGoogle Scholar
  35. Imamura, K., Mataga, N., & Mori, K. (1992). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. Journal of Neurophysiology, 68, 1986–2002PubMedGoogle Scholar
  36. Joerges, J., Kintner, A., Galizia, C. G., & Menzel, R. (1997). Representations of odours and odour mixtures visualized in the honeybee brain. Nature, 387, 285–288CrossRefGoogle Scholar
  37. Johnson, B. A., & Leon, M. (1996). Spatial distribution of [14C] 2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early olfactory preference learning. Journal of Comparative Neurology, 376, 557–566PubMedCrossRefGoogle Scholar
  38. Johnson, B. A., & Leon, M. (2000) Modular glomerular representations of odorants in the rat olfactory bulb: The effects of stimulus concentration. Journal of Comparative Neurology, 426, 496–509CrossRefGoogle Scholar
  39. Johnson, B. A., Woo, C. C., Duong, H., Nguyen, V., & Leon, M. (1995). A learned odor evokes an en-hanced Fos-like glomerular response in the olfactory bulb of young rats. Brain Research,699,192–200PubMedCrossRefGoogle Scholar
  40. Johnson, B. A., Woo, C. C., & Leon, M. (1998). Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. Journal of Comparative Neurology, 393, 457–471PubMedCrossRefGoogle Scholar
  41. Johnson, B. A., Woo, C. C., Hingco, E. E., Pham, K. L., & Leon, M. (1999). Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. Journal of Comparative Neurology, 409, 529–548PubMedCrossRefGoogle Scholar
  42. Jourdan, F., Duveau, A., Astic, L., & Holley, A. (1980). Spatial distribution of [14C12-deoxyglucose uptake in the olfactory bulbs of rats stimulated with two different odours. Brain Research, 188, 139–154PubMedCrossRefGoogle Scholar
  43. Katoh, K., Koshimoto, H., Tani, A., & Mori, K. (1993). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. Journal of Neurophysiology, 70, 2161–2175PubMedGoogle Scholar
  44. Kauer, J. S. (1987). Coding in the olfactory system. In T. E. Finger & W. S. Silder (Eds.), Neurobiology of taste and smelt (pp. 205–231). New York: WileyGoogle Scholar
  45. Kauer, J. S., & Cinelli, A. R. (1993). Are there structural and functional modules in the vertebrate olfactory bulb? Microscopy Research and Technique, 24, 157–167PubMedCrossRefGoogle Scholar
  46. Krautwurst D., Yau, K. W., & Reed, R. R (1998). Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 95, 917–926PubMedCrossRefGoogle Scholar
  47. Laska, M, & Teubner, P. (1998). Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. American Journal of Physiology, 274, R1639–R1645PubMedGoogle Scholar
  48. Laurent, G. (1997). Olfactory processing: Maps, time and codes. Current Opinion in Neurobiology, 7, 547–553PubMedCrossRefGoogle Scholar
  49. Laurent, G., & Naraghi, M. (1994). Odorant-induced oscillations in the mushroom bodies of the locust. Journal of Neuroscience, 14, 2993–3004PubMedGoogle Scholar
  50. Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal representations of odors in an olfactory network. Journal of Neuroscience, 16, 3837–3847PubMedGoogle Scholar
  51. Leon, M. (1975). Dietary control of maternal pheromone in the lactating rat. Physiology and Behavior, 14, 311–319PubMedCrossRefGoogle Scholar
  52. Leon, M. (1987). Plasticity of olfactory output circuits related to early olfactory learning. Trends in Neurosciences, 10, 434–438CrossRefGoogle Scholar
  53. Leon, M., & Moltz, H. (1971). Maternal pheromone: Discrimination by preweanling albino rats. Physiology and Behavior, 7, 265–267PubMedCrossRefGoogle Scholar
  54. Lu, X.-C. M., & Slotnick, B. M. (1994). Recognition of propionic acid vapor after removal of the olfactory bulb area associated with high 2-DG uptake. Brain Research,639, 26–32PubMedCrossRefGoogle Scholar
  55. Lu, X.-C. M., & Slotnick, B. M. (1998). Olfaction in rats with extensive lesions of the olfactory bulbs: Implications for odor coding. Neuroscience,84, 849–866PubMedCrossRefGoogle Scholar
  56. Macrides, F., & Davis, B.J. (1983). The olfactory bulb. In P. C. Emson (Ed.), Chemical neuroanatomy (pp. 391–426). New York: Raven PressGoogle Scholar
  57. Malnic, B., Hirono, J., Sato, T, & Buck, L. (1999). Combinatorial receptor codes for odors. Cell, 96, 713–723PubMedCrossRefGoogle Scholar
  58. Matsutani, S., & Leon, M. (1993). Elaboration of glial cell processes in the rat olfactory bulb associated with early learning. Brain Research,613, 317–320PubMedCrossRefGoogle Scholar
  59. McCollum, J. F., Woo, C. C., & Leon, M. (1997). Granule and mitral cell densities are unchanged following early olfactory preference training. Developmental Brain Research, 99, 118–120PubMedCrossRefGoogle Scholar
  60. Michel, W. C., & Ache, B. W. (1994). Odor-evoked inhibition in primary olfactory receptor neurons. Chemical Senses, 19, 11–24PubMedCrossRefGoogle Scholar
  61. Mombaerts, P., Wang, E, Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmonson, J., & Axel, R. (1996a). Visualizing an olfactory sensory map. Cell, 87, 675–686CrossRefGoogle Scholar
  62. Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmonson, J., & Axel, R. (1996b). The molecular biology of olfactory perception. Cold Spring Harbor Symposium on Quantitative Biology, 61, 135–145CrossRefGoogle Scholar
  63. Mori, K. (1987). Membrane and synaptic properties of identified neurons in the olfactory bulb. Progress in Neurobiology, 29, 275–320PubMedCrossRefGoogle Scholar
  64. Mori, K., & Yoshihara, Y. (1995). Molecular recognition and olfactory processing in the mammalian olfactory system. Progress in Neurobiology, 45, 585–619PubMedCrossRefGoogle Scholar
  65. Mori, K., Mataga, N., & Imamura, K. (1992). Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. Journal of Neurophysiology, 67, 786–789PubMedGoogle Scholar
  66. Motokizawa, F. (1996). Odor representation and discrimination in mitral/tufted cells of the rat olfactory bulb. Experimental Brain Research, 112, 24–34CrossRefGoogle Scholar
  67. Nieuwenhuys, R. (1967). Comparative anatomy of olfactory centres and tracts. In Y. Zotterman (Ed.), Progress in brain research (pp. 1–64). New York: ElsevierGoogle Scholar
  68. Ottoson, D. (1958). Studies on the relationship between olfactory stimulating effectiveness and physicochemical properties of odorant compounds. Acta Physiologica Scandanavica, 43, 167–181CrossRefGoogle Scholar
  69. Puche, A., Aroniadou-Anderjaska, V., & Shipley, M. (1998). Olfactory bulb-olfactory cortex slices in the study of central olfactory CNS circuits. Society for Neuroscience Abstracts, 34, 1885Google Scholar
  70. Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79, 1245–1255PubMedCrossRefGoogle Scholar
  71. Royet, J. P., Sicard, G., Souchier, C., & Jourdan, F. (1987). Specificity of spatial patterns of glomerular activation in the mouse olfactory bulb: Computer-assisted image analysis of 2deoxyglucose auto-radiograms. Brain Research, 417, 1–11PubMedCrossRefGoogle Scholar
  72. Rubin, B. D., & Katz, L. C. (1999). Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron, 23, 499–511PubMedCrossRefGoogle Scholar
  73. Sallaz, M., & Jourdan, F. (1993). C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rats. NeuroReport,4, 55–58PubMedCrossRefGoogle Scholar
  74. Sato, T., Hirono, J., Tonoike, M., & Takebayashi, M. (1994). Tuning specificities to aliphatic odorants in mouse olfactory receptor neurons and their local distribution. Journal of Neurophysiology, 72, 2980–2989PubMedGoogle Scholar
  75. Shepherd, G. M. (1991). Computational structure of the olfactory system. In J. Davis and H. Eichenbaum (Eds.), Olfaction as a model system for computational neuroscience (pp. 3–41).Cambridge, MA: MIT PressGoogle Scholar
  76. Shepherd, G. M. (1994). Discrimination of molecular signals by the olfactory receptor neuron. Neuron, 13, 771–790PubMedCrossRefGoogle Scholar
  77. Slotnick, B. M., Graham, S., Laing, D. G., & BeIl, G. A. (1987). Detection of propionic acid vapor by rats with lesions of olfactory bulb areas associated with high 2-DG uptake. Brain Research, 417, 343–346PubMedCrossRefGoogle Scholar
  78. Slotnick, B. M., Panhuber, H., Bell, G. A., & Laing, D. G. (1989). Odor-induced metabolic activity in the olfactory bulb of rats trained to detect propionic acid vapor. Brain Research, 500, 161–168PubMedCrossRefGoogle Scholar
  79. Slotnick, B. M., Bell, G. A., Panhuber, H., & Laing, D. G. (1997). Detection and discrimination of proplonic acid after removal of its 2-DG identified major focus in the olfactory bulb: A psychophysical analysis. Brain Research, 762, 89–96PubMedCrossRefGoogle Scholar
  80. Stevens, D. A., & O’Connell, R. J. (1995). Enhanced sensitivity to androstenone following regular exposure to pemenone. Chemical Senses, 20, 413–419PubMedCrossRefGoogle Scholar
  81. Stewart, W. B., Kauer, J. S., & Shepherd, G. M. (1979). Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. Journal of Comparative Neurology, 185, 715–734PubMedCrossRefGoogle Scholar
  82. Stopfer, M., Bhagavan, S., Smith, B. H., & Laurent, G. (1997) Impaired odour discrimination on de-synchronization of odour-encoding neural assemblies. Nature, 390, 70–74PubMedCrossRefGoogle Scholar
  83. Sullivan, R. M., & Leon, M. (1986). Early olfactory learning induces an enhanced olfactory bulb response in young rats. Developmental Brain Research, 27, 278–282CrossRefGoogle Scholar
  84. Sullivan, R. M., & Wilson, D. A. (1991). Neural correlates of conditioned odor avoidance in infant rats. Behavioral Neuroscience, 103, 307–312CrossRefGoogle Scholar
  85. Sullivan, R. M., Wilson, D. A., Kim, M. H., & Leon, M. (1988). Behavioral and neural correlates of postnatal olfactory conditioning: I. Effect of respiration on conditioned neural responses. Physiology and Behavior, 44, 85–90Google Scholar
  86. Sullivan, R M., Wilson, D. A., & Leon, M. (1989). Norepinephrine and learning-induced plasticity in infant rat olfactory system. Journal of Neuroscience, 9, 3998–4006PubMedGoogle Scholar
  87. Sullivan, R. M., Wilson, D. A., Wong, R., Correa, A., & Leon, M. (1990). Modified behavioral and olfactory bulb responses to maternal odors in preweanling rats. Developmental Brain Research, 53, 243–247PubMedCrossRefGoogle Scholar
  88. Sullivan, S. L., & Dyer, L. (1996). Information processing in mammalian olfactory system. Journal of Neurobiology, 30, 20–36CrossRefGoogle Scholar
  89. Tsuboi, A., Yoshihara, S., Yamazaki, N., Kasai, H., Asai-Tsuboi, H., Komatsu, M., Serizawa, S., Ishii, T., Matsuda, Y., Nagawa, F., & Sakano, H. (1999). Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. Journal of Neuroscience, 19, 8409–8418PubMedGoogle Scholar
  90. Vassar, R., Chao, S. K, Sitcheran, R., Nuñez, J. M., Vosshall, L. B., & Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell; 79, 981–991PubMedCrossRefGoogle Scholar
  91. Vickers, N. J., & Christensen, T. A. (1998). A combinatorial model of odor discrimination using a small array of contiguous, chemically defined glomeruli. Annals of the New York Academy of Sciences, 855, 514–516PubMedCrossRefGoogle Scholar
  92. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96, 725–736PubMedCrossRefGoogle Scholar
  93. Wang, H.-W., Wysocki, C. J., & Gold, G. H. (1993). Induction of olfactory receptor sensitivity in mice. Science, 260, 998–1000PubMedCrossRefGoogle Scholar
  94. Wang, E, Nemes, A., Mendelsohn, M., & Axel, R. (1998). Odorant receptors govern the formation of a precise topographic map. Cell, 93, 47–60PubMedCrossRefGoogle Scholar
  95. Wehr, M., & Laurent, G. (1996). Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166PubMedCrossRefGoogle Scholar
  96. Wilson, D. A., & Leon, M. (1988). Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats. Journal of Neurophysiolcgy, 59, 1770–1782Google Scholar
  97. Wilson, D. A., Sullivan, R. M., & Leon, M. (1987). Single-unit analysis of postnatal olfactory learning: Modified olfactory bulb output response patterns to learned attractive odors. Journal of Neuroscience, 7, 3154–3162PubMedGoogle Scholar
  98. Woo, C. C., & Leon, M. (1991). Increase in a focal population ofjuxtaglomerular cells in the olfactory bulb associated with early learning. Journal of Comparative Neurology, 305, 49–56PubMedCrossRefGoogle Scholar
  99. Woo, C. C., & Leon, M. (1995a). Distribution and development of beta-adrenergic receptorsinthe rat olfactory bulb. Journal of Comparative Neurology, 352, 1–10CrossRefGoogle Scholar
  100. Woo, C. C., & Leon, M. (1995b). Early olfactory enrichment and deprivation both decrease fl-adrenergic receptor density in the main olfactory bulb of the rat. Journal of Comparative Neurology, 360, 634–642CrossRefGoogle Scholar
  101. Woo, C. C., Coopersmith, R., & Leon, M. (1987). Localized changes in olfactory bulb morphology associated with early olfactory learning. Journal of Comparative Neurology, 263, 113–125PubMedCrossRefGoogle Scholar
  102. Woo, C. C., Oshita, M. H., & Leon, M. (1996). A learned odor decreases the number of Fos-immunopositive granule cells in the olfactory bulb of young rats. Brain Research,716, 149–156PubMedCrossRefGoogle Scholar
  103. Wysocki, C. J, Dorries, K. M., & Beauchamp, G. K (1989). Ability to perceive androstenone can be acquired by ostensibly anosmic people. Proceedings of the National Academy of Sciences of the USA, 86, 7976–7978PubMedCrossRefGoogle Scholar
  104. Yokoi, M., Mori, K, & Nakanishi, S. (1995). Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 92, 3371–3375PubMedCrossRefGoogle Scholar
  105. Youngentob, S. L., & Kent, P E (1995). Enhancement of odorant-induced mucosal activity patterns in rats trained on an odorant identification task. Brain Research, 670, 82–88PubMedCrossRefGoogle Scholar
  106. Zhao, H., Ivic, L, Otaki, J. M., Hashimoto, M., Mikoshiba, K, & Firestein, S. (1998). Functional expression of a mammalian odorant receptor. Science, 279, 237–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Brett A. Johnson
    • 1
  • Michael Leon
    • 1
  1. 1.Department of Neurobiology and Behavior, School of Biological SciencesUniversity of California, IrvineIrvine

Personalised recommendations