Skip to main content

Early Development of Behavior and the Nervous System, An Embryological Perspective

A Postscript from the End of the Millennium

  • Chapter
  • 243 Accesses

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 13))

Abstract

A primary motivation for writing our original chapter 15 years ago (Oppenheim & Haverkamp, 1986) was to bring to the attention of developmental psychologists and psychobiologists a conceptual framework for studying neurobehavioral development that is derived principally from the field of embryology or developmental biology. It was our view that this perspective had been ignored and neglected in many conceptualizations of behavioral development. Although a casual perusal of textbooks and reviews in the areas of child psychology, developmental psychology, and developmental psychobiology that have since appeared indicates modest progress on this score, we are nonetheless discouraged that our efforts (Hall & Oppenheim, 1987) as well as that of others along these lines (Michel & Moore, 1995) have not had a greater impact on conceptualizations in those disciplines. For that reason, as well as because much of what we said in our previous review is as true now as it was then, I have agreed (at the suggestion of the editor) to republish the original chapter together with some brief thoughts on a few areas of major empirical progress in the field that have occurred since 1986. (See the original chapter beginning on page 23.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer, S. M., Dubin, M. W., and Stark, L. A. Abnormal development of kitten retino-geniculate connectivity in the absence of action potentials. Science, 1982, 217, 743–745

    Article  PubMed  CAS  Google Scholar 

  • Bateson, P. P. G. How does behavior develop? In P. P. G. Bateson and P. Klopfer (Eds.), Perspectives in ethology vol. 3. Cambridge: Cambridge University Press, 1978

    Google Scholar 

  • Barlow, G. Genetics and development of behavior, with special reference to patterned motor output. In K. Immelmann, G. W. Barlow, L. Petrinovich, and M. Main (Eds.), Behavioral development Cambridge: University of Cambridge Press, 1981

    Google Scholar 

  • Bekoff, A. Embryonic development of the neural circuitry underlying motor coordination. In W. M. Cowan (Ed.), Studies in developmental neurobiology: Essays in honor of Viktor Hamburger New York: Oxford University Press, 1981

    Google Scholar 

  • Bergey, G. K., Fitzgerald, S. C., Schrier, B. L, and Nelson, P. G. Neuronal maturation in mammalian cell culture is dependent on spontaneous electric activity. Brain Research,1981, 207, 49–58

    Article  PubMed  CAS  Google Scholar 

  • Bird, M. M. The morphology of synaptic profiles in explants of foetal and neonatal mouse cerebral cortex maintained in a magnesium-enriched environment. Cell and Tissue Research, 1980, 206, 115–122

    Article  PubMed  CAS  Google Scholar 

  • Bischof, H.-J. Imprinting and cortical plasticity: A comparative review. Neuroscience and Biobehavioral: Reviews, 1983, 7, 213–225

    Google Scholar 

  • Black, I. Stages of neurotransmitter development in autonomic neurons. Science, 1982, 215, 1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Bradley, R. M., and Mistretta, C. M. Fetal sensory receptors. Physiological Review, 1973, 55, 352–381

    Google Scholar 

  • Brodai, A. Neurological anatomy in relation to clinical medicine, 3rd ed. New York: Oxford University Press, 1981

    Google Scholar 

  • Bunge, R., Johnson, M., and Ross, C. D. Nature and nurture in development of the autonomic neuron. Science, 1978, 199, 1409–1416

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, L. The development of behavior in vertebrates experimentally removed from the influence of external stimulation. Psychological Review, 1926, 33, 51–58

    Article  Google Scholar 

  • Carmichael, L. A further study of the development of behavior in vertebrates experimentally removed from the influence of external stimulation. Psychological Review, 1927, 34, 34–47

    Article  Google Scholar 

  • Carmichael, L. The onset and early development of behavior. In L. Carmichael (Ed.), Manual of child psychology New York; Wiley, 1946

    Google Scholar 

  • Caviness, V. S., Jr., and Rakic, P. Mechanisms of cortica development: A view from mutations in mice. Annual Review of Neuroscience, 1978, 1, 297–326

    Article  PubMed  Google Scholar 

  • Christian, C. N., Bergey, G. K., Daniels, M. P., and Nelson, P. G. Cell interactions in nerve and muscle cell cultures. Journal of Experimental Biology, 1980, 89, 85–101

    PubMed  CAS  Google Scholar 

  • Coghill, G. E. Anatomy and the problem of behavior. Cambridge: Cambridge University Press, 1929

    Google Scholar 

  • Corner, M. A., Bour, H. L., and Mirmiran, M. Development of spontaneous motility and its physiological interpretation in the rat, chick, and frog. In E. Meisami and M. A. B. Brazier (Eds.), Neural growth and differentiation New York: Raven Press, 1979

    Google Scholar 

  • Crain, S. M., Bornstein, M. B., and Peterson, E. R. Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectric activity. Brain Research, 1968, 8, 363–372

    Article  PubMed  CAS  Google Scholar 

  • Detwiler, S. R. Neuroembryology: An experimental study New York: Macmillan, 1936

    Google Scholar 

  • Deucher, E. Cellular interactions in animal development London: Chapman and Hall, 1975

    Google Scholar 

  • Erzurumlu, R. S., and Killackey, H. P. Critical and sensitive periods in neurobiology. Current Topics in Developmental Biology,1982, 17, 207–240

    Article  PubMed  CAS  Google Scholar 

  • Gesell, A. The embryology of behavior New York: Harper, 1945

    Google Scholar 

  • Goldspink, D. F. Development and specialization of skeletal musty Cambridge: Cambridge University Press, 1980

    Google Scholar 

  • Gottlieb, G. The role of experience in the development of behavior and the nervous system. In G. Gottlieb (Ed.), Neural and behavioral specificity New York: Academic Press, 1976

    Google Scholar 

  • Gottlieb, G. Development of species identification in ducklings: VI. Specific embryonic experience required to maintain species-typical perception in peking ducklings. Journal of Comparative and Physiological Psychology, 1980a, 94, 579–587

    Article  CAS  Google Scholar 

  • Gottlieb, G. Development of species identification in ducklings: VII. Highly specific early experience fosters species-specific perception in wood ducklings. Journal of Comparative Physiological Psychology, 1980b, 94, 1019–1027

    Article  Google Scholar 

  • Gottlieb, G. Development of species identification in ducklings: IX. The necessity of experiencing normal variations in embryonic auditory stimulation. Developmental Psychobiology, 1982, 15, 507–517

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, B. Development of species identification in ducklings: X. Perceptual specificity in the wood duck embryo requires sib stimulation for maintenance. Developmen.talPsychobiology,1983,16, 323–334

    Article  CAS  Google Scholar 

  • Gurdon, J. B. The control of gene expression in animal development. Cambridge, MA: Harvard University Press, 1974

    Google Scholar 

  • Hadorn, E. Experimental studies of amphibian development New York: Springer Verlag, 1974

    Book  Google Scholar 

  • Hamburg, M. Theories of Differentiation New York: American Elsevier, 1971

    Google Scholar 

  • Hamburger, V., and Oppenheim, R. W. Naturally-occurring neuronal death in vertebrates. Neuroscience Commentaries, 1982, 1, 39–55

    Google Scholar 

  • Hamburger, V. Anatomical and physiological basis of embryonic motility in birds and mammals. In G. Gottlieb (Ed.), Studies in the development of behavior and the nervous system Vol. 1. Behavioral embryology, New York: Academic Press, 1973

    Google Scholar 

  • Hamburger, V., Wenger, E., and Oppenheim, R. Motility in the chick embryo in the absence of sensory input. Journal of Experimental Zoology, 1966, 162, 133–160

    Article  Google Scholar 

  • Harris, W. A. Neural activity and development. Annual Review of Physiology, 1981, 43, 689–710

    Article  PubMed  CAS  Google Scholar 

  • Harris, W. A. The effects of eliminating impulse activity on the development of retinotectal projections in salamanders. Journal of Comparative Neurology, 1980, 194, 303–317

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. G. An experimental study of the relation of the nervous system to the developing musculature in the embryo of the frog. American Journal of Anatomy, 1904, 3, 197–220

    Article  Google Scholar 

  • Hauser, H., and Gandelman, R. Contiguity to males in utero affects avoidance responding in adult female mice. Science, 1983, 220, 437–438

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp, L. J. Neurobehavioral development with blockade of neural function in embryos of Xenopus laeois,Ph.D. dissertation, University of North Carolina, Chapel Hill, 1983

    Google Scholar 

  • Hebb, D.O. Organization of behavior New York: Wiley, 1949

    Google Scholar 

  • Hebb, D.O. Essay on mind. Hillsdale, NJ: Erlbaum, 1980

    Google Scholar 

  • Hinde, R.A. Animal behavior: A synthesis of ethology and comparative psychology NewYork: McGraw-Hill, 1970. Jacob, E Evolution and tinkering. Science, 1977, 196, 1161–1166

    Google Scholar 

  • Jacobson, M. Developmental neurobiology New York: Plenum Press, 1978

    Google Scholar 

  • Janka, Z., and Jones, D. G. Junctions in rat neocortical explants cultured in TTX-, GABA-, and MG-+- environments. Brain Research Bulletin, 1982, 8, 273–278

    Article  PubMed  CAS  Google Scholar 

  • Kammer, A. E., and Kinnamon, S. C. Maturation of the flight motor pattern without movement in Manduca sexta. Journal of Comparative Physiology, 1979, 130, 29–37

    Article  Google Scholar 

  • Lashley, E Experimental analysis of instinctive behavior. Psychological Review, 1938, 45, 445–471

    Article  Google Scholar 

  • Le Douarin, N. Migration and differentiation of neural crest cells. Current Topics in Developmental Biology, 1980, 16, 32–85

    Article  Google Scholar 

  • Lehrman, D. S. A critique of Konrad Lorenz’s theory of instinctive behavior. Quarterly Review of Biology, 1953, 28, 337–363

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, K. Evolution and modification of behavior Chicago: University of Chicago Press, 1965

    Google Scholar 

  • Lund, R. D., and Hauschka, S. D. Transplanted neural tissue develops connections with host strain. Science, 1976, 193, 582–584

    Article  PubMed  CAS  Google Scholar 

  • Mader, P., and Peters, S. Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Developmental Psychobiology, 1982, 15, 369–378

    Article  Google Scholar 

  • Matthews, S. A., and Detwiler, S. W. The reaction of Amblystoma embryos following prolonged treatment with chloretone. Journal of Experimental Zoology, 1926, 45, 279–292

    Article  Google Scholar 

  • McGraw, M. Growth: A study of Johnny and Jimmy New York: Appleton, 1935

    Google Scholar 

  • Meyer, R. L. Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. Science, 1982, 218, 589–591

    Article  PubMed  CAS  Google Scholar 

  • Mistretta, C. M., and Bradley, R. M. Effects of early sensory experience on brain and behavioral development. In G. Gottlieb (Ed.), Early influencer New York: Academic Press, 1978

    Google Scholar 

  • Model, P. G., Bornstein, M. B., Crain, S. M., and Pappas, G. D. An electron microscopic study of the development of synapses in cultured fetal mouse cerebrum continuously exposed to xylocaine. Journal of Cell Biology, 1971, 49, 362–371

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, C. H., and Hamburger, V. Motility in chick embryos with substitution of lumbosacral by bracial and brachial by lumbosacral spinal cord segments. Journal of Experimental Zoology, 1971, 178, 415–432

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm, F. Auditory experience and song development in the chaffinch, Fringilla coelebs. Ibis, 1968, 110, 549–568

    Article  Google Scholar 

  • Nottebohm, F. Brain pathways for vocal learning in birds: A review of the first 10 years. Progress in Psychobiology and Physiological Psychology, 1980, 9, 85–124

    Google Scholar 

  • Obata, K. Development of neuromuscular transmission in culture with a variety of neurons and in the presence of cholinergie substances and tetrodotoxin. Brain Research,1977, 119, 141–153

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R. W. The ontogency of behavior in the chick embryo. In D. S. Lehrman, R. A. Hinde, E. Shaw, and J. Rosenblatt (Eds.), Advances in the study of behavior Vol. 5. New York: Academic Press,1974

    Google Scholar 

  • Oppenheim, R. W. Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report. In W. M. Cowan (Ed.), Studies in developmental neurobiology: Essays in honor of Viktor Hamburger New York: Oxford University Press, 1981

    Google Scholar 

  • Oppenheim, R W. The neuroembryology of behavior: Progress, problems, perspectives. Current Topics in Developmental Biology, 1982, 17, 257–309

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R. W. preformation and epigenesis in the origins of the nervous system and behavior. In P. P. G. Bateson and P. Klopfer. Perspectives in ethology. vol. 5. New York: Plenum Press, 1982b

    Google Scholar 

  • Oppenheim, R. W. Cell death of motoneurons in the chick embryo spinal cord: VIII. Motoneurons prevented from dying in the embryo persist after hatching. Developmental Biology, 1982c, 101, 35–39

    Article  Google Scholar 

  • Oppenheim, R. W., Maderdrut, J. L., and Wells, D. Reduction of naturally-occurring cell death in the thoraco-lumbar preganglionic cell column of the chick embryo by nerve growth factor and hemi-cholinium-3. Developmental Brain Research, 1982, 3,134–139

    Article  CAS  Google Scholar 

  • Oppenheim, R. W., and Nunez, R. Electrical stimulation of hindlimb increases neuronal cell death in chick embryo. Nature, 1982, 295, 57–59

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R W., Pittman, R., Gray, M., and Maderdrut, J. L. Embryonic behavior, hatching and neuromuscular development in the chick following a transient reduction of spontaneous motility and sensory input by neuromuscular blocking agents. Journal of Comparative Neurology, 1978, 179, 619–640

    Article  PubMed  CAS  Google Scholar 

  • Patterson, P. H. Environmental determination of autonomic neurotransmitter functions. Annual Review of Neuroscience, 1918, 1, 1–17

    Article  Google Scholar 

  • Perlow, M. J. Functional brain transplants. Peptides, 1980, 1, 101–110

    Article  Google Scholar 

  • Pedersen, P. E., and Blass, E. M. Prenatal and postnatal determinants of the 1st suckling episode in albino rats. Developmental Psychobiology, 1982, 15, 349–355

    Article  PubMed  CAS  Google Scholar 

  • Piaget, J. and Inhelder, B. The psychology of the child London: Routledge and Kegan, 1969

    Google Scholar 

  • Pittman, R., and Oppenheim, R. W. Neuromuscular blockade increases motoneuron survival during normal cell death in the chick embryo. Nature, 1978, 271, 364–366

    Article  PubMed  CAS  Google Scholar 

  • Pittman, R., and Oppenheim, R. W. Cell death of motoneurons in chick embryo spinal cord: IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally-occurring cell death and the stabilization of synapses. Journal of Comparative Neurology, 1979, 187, 425–446

    Article  PubMed  CAS  Google Scholar 

  • Roberts, L. Brain grafting: Surgery reduces neurological damage. Bioscience,1983, 33, 80–83

    Google Scholar 

  • Romijn, H.J., Mud, M. T., Habets, A. M. M. C., and Wolters, P. S. A quantitative electron microscopic study of synapse formation in dissociated fetal rat cerebral cortex in vitro. Developmental Brain Research, 1981, I, 591–605

    Article  Google Scholar 

  • Rose, S. P. R. From causation to translations: What biochemists can contribute to the study of behaviour. In P. O. G. Bateson and P. H. Klopfer (Eds.), Perspectives in ethology IV. Advantages of diversity, New York: Plenum Press, 1981

    Google Scholar 

  • Roux, W. Contributions to the developmental mechanics of the embryo (1888). In B. H. Willier and J. Oppenheimer (Eds.), Foundations of experimental embryology Englewood Cliffs, NJ: Prentice-Hall, 1967

    Google Scholar 

  • Scarr-Salapatek, S. An evolutionary perspective on infant intelligence: Species patterns and individual variations. In M. Lewis (Ed.). Origins of intelligence New York: Plenum Press, 1976

    Google Scholar 

  • Smotherman, W. P. Odor aversion learning by the rat fetus. Physiology Behavior, 1982, 29, 769–771

    Article  PubMed  CAS  Google Scholar 

  • Spemann, H. Embryonic development and induction New Haven: Yale University Press, 1938

    Google Scholar 

  • Sperry, R. W. Mechanisms of neural maturation. In S. S. Stevens (Ed.), Handbook of experimental psychology New York: Wiley, 1951

    Google Scholar 

  • Stehouwer, D. J., and Farel, P. B. Development of hindlimb locomotor activity in the bullfrog (Rana catesbeiana) studied in vitro. Science, 1983, 219, 516–518

    Article  PubMed  CAS  Google Scholar 

  • Straznicky, K. Function of heterotopic spinal cord segments investigated in the chick. Acta Biologica Hungarium, 1967, 14, 145–155

    Google Scholar 

  • Stryker, M. P. Late segregation of geniculate afferents to the cat’s visual cortex after recovery from binocular impulse blockade. Society for Neuroscience Abstracts, 1981, 7, 842

    Google Scholar 

  • Twitty, V. C. Experiments on the phenomenon of paralysis produced by a toxin occurring in Triturus embryos. Journal of Experimental Zoology, 1937, 76, 67–104

    Article  CAS  Google Scholar 

  • von Saal, F. S., Grant, W. M., McMullen, C. W., and Laves, K. S. High fetal estrogen concentrations: Correlation with increased adult sexual activity and decreased aggression in male mice. Science, 1983, 220, 1306–1309

    Article  Google Scholar 

  • Vrbová G., Gordon, T., and Jones, R Nerve-muscle interaction. Chapman and Hall: London, 1978

    Book  Google Scholar 

  • Walicke, P. A., Campenot, R. B., and Patterson, P. H. Determination of neurotransmitter function by neuronal activity. Proceedings National Academy of Sciences USA, 1977, 74, 5767–5771

    Article  CAS  Google Scholar 

  • Weiss, P. Self-differentiation of the basic patterns of coordination. Comparative Psychology Monographs, 1941, 17, 1–96

    Google Scholar 

  • Wenger, B. S. Determination of structural patterns in the spinal cord of the chick embryo studied by transplantation between brachial and adjacent levels. Journals of Experimental Zoology, 1951, 116, 123–146

    Article  Google Scholar 

  • Weston, J. A. Neural crest cell development. In M. Burger and R. Weber (Eds.), Embryonic development. Part B, cellular aspects New York: Alan Liss, 1982

    Google Scholar 

  • Whitman, C. O. Evolution and epigenesis. Woods Hole Biological Lectures, 1894, No. 10, 203–224

    Google Scholar 

  • Wilson, E. B. The cell in development and heredity 2nd ed. New York: Macmillan, 1900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oppenheim, R.W. (2001). Early Development of Behavior and the Nervous System, An Embryological Perspective. In: Blass, E.M. (eds) Developmental Psychobiology. Handbook of Behavioral Neurobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1209-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1209-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5442-0

  • Online ISBN: 978-1-4615-1209-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics