Infant Stress, Neuroplasticity, and Behavior

  • Priscilla Kehoe
  • William Shoemaker
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)


The fulfillment of an individual’s genome of the central nervous system ontogenetically involves a series of processes collectively termed developmental plasticity ([Perry & Pollard, 1998]). These processes govern cellular migration, synapse formation, and other aspects of the orderly development of the nervous system (Z. Hall, 1992). The term plasticity is used because of the presence and absence of transmitters, growth factors, and hormones that influence the appearance of cells and synaptic connections defining the species. Perturbations of these processes result in abnormal development ([Perry & Pollard, 1998]). Developing systems are not “fixed and immutable” but are susceptible to disturbances that reflect severity and point in developmental time ([Perry, 1997]). Experiential plasticity defines the neural changes that may occur following exogenous stimulation or social restriction. For fetuses and newborns experiential plasticity is superimposed upon the genetically synchronized developmental plasticity and both processes proceed simultaneously during early development. Experiential plasticity is understandable within the context of early stages of neural development; rate and asymptote of brain growth and maturity are very much dependent on environmental conditions and how those conditions impact the infant.


Nucleus Accumbens Dopamine Release Restraint Stress Behavioral Sensitization Maternal Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, R. (1969). Early experiences accelerate maturation of the 24-hour adrenocortical rhythm. Science, 163, 233–238CrossRefGoogle Scholar
  2. Ahmed, S. H., Stinus, L., Le Moal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male Wistar rats to stressor-and amphetamine-induced behavioral sensitization. Psychopharmacology, 117, 116–124PubMedCrossRefGoogle Scholar
  3. Alberts, J. R., & Cramer, C. P. (1988). Ecology and experience. Sources of means and meaning of developmental change. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 1–39). New York: Plenum PressGoogle Scholar
  4. Almeida, S. S., Tonkiss, J., & Gaiter, J. R. (1996). Prenatal protein malnutrition affects avoidance but not escape behavior in the elevated T-maze test. Physiology and Behavior, 60, 191–195PubMedCrossRefGoogle Scholar
  5. Anderson, S. L., Lyss, P.J., & Teicher, M. H. (1998). Maturational changes in the dopamine system do not explain amphetamine subsensitivity during adolescence. Abstract. Presented at the International Society for Developmental Psychobiology, Orleans, FranceGoogle Scholar
  6. Antelman, S. M. (1988). Stressor-induced sensitization to subsequent stress: Implications for the development and treatment of clinical disorders. In P. W. Kalivas & C. D. Barnes (Eds.), Sensitization in the nervous system (p. 227–256). Caldwell, NJ: Telford PressGoogle Scholar
  7. Bayon, A., Shoemaker, W. J., Bloom, F. E., Mauss, A., & Guillemin, R. (1979). Perinatal development of the endorphin and enkephalin-containing systems in the rat brain. Brain Research, 179, 93–101PubMedCrossRefGoogle Scholar
  8. Berman, C. M., Rasmussen, K. L. R., & Suomi, S. J. (1994). Responses of free-ranging rhesus monkeys to a natural form of social separation. I. Parallels with mother—infant separation in captivity. Child Development,65, 1028–1041PubMedCrossRefGoogle Scholar
  9. Blass, E. M., & Ciarmitaro, V. (1994). Oral determinants of state, affect, and action in newborn infants. Monographs of the Society for Research in Child Development, 59, 1–96CrossRefGoogle Scholar
  10. Bliss, T. V. P., Douglas, R M., Errington, M. L., & Lynch, M. A. (1986). Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. journal of Physiology, 377, 391–408PubMedGoogle Scholar
  11. Blumberg, M. S., & Alberts, J. R. (1990). Ultrasonic vocalizations by rat pups in the cold: An acoustic byproduct of laryngeal barking? Behavioral Neuroscience, I04, 808–817PubMedCrossRefGoogle Scholar
  12. Blumberg, M. S., & Alberts, J. R. (1991) Both hypoxia and milk derivation diminish metabolic heat production and ultrasound emission by rat pups during cold exposure. Behavioral Neuroscience, 105, 1030–1037PubMedCrossRefGoogle Scholar
  13. Bremner, J. D., Scott, T. M., Delaney, R. C., Southwick, S. M., Mason, J. W., Johnson, D. R, Innis, R. B., McCarthy, G., & Charney, D. S. (1993). Deficits in short-term memory in posttraumatic stress disorder. American journal of Psychiatry, 150, 1015–1019PubMedGoogle Scholar
  14. Bronzino, J. D., Kehoe, P., Austin-La France, R. J., Rushmore, R. J., & Kurdian, J. (1996). Neonatal isolation alters LTP in freely moving rats: Sex differences. Brain Research Bulletin, 41, 175–183PubMedCrossRefGoogle Scholar
  15. Brudzynski, S. M., Kehoe, P., & Callahan, M. (1999). Sonographie structure of isolation-induced ultrasonic calls of rat pups. Developmental Psychobiology, 34, 195–204PubMedCrossRefGoogle Scholar
  16. Bruinink, A., Lichtensteiger, W., & Schlumpf, M. (1983). Pre-and postnatal ontogeny and characterizadon of dopaminergic D2, serotonergic S2 and spirodecanone binding sites in rat forebrain. Journal of Neurochemistry, 40, 1227–1236PubMedCrossRefGoogle Scholar
  17. Burns, E. M. (1980). Depressed endogenous norepinephrine during beta-adrenergic receptor ontogeny. In H. Parvez and S. Parvez (Eds.), Biogenic amines in development (pp. 663–682). New York: Elsevier/ North-Holland Biomedical PressGoogle Scholar
  18. Cabib, S., Puglisi-Allegra, S., & D’Amato, F. (1993). Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain search, 604, 232–239CrossRefGoogle Scholar
  19. Camp, D. M., & Robinson, T. E. (1988). Susceptibility to sensitization. Il. The influence of gonadal hormones on enduring changes in brain monoamines and behavior produced by repeated administration of n-amphetamine or restraint stress. Behavioral Brain Research, 30, 69–88CrossRefGoogle Scholar
  20. Cannon, W. B. (1932). The wisdom of the body New York: NortonGoogle Scholar
  21. Carden, S. E., & Hofer, M. A. (1990). Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behavioral Neuroscience, 104, 160–166PubMedCrossRefGoogle Scholar
  22. Carden, S. E., & Hofer, M. A. (1991). Isolation-induced vocalizations in Wistar rat pups is not increased by naltrexone. Physiology and Behavior, 49, 1279–1282PubMedCrossRefGoogle Scholar
  23. Chisholm, K, Carter, M. C., Ames, E. W., & Morison, S. J. (1995). Attachment security and indiscriminately friendly behavior in children adopted from Romanian orphanages. Development and Psychopathology, 7, 283–294CrossRefGoogle Scholar
  24. Collingridge, G. L., Kehl, S.J., & McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. Journal ofPhysiology, 334, 33–46Google Scholar
  25. Cooper, J. R, Bloom, F. E., &Roth, R. H. (1996). The biochemical basis of neuropharmacology New York: Oxford University PressGoogle Scholar
  26. Cornell, E. H., & Gottfried, A. W. (1976). Intervention with premature human infants. Child Development, 47, 32–39PubMedCrossRefGoogle Scholar
  27. Cramer, C. P., & Blass, E. M. (1983). Mechanisms of control of milk intake in suckling rats. American journal Physiology, 245, R154–R159Google Scholar
  28. D’Amato, F. R, Cabib, S., Puglisi-Allegra, S., Pataechioli, F. R., Cigliana, G., Maccari, S., & Angelucci, L. (1992). Effects of acute and repeated exposure to stress on the hypothlamo-pituitary-adrenocortical activity in mice during postnatal development. Hormones and Behavior, 26, 474–485PubMedCrossRefGoogle Scholar
  29. DeMontis, M. G., DeVoto, P., Meloni, D., Gambarana, C., Giorgi, G., & Tagliamonte, A. (1992). NMDA receptor inhibition prevents tolerance to cocaine. Pharmacology, Biochemistry and Behavior, 42, 179–182Google Scholar
  30. Deneberg, V. H., & Smith, S. A. (1963). Effects of infantile stimulation and age upon behavior. journal of Comparative and Physiological Psychology, 66, 533–535CrossRefGoogle Scholar
  31. Denenberg, V. H., & Zarrow, M. X. (1970). Infantile stimulation, adult behaviour and adrenocortical activity. In S. Mazda and V. H. Denenberg (Eds.), The postnatal development of phenotype (pp. 123–132). Prague: AcademiaGoogle Scholar
  32. Diaz-Cintra, S., Cintra, L., Galvan, A., Aguilar, A., Kemper, T., & Morgane, P.J. (1991). Effects of prenatal protein deprivation on postnatal development of granule cells in the fascia dentata. Journal of Comparative Neurology, 310, 356–364CrossRefGoogle Scholar
  33. Dolphin, A. D., Errington, M. L., & Bliss, T. V. P. (1982). Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature, 297, 496–498PubMedCrossRefGoogle Scholar
  34. Ellinwood, E. H., & Balster, R J. (1974). Rating the behavioral effects of amphetamine. European journal of Pharmacology, 28, 35–41PubMedCrossRefGoogle Scholar
  35. Emerit, M. B., Riad, M., & Hamon, M. (1992). Tropic effects of neurotransmitters during brain maturation. Biology of the Neonate, 62, 193–201PubMedCrossRefGoogle Scholar
  36. Evoniuk, G. E., Kuhn, C. M., & Schanberg, S. M. (1979). The effect of tactile stimulation on serum growth hormone and tissue ornithine decarboxylase activity during maternal deprivation in rat pups. Communications in Psychopharmacology, 3, 363–370PubMedGoogle Scholar
  37. Feigenbaum, J. J., & Yanai, J. (1984). Normal and abnormal determinants of dopamine receptor ontog eny in the central nervous system. Progress in Neurobiology, 23, 191–225PubMedCrossRefGoogle Scholar
  38. Field, T. (1990). Alleviating stress in newborn infants in the intensive care unit. In B. M. Lester & E. Z. Tronick (Eds.), Stimulation and the preterm infant: The limits of plasticity (pp. 1–9). Philadelphia, PA: SaundersGoogle Scholar
  39. Field, T. (1995). Cocaine exposure and intervention in early development. In M. Lewis & M. Bendersky (Eds.), Mothers, babies, and cocaine (pp. 355–368). Hillsdale, NJ: ErlbaumGoogle Scholar
  40. Field, T., Scafidi, F., & Schanberg, S. (1987). Massage of preterm newborns to improve growth and development. Pediatric Nursing, 13, 385–387Google Scholar
  41. Francis, D., Diorio, J., LaPlante, P., Weaver, S., Seckl, J. R, &Meaney, M. J. (1996). The role of early environmental events in regulating neuroendocrine development: Moms, pups, stress, and glucocorticoid receptors. In C. F. Ferris & T. Grisso (Eds.), Understanding aggressive behavior in children (pp. 136–152). New York: New York Academy of SciencesGoogle Scholar
  42. Galler, J. R, Shumsky, J. S., & Morgane, P. J. (1996). Malnutrition and brain development. In A. Walker (Ed.), Nutrition in pediatrics (pp. 196–212). New York: DekkerGoogle Scholar
  43. Gibbs, D. M. (1986). Vasopressin and oxytocin:hypothalamic modulators of the stress response: A review. Psychoneuroendocrinology, 11, 131–139PubMedCrossRefGoogle Scholar
  44. Glod, C.A., & Teicher, M. H. (1996). Relationship between early abuse, post-traumatic stress disorder, and activity levels in prepubertal children. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 1384PubMedCrossRefGoogle Scholar
  45. Gluck, J. P., Harlow, H. F., & Schultz, K. A. (1973). Differential effect of early enrichment and deprivation on learning in the rhesus monkey (Macaca mulatta). Journal of Comparative and Physiological Psychology, 84, 598–604CrossRefGoogle Scholar
  46. Gressens, P., Muaku, S. M., Besse, L., Nsegbe, E., Gallego, J., Delpech, B., Gaultier, C., Evrard, P., Ketelslegers, J. M., & Maiter, D. (1997). Maternal protein restriction early in rat pregnancy alters brain development in the progeny. Developmental Brain Research, 103, 21–35PubMedCrossRefGoogle Scholar
  47. Hall, F. S., Wilkinson, L. S., Humby, T, & Robbins, T. W. (1999). Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse, 32, 37–43PubMedCrossRefGoogle Scholar
  48. Hall, Z. (1992). An introduction to molecular neurobiology Sunderland, MA: SinauerGoogle Scholar
  49. Harlow, H. F. (1958). The nature of love. American Psychologist, 12, 673–685CrossRefGoogle Scholar
  50. Harlow, H. F. (1959). Love in infant monkeys. Scientific American, 200, 68PubMedCrossRefGoogle Scholar
  51. Harlow, H. F., & Harlow, M. K. (1962). Social deprivation in monkeys. Scientific American, 207, 137–146Google Scholar
  52. Harlow, H. F., & Suomi, S.J. (1971). Social recovery by isolation-reared monkeys. Proceedings of the National Academy of Sciences of the USA, 68, 1534–1538PubMedCrossRefGoogle Scholar
  53. Harlow, H. F., Schultz, K. A., Harlow, M. K., & Mohr, D.J. (1971). The effects of early adverse and enriched environments on the learning ability of rhesus monkeys. In L. E. Jarrard (Ed.), Cognitive processes of nonhuman primates (pp. 121–148). New York: Academic PressGoogle Scholar
  54. Harris, E. W., & Newman, J. D. (1988). Primate models for the management of separation anxiety. In J. D. Newman (Ed.), The physiological control of mammalian vocalization (pp. 321–330) New York: Plenum PressCrossRefGoogle Scholar
  55. Harris, E. W., Ganong, A. H., & Cotman, C. W. (1984). Long-term potentiation in the hippocampus involves activation of Nmethyl-n-aspartate receptors. Brain Research,323, 132–137PubMedCrossRefGoogle Scholar
  56. Harris, E. W., Ganong, A. H., Monaghan, D. T., Watkins, J. C., & Cotman, C. W. (1986). Action of 3–2carboxypiperazin-4-y1)-propyl-l-phosphonic acid (CPP): A new and highly potent antagonist of ALmethyI-n-aspartate receptors in the hippocampus. Brain Research, 382 174–177PubMedCrossRefGoogle Scholar
  57. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory New York: WileyGoogle Scholar
  58. Heim, C., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1997). Persistent changes in corticotropinreleasing factor systems due to early life stress: Relationship to the pathophysiology of major depression and post-traumatic stress disorder. Psychopharmacology Bulletin, 33, 185–192PubMedGoogle Scholar
  59. Hess, J. L., Denenberg, V. H., Zarrow, M. X., & Pfeifer, W. D. (1969). Modification of the corticosterone response curve as a function of handling in infancy. Physiology and Behavior, 4, 109–112CrossRefGoogle Scholar
  60. Higley, J. D., Suomi, S. J., &Linnoila, M. (1991). CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology, 103, 551–556PubMedCrossRefGoogle Scholar
  61. Higley, J. D., Hopkins, W. D., Thompson, W. W., Byrne, E. A., Hirsch, R. M., & Suomi, S. J. (1992). Peers as primary attachment sources in yearling rhesus monkeys (Macaca mulatta). Developmental Psychology,28, 1163–1171CrossRefGoogle Scholar
  62. Hofer, M. A. (1983). The mother-infant interaction as a regular of infant physiology and behavior. In L. A. Rosenblum & H. Moltz (Eds.), Symbiosis in parent—offsring interactions (pp. 61–75). New York: Plenum PressCrossRefGoogle Scholar
  63. Hofer, M. A., & Shair, H. (1980). Sensory processes in the control of isolation-induced ultrasonic vocalization by 2-week-old rats. Journal of Comparative and Physiological Psychology, 94, 271–279PubMedCrossRefGoogle Scholar
  64. Hofer, M. A., & Shair, H. (1982). Control of sleep—wake states in the infant rat by features of the mother—infant relationship. Developmental Psychobiology, 15, 229–243PubMedCrossRefGoogle Scholar
  65. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154PubMedGoogle Scholar
  66. Hubel, D. H., & Wieset, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology (London), 206, 419–436Google Scholar
  67. Imperato, A., Angelucci, L., Casolini, P., Zocchi, A., & Puglisi-Allegra, S. (1992). Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Research, 577, 194–199Google Scholar
  68. Ito, Y., Teicher, M. N., Glod, C. A., Harper, D., Magnus, E., & Gelbard, H. A. (1993). Increased prevalence of electropliysiological abnormalities in children with psychological, physical, and sexual abuse. Journal of Neuropsychiatry, 5, 401–408Google Scholar
  69. Ito, Y., Teicher, M. N., Glod, C. A., & Ackerman, E. (1998). Preliminary evidence for aberrant cortical development to abused children: A quantitative EEG study. Journal of Neuropsychiatry and Clinical Neuroscience, 298, 298Google Scholar
  70. Jones, L., Fischer, I., & Levitt, P. (1996). Region-specific alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cerebral Cortex, 6, 431–435PubMedCrossRefGoogle Scholar
  71. Kaas, J. H. (1991). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137–167PubMedCrossRefGoogle Scholar
  72. Kaczmarek, L., Kossut, M., & Skangiel-Kramska, J. (1997). Glutamate receptors in cortical plasticity: Molecular and cellular biology. Physiological Reviews, 77, 217–255PubMedGoogle Scholar
  73. Kalin, N. H., Shelton, S. E., & Barksdale, C. M. (1988). Opiate modulation of separation-induced distress in non-human primates. Brain Research, 440, 285–292PubMedCrossRefGoogle Scholar
  74. Kalivas, P. W., & Alesdatter, J. E. (1993). Involvement of Zmethyl-n-aspartate receptor stimulation in the centra tegmental area and amygdala in behavioral sensitization to cocaine. Journal of Pharmacology and Experimental Therapeutics, 267, 486–495PubMedGoogle Scholar
  75. Kalivas, P. W., & Duffy, P. (1989). Similar effects of daily cocaine and stress on mesocortico-limbic dopamine neurotransmission in the rat. Biological Psychiatry, 25, 913–928PubMedCrossRefGoogle Scholar
  76. Kalivas, P. W., Duffy, P., Abhold, R., & Dilts, R. P. (1988). Sensitization of mesolimbic dopamine neurons by neuropeptides and stress. In P. W. Kalivas & C. D. Barnes (Ms.), Sensitization in the nervous system (pp. 119–144), Caldwell, NJ: Telford PressGoogle Scholar
  77. Kalivas, P. W., Sorg, B. A., & Hooks, M. S. (1993). The pharmacology and neural circuitry of sensitization to psychostimulants. Behavioral Pharmacology, 4, 315–334CrossRefGoogle Scholar
  78. Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sciences, 45, 599–606PubMedCrossRefGoogle Scholar
  79. Kehoe, P. (1988). Opioids, behavior, and learning in mammalian development. In N. Adler & E. M. Blass (Eds.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 309–347). New York: Plenum PressGoogle Scholar
  80. Kehoe, P., & Blass, E. M. (1986a). Behaviorally functional opioid systems in infant rats: I. Evidence for olfactory and gustatory classical conditioning. Behavioral Neuroscience, 100, 359–367CrossRefGoogle Scholar
  81. Kehoe, P., & Blass, E. M. (1986b). Central nervous system mediation of positive and negative reinforcement in neonatal albino rats. Developmental Brain Research, 27, 69–75CrossRefGoogle Scholar
  82. Kehoe, P., & Blass, E. M. (1986c). Opioid mediation of separation distress in 10-day-old rats: Reversal of stress with maternal stimuli. Developmental Psychobiology, 19, 385–398CrossRefGoogle Scholar
  83. Kehoe, P., & Blass, E. M. (1986d). Behaviorally functional opioid systems in infant rats: II. Evidence for pharmacological, physiological and psychological mediation of pain and stress. Behavioral Neuroscience, 100, 624–630CrossRefGoogle Scholar
  84. Kehoe, P., & Blass, E. M. (1989), Conditioned opioid release in ten-day-old rats. Behavioral Neuroscience, 103, 423–428PubMedCrossRefGoogle Scholar
  85. Kehoe, P., & Bronzino, J. D. (1999). Neonatal stress alters LTP in freely moving male and female adult rats. Hippocampus, 9, 651–658PubMedCrossRefGoogle Scholar
  86. Kehoe, P., Hoffman, J., Austin-LaFrance, R, & Bronzino, J. (1995). Neonatal isolation enhances hippo-campal LTP in freely-moving juvenile rats, Experimental Neurology, 136, 89–97PubMedCrossRefGoogle Scholar
  87. Kehoe, P., Clash, K., Skipsey, K., & Shoemaker, W. J. (1996). Brain dopamine response in isolated 10-dayold rat pups: Assessment using D2 binding and dopamine turnover. Pharmacology, Biochemistry and Behavior, 53, 41–49CrossRefGoogle Scholar
  88. Kehoe, P., Shoemaker, W. J., Triano, L., Hoffman, J., & Arons, C. (1996). Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile following amphetamine challenge. Behavioral Neuroscience, 110, 1435–1444PubMedCrossRefGoogle Scholar
  89. Kehoe, P., Triano, L., Glennon, C., & Daigle, A. (1997). Juvenile rats stressed as infants exhibit differential dopamine and activity levels following restraint. Society for Neuroscience Abstracts, 23, 227Google Scholar
  90. Kehoe, P., Shoemaker, W. J., Arons, C., Triano, L., & Suresh, G. (1998). Repeated isolation stress in the neonatal rat: Relation to brain dopamine systems in the 10-day-old rat. Behavioral Neuroscience, 112, 1466–1474PubMedCrossRefGoogle Scholar
  91. Kehoe, P., Shoemaker, W. J., Triano, L., Callahan, M., & Rappolt, G. (1998). Adults stressed as neonates show exaggerated behavioral responses to both pharmacological and environmental challenges. Behavioral Neuroscience, 112, 116–125Google Scholar
  92. Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience, 83, 681–689PubMedCrossRefGoogle Scholar
  93. Kesson, W. (1965). The child New York: WileyGoogle Scholar
  94. Kim, J. J., & Yoon, K. S. (1998). Stress: Metaplastic effects in the hippocampus. TINS, 21, 505–509PubMedGoogle Scholar
  95. Kolta, M. G., Scalzo, F. M., Ali, S. F., & Hoison, R. R. (1990). Ontogeny of the enhanced behavioral response to amphetamine-pretreated rats. Psychopharmacology, 100, 377–382PubMedCrossRefGoogle Scholar
  96. Kuczenski, R., & Segal, D. S. (1988). Psychomotor stimulant-induced sensitization: Behavioral and neurochemical correlates. In P. W. Kalivas & C. D. Barnes (Eds.), Sensitization in the nervous system (pp. 175–206). Caldwell, NJ: Telford PressGoogle Scholar
  97. Kuhn, C. M., Schanberg, S. M., Field, T., Symanski, R., Zimmerman, E., Scafidi, F., & Roberts, J. (1991). Tactile/kinesthetic stimulation effects on sympathetic and adrenocortical function in preterm infants. Journal of Pediatrics, 119, 434–440PubMedCrossRefGoogle Scholar
  98. Lauder, J. M. (1993). Neurotransmitters as growth regulatory signals: Role of receptors and second messenger systems. Trends in Neuroscience, 16, 223–239CrossRefGoogle Scholar
  99. Levine, S. (1962). Plasma-free corticoid response to electric shock in rats stimulated in infancy. Science, 135, 795–796PubMedCrossRefGoogle Scholar
  100. Levine, S., Chevalier, J. A., & Korchin, S. J. (1956). The effects of early shock and handling on later avoidance learning. Journal of Personality, 24, 475–493PubMedCrossRefGoogle Scholar
  101. Levitt, R, Harvey, J. A., Freidman, E., Simansky, K, & Murphy, E. H. (1997). New evidence for neuro-transmitter influences on brain development. Trends in Neuroscience, 20, 269–274CrossRefGoogle Scholar
  102. Levitt, P., Reinoso, B., & Jones, I. (1998). The critical impact of early cellular environment on neuronal development. Preventive Medicine, 27, 180–183PubMedCrossRefGoogle Scholar
  103. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freeman, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamicpituitary—adrenal responses to stress. Science, 277, 1659–1662PubMedCrossRefGoogle Scholar
  104. Maier, S. E, & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence.Journal ofExperimental Psychology: General 103, 3–46CrossRefGoogle Scholar
  105. Marek, P., Ben-Eliyahu, S., Vaccarino, A., & Liebeskind, J. C. (1991). Delayed application of MK-801 attenuates development of morphine tolerance in rats. Brain Research, 558, 163–165PubMedCrossRefGoogle Scholar
  106. Marek, P., Ben-Eliyahu, S., Gold, M., & Liebeskind, J. C. (1991). Excitatory amino acid antagonists (kynurenic acid and MK-801) attenuate the development of morphine tolerance in the rat. Brain Research, 547, 77–81PubMedCrossRefGoogle Scholar
  107. Matthews, K., Robbins, T. W., Everitt, B. J., & Caine, S. B. (1999). Repeated neonatal maternal separation alters intravenous cocaine self-administration in adult rats. Psychopharmaoclogy (Berlin), 141,123–134Google Scholar
  108. McCormick, C. M., Kehoe, P., & Kovacs, S. (1998). Corticosterone release in response to repeated, short episodes of neonatal isolation: Evidence of sensitization. International Journal of Developmental Neuroscience 16, 175–185PubMedCrossRefGoogle Scholar
  109. McCormick, C. M., Rood, B., & Kehoe, P. (1998). Neonatal isolation alters corticosterone response to restraint stress in juvenile but not adult rats. Society for Neuroscience Abstracts, 24, 117Google Scholar
  110. McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205–216PubMedCrossRefGoogle Scholar
  111. McLaughlin, P. J., Tobias, S. W., Max Lang, C., & Zagon, E. S. (1997). Opioid receptor blockade during prenatal life modifies postnatal behavioral development. Pharmacology, Biochemistry and Behavior, 58, 1075–1082CrossRefGoogle Scholar
  112. Meaney, M. J., Bhatnagar, S., Larocque, S., McCormick, C., Shnaks, N., Sharma, S., Smythe, J., Viau, V., & Plotsky, P. M. (1993). Individual differences in the hypothalamic—pituitary—adrenal stress response and the hypothalamic CRF system. Annals of the New York Academy of Sciences, 297, 70–85CrossRefGoogle Scholar
  113. Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Seckl, J. R., & Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 49–72PubMedCrossRefGoogle Scholar
  114. Mills, E., Bruckert, J. W., & Smith, P. G. (1990). Influence of postnatal maternal stress on blood pressure and heart rate of juvenile and adult rat offspring. Departmental Psychobiology, 23, 839–847CrossRefGoogle Scholar
  115. Moore, C. L., & Chadwick-Dias, A. M. (1986). Behavioral responses of infant rats to maternal licking: Variations with age and sex. Developmental Psychobiology, 19, 427–438PubMedCrossRefGoogle Scholar
  116. Moore, C. L., & Morelli, G. A. (1979). Mother rats interact differently with male and female offspring. Journal of Comparative and Physiological Psychology, 93, 677–684PubMedCrossRefGoogle Scholar
  117. Morgane, P. J., Austin-LaFrance, R., Bronzino, J., Tonldss, J., Diaz-Cintra, S., Cintra, L., Kemper, T., & Galler, J. R. (1993). Prenatal malnutrition and development of the brain. Neuroscience Behavioral Review, 17, 91–128CrossRefGoogle Scholar
  118. Morgane, P.J., Bronzino, J. D., Austin-LaFrance, R. J., & Galler, J. R. (1996). Malnutrition, central nervous system effects. Encyclopedia of Neuroscience, 717, 1–9Google Scholar
  119. Murrin, L. C., & Zeng, W. (1989). Dopamine DI receptor development in the rat striatum: Early localization in striosomes. Brain Research, 480, 170–177PubMedCrossRefGoogle Scholar
  120. Neal, B. S., & Joyce, J. N. (1992). Neonatal 6-OHDA lesions differentially affect striatal DI and D2 receptors. Synapse, 11, 35–46PubMedCrossRefGoogle Scholar
  121. Novak, M. A., & Harlow, H. F. (1974). Social recovery for the first year of life: 1. Rehabilitation and therapy. Developmental Psychology, 11, 453–465CrossRefGoogle Scholar
  122. Ogawa, T, Mikuni, M., Kuroda, Y., Muneoka, K., Mori, K. J., & Takahashi, K. (1994). Periodic maternal deprivation alters stress response in adult offspring, potentiates the negative feedback regulation of restraint stress-induced adrenocortical response and reduces the frequencies of open field-induced behaviors. Pharmacology, Biochemistry and Behavior, 49, 961–967CrossRefGoogle Scholar
  123. Olsen, L., Boreus, O., & Seiger, A. (1973). Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain. Zeitschrift für Anata mie and Entwicklungsgeschichte, 139, 259–282CrossRefGoogle Scholar
  124. Oppenheim, R W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: A neuroembryological perspective. In K. Connelly & H. Prechtl (Eds.), Maturation and development: Biological and psychological perspectives London; Spastica SocietyGoogle Scholar
  125. Overton, P. G., Richard, C. D., Berry, M. S., & Clark, D. (1999). Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport, 10, 2, 221–226PubMedCrossRefGoogle Scholar
  126. Panksepp, J., Herman, B., Conner, R., Bishop, P., & Scott, J. P. (1978). The biology of social attachments: Opiates alleviate separation distress. Biological Psychiatry, 13, 607–618PubMedGoogle Scholar
  127. Panksepp, J., Meeker, R., & Bean, N. J. (1980). The neurochemical of crying. Pharmacology, Biochemistry and Behavior, 12, 437–443CrossRefGoogle Scholar
  128. Perry, B. D. (1997). Incubated in terror: Neurodevelopmental factors in the “cycle of violence.” In D. Osofsky (Ed.), Children in a violent society (pp. 124–149). New York: Guilford PressGoogle Scholar
  129. Perry, B. D., & Pollard, R. (1997). Altered brain development following global neglect in early childhood. Society for Neuroscience Abstracts, 23, 16–25Google Scholar
  130. Perry, B. D., & Pollard, R. (1998). Homeostasis, stress, trauma, and adaptation: A neurodevelopmental view of childhood trauma. Child and Adolescent Psychiatric Clinics of North America, 7, 811–819Google Scholar
  131. Plotsky, P. M. (1987). Regulation of hypophysiotropic factors mediating ACTH secretion. Annals of the New York Academy of Sciences, 512, 205–217PubMedCrossRefGoogle Scholar
  132. Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Research, 18, 195–200PubMedCrossRefGoogle Scholar
  133. Prasad, B. M., Sorg, B. A., Ulibarri, C., & Kalivas, P. W. (1995). Sensitization to stress and psychostimulants. Involvement of dopamine transmission versus the HPA axis. Annals of the New York Academy of Sciences, 771, 617–625PubMedCrossRefGoogle Scholar
  134. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error? TINS, 22, 146–151PubMedGoogle Scholar
  135. Ribble, M. A. (1944). Infantile experience in relation to personality development. In J. McV. Hunt (Ed.), Personality and behavior disorders (pp. 621–651). New York: Ronald PressGoogle Scholar
  136. Richter, C. P. (1976). The psychobiology of Curt Richter Baltimore, MD: York PressGoogle Scholar
  137. Rivier, C. L., & Plotsky, P. M. (1986). Mediation by corticotropin releasing factor (CRF) of adenohypophysical hormone secretion. Annual Review of Physiology, 48, 475–494PubMedCrossRefGoogle Scholar
  138. Robinson, T. E. (1988). Stimulant drugs and stress; factors influencing the susceptibility to sensitization. In C. Barnes & P. Kalivas (Eds.), Sensitization of the central nervous system (pp. 145–173). Caldwell, NJ: Telford PressGoogle Scholar
  139. Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Research Review, 11, 157–198CrossRefGoogle Scholar
  140. Robinson, T. E., & Kolb, B. (1997). Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. Journal of Neuroscience, 17, 84–91Google Scholar
  141. Robinson, T. E., & Kolb, B. (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. European Journal of Neuroscience, 11, 1598–1604PubMedCrossRefGoogle Scholar
  142. Robinson, T. E., Jursons, P. A., Bennett, J. A., & Bentgen, K. M. (1988). Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with amphetamine: A microdialysis study in freely moving rats. Brain Research,462, 211–222PubMedCrossRefGoogle Scholar
  143. Rogers, C. M., & Davenport, R. K. (1970). Chimpanzee maternal behavior. In G. H. Bourne (Ed.), The chimpanzee (pp. 361–368). Basel: KargerGoogle Scholar
  144. Rosenblum, L. A. (1968). Mother-infant relations and early behavioral development in the squirrel monkey. In L. Rosenblum & R. W. Cooper (Eds.), The squirrel monkey (pp. 207–234). New York: Academic PressGoogle Scholar
  145. Rosenblum, L. A., & Paully, G. S. (1984). The effects of varying environmental demands on maternal infant behavior. Child Development, 55, 305–314PubMedCrossRefGoogle Scholar
  146. Rosengarten, H., & Friedhoff, A. J. (1979). Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science, 203, 1133–1135PubMedCrossRefGoogle Scholar
  147. Sapolsky, R. M. (1992). How do glucocorticoids endanger the hippocampal neuron? In Stress, the aging brain, and the mechanisms of neuron death (pp. 223–258). Cambridge, MA: MIT PressGoogle Scholar
  148. Sarvey, J. M., Burgard, E. C., & Decker, G. (1989). Long-term potentiation: Studies in the hippocampal slice. Journal of Neuroscience Methods, 28, 109–124PubMedCrossRefGoogle Scholar
  149. Scarr-Salapatek, S., & Williams, M. L. (1973). The effects of early stimulation on low-birth-weights infants. Child Development, 44, 94–101PubMedCrossRefGoogle Scholar
  150. Schlumpf, M., Lichtensteiger, W., Shoemaker, W. J., & Bloom, F. E. (1980). Fetal monoamine systems: Early stages and cortical projections. In H. Parvez & S. Parvez (Eds.), Biogenic amines in development (pp. 567–590). New York: Elsevier/North-Holland Biomedical PressGoogle Scholar
  151. Seeman, P., & VanTol, H. H. M. (1994). Dopamine receptor pharmacology. TIPS, 15, 264–270PubMedGoogle Scholar
  152. Segal, D. S., & Kuczenski, R. (1987). Individual differences in responsiveness to single and repeated amphetamine administration: Behavioral characteristics and neurochemical correlates. Journal of Pharmacology and Experimental Therapeutics, 242, 917–926PubMedGoogle Scholar
  153. Segal, D. S., & Kuczenski, R. (1992). In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment. Brain Research,571, 330–337PubMedCrossRefGoogle Scholar
  154. Shoemaker, W. J., & Kehoe, P. (1995). Effect of isolation conditions on brain regional enkephalin and 13-endorphin and vocalizations in 10-day-old rat pups. Behavioral Neuroscience, 109, 117–122PubMedCrossRefGoogle Scholar
  155. Shoemaker, W. J., Kehoe, P., Antolik, C., Norrholm, S., Geary, M., & Fong, D. (1998). Altered stress-induced dopamine release in adult rats previously isolated as neonates. Society for Neuroscience Abstracts, 24, 451Google Scholar
  156. Shors, T. J., & Mathew, P. R. (1998). NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learning and Memory, 5, 220–230PubMedGoogle Scholar
  157. Shors, T. J., & Servatius, R. J. (1995). Stress-induced sensitization and facilitated learning require NMDA receptor activation. Neuroreport, 6, 677–680PubMedCrossRefGoogle Scholar
  158. Smith, E. L., Copian, J. D., Trost, R. C., Scharf, B. A., & Rosenblum, L. A. (1997). Neurobiological alterations in adult nonhuman primates exposed to unpredictable early rearing. Relevance to posttraumatic stress disorder. Annals of the New York Academy of Sciences,821, 545–548PubMedCrossRefGoogle Scholar
  159. Smotherman, W. P., Bell, R. W., Starzec, J., Elias, J., & Zachman, T. A. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice. Behavioral Biology, 12, 55PubMedCrossRefGoogle Scholar
  160. Sorg, B. A., & Kalivas, P. W. (1991). Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Research,559, 29–36PubMedCrossRefGoogle Scholar
  161. Sorg, B. A., & Kalivas, P. W. (1993). Effects of cocaine and footshock stress on extracellular levels in the medial prefrontal cortex. Neuroscience,53, 695–703PubMedCrossRefGoogle Scholar
  162. Spear, L. P., Shalaby, I. A., & Brick, J. (1980). Chronic administration of haloperidol during development: Behavioral and psychopharmacological effects. Psychopharmacology, 70, 47–58PubMedCrossRefGoogle Scholar
  163. Spitz, R. A. (1945). Hospitalism. Psychoanalytic study of the child, 1, 53–74PubMedGoogle Scholar
  164. Spitz, R. A. (1946). Hospitalism: A follow-up report on investigation described in Volume 1, 1945. Psychoanalytic Study of the Child 2, 113–117PubMedGoogle Scholar
  165. Spitz, R. A., & Wolf, K. A. (1946). Anaclitic depression: An inquiry into the genesis of psychiatric conditions in early childhood. Psychoanalytic Study of the Chilä, 2, 313–342Google Scholar
  166. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386CrossRefGoogle Scholar
  167. Sunanda Rao, M. S., & Raju, T. R. (1995). Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons—A quantitative study. Brain Research, 694, 312–317CrossRefGoogle Scholar
  168. Suomi, S. J. (1991). Early stress and adult emotional reactivity in rhesus monkeys. Ciba Foundation Symposium; New Series,156, 171–188Google Scholar
  169. Svedsen, E, Tjolsen, A., Rygh, L.J., & Hole, K. (1999), Expression of long-term potentiation in single wide dynamic range neurons in the rat is sensitive to blockade of glutamate receptors. Neuroscience Letters, 259, 25–28CrossRefGoogle Scholar
  170. Takahashi, L. L. (1998). Prenatal stress: Consequences of glucocorticoid on hippocampal development and function. International Journal of Developmental Neuroscience, 16, 199–207PubMedCrossRefGoogle Scholar
  171. Tamborski, A., Lucot, J. B., &Hennessy, M. B. (1990). Central dopamine turnover in guinea pigs during separation from their mothers in a novel environment. Behavioral Neuroscience, 104, 607–611PubMedCrossRefGoogle Scholar
  172. Teicher, M. H., Ito, Y., Glod, C. A., Anderson, S. L., Dumont, N., & Ackerman, E. (1997). Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Annals of the New York Academy of Sciences, 821, 160–175CrossRefGoogle Scholar
  173. Tonkiss, J., & Galler, J. R. (1990). Prenatal protein malnutrition and working memory performance in adult rats. Behavioral Brain Research, 40, 95–107CrossRefGoogle Scholar
  174. Unis, A. S. (1995). Developmental molecular psychopharmacology in early-onset psychiatric disorder: From models to mechanisms. Child and Adolescent Psychiatric Clinics of North America, 4, 41–57Google Scholar
  175. Unis, A. S., Roberson, M. D., Robinette, R., Ha, J., & Dorsa, D. M. (1998). Ontogeny of human brain dopamine receptors I. Differential expression of [3H)SCH23390 and [3H] YM09151–2 specific binding. Developmental Brain Research, 106, 109–117PubMedCrossRefGoogle Scholar
  176. Wang, H. Y., Yeung, J. M., &Friedman, E. (1995). Prenatal cocaine exposure selectively reduces mesocortical dopamine release. Journal of Pharmacology and Experimental Therapeutics, 273, 492–498PubMedGoogle Scholar
  177. Wang, X.-H., Levitt, P., Grayson, D. R., & Murphy, E. H. (1996). Intrauterine cocaine exposure of rabbits: Persistent elevation of GABA immunoreactive neurons in anterior cingulate cortex but not in visual cortex. Brain Research, 689, 32–46CrossRefGoogle Scholar
  178. Weiner, I., Feldon, J., & Ziv-Harris, D. (1987). Early handling and latent inhibition in the conditioned suppression paradigm. Developmental Psychobiology, 20, 233–240PubMedCrossRefGoogle Scholar
  179. Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 28, 1029–1040PubMedGoogle Scholar
  180. Wilkins, A. S., Logan, M., & Kehoe, P. (1998). Postnatal pup brain dopamine depletion inhibits maternal behavior. Pharmacology,Biochemistry, and Behavior,58, 867–873Google Scholar
  181. Whitaker-Azmitia, P. M., & Azmitia, E. C. (1986). Autoregulation of fetal serotonergic neuronal development: Role of high affinity serotonin receptors. Neuroscience Letters, 67, 307–312PubMedCrossRefGoogle Scholar
  182. Wigstrom, H., & Gustafsson, B. (1984). A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro. Neuroscience Letters, 44, 327–332PubMedCrossRefGoogle Scholar
  183. Wolff, P. H., & Fesseha, G. (1998). The orphans of Eritrea: Are orphanages part of the problem or part of the solution? American Journal of Psychiatry, 155, 1319–1324PubMedGoogle Scholar
  184. Zagon, I. S., & McLaughlin, P. J. (1985). Opioid antagonist-induced regulation of organ development. Physiology and Behavior, 34, 507–511PubMedCrossRefGoogle Scholar
  185. Zagon, I. S., & McLaughlin, P. J. (1986). Opioid antagonist (naltrexone) modulation of cerebellar development: Histological and morphometric studies. Journal of Neuroscience, 6, 1424–1432PubMedGoogle Scholar
  186. Zimmerberg, B., & Shartrand, A. M. (1992). Temperature-dependent effects of maternal separation on growth, activity, and amphetamine sensitivity in the rat. Developmental Psychobiology, 25, 213–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Priscilla Kehoe
    • 1
  • William Shoemaker
    • 2
  1. 1.Department of PsychologyTrinity CollegeHartford
  2. 2.Department of PsychiatryUniversity of Connecticut Health CenterFarmington

Personalised recommendations