Advertisement

The Ontogeny of Motivation

Hedonic Preferences and Their Biological Basis in Developing Rats
  • Aron Weller
Chapter
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)

Abstract

This chapter examines the ontogeny of motivated behavior, particularly the origins of early attractions. It focuses on the biological foundations of preferences in an animal model, the laboratory rat. A developmental approach is utilized to examine the appearance over ontogeny of different behavioral tendencies and how they change. This approach can reveal components of motivation as they appear (at different ontogenetic times) and allow the examination of the physiological substrate (hormonal, neural, etc.) of these developing components separately. This approach can also specify how experience contributes to motivational change by building on states that are, by definition, rewarding to newborns. These states, concerned with energy conservation and with stimulation of the central nervous system (CNS) for brain growth and development, will be discussed and the position advanced here of intrinsically rewarding systems will be supported.

Keywords

Conditioned Stimulus Amniotic Fluid Behavioral Neuroscience Developmental Psychobiology Taste Reactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, J. R. (1978). Huddling by rat pups: Group behavioral mechanisms to temperature regulation and energy conservation. Journal of Comparative and Physiological Psychology, 92, 231–245CrossRefPubMedGoogle Scholar
  2. Alberts, J. R., & May, B. (1984). Nonnutritive thermotactile induction of filial huddling in rat pups. Developmental Psychobiology, 17, 161–181CrossRefPubMedGoogle Scholar
  3. Allin, J. T., & Banks, E. M. (1972). Functional aspects of ultrasound production by infant albino rats. Animal Behaviour, 20, 175–185CrossRefPubMedGoogle Scholar
  4. Almli, C R. (1971). The ontogeny of the onset of drinking and plasma osmotic pressure regulation. Developmental Psychobiology, 6, 147–158CrossRefGoogle Scholar
  5. Amid, L., Dark, T., Noce, K M., & Kirstein, C. L. (1998). Odor preferences in neonatal and weanling rats. Developmental Psychobiology, 33, 157–162CrossRefGoogle Scholar
  6. Balleine, B. W. & Dickinson, A. (1994). The role of cltolecystokinin in the motivational control of instrumental action. Behavioral Neuroscience, 108, 590–605CrossRefPubMedGoogle Scholar
  7. Balleine, B., Davies, A., & Dickinson, A. (1995). Cholecystokinin attenuates incentive learning in rats. Behavioral Neuroscience, 109, 312–319CrossRefPubMedGoogle Scholar
  8. Barnett, S. A., & Spenser, M. M. (1953). Responses of wild rats to offensive smells and tastes. British journal of Animal Behaviour, 1, 32–37CrossRefGoogle Scholar
  9. Barrett, K. C., & Campos, J. J. (1987). Perspectives on emotional development II: A functionalist approach to emotions. In J. D. Osofsky (Ed.), Handbook of infant development (2nd ed.; pp. 555–578). NewYork: John Wiley & SonsGoogle Scholar
  10. Berridge, K. C., & Grill, H. J. (1983). Alternating ingestive and consummatory responses suggest a two-dimensional analysis of palatability in rats. Behavioral Neuroscience, 97, 563–573CrossRefPubMedGoogle Scholar
  11. Berridge, K. C., Flynn, F. W., Schulkin, J., & Grill, H. J. (1984). Sodium depletion enhances salt palatability in rats. Behavioral Neuroscience, 98, 652–660CrossRefPubMedGoogle Scholar
  12. Birke, L. I. A., & Sadler, D. (1985). Maternal behavior of rats and effects of neonatal progestins given to the pups. Developmental Psychobiology, 18, 85–99CrossRefGoogle Scholar
  13. Blass, E. M. (Ed.) (1976). The psychobiology of Curt Richter Baltimore, MD: York PressGoogle Scholar
  14. Blass, E. M. (1992). The ontogeny of motivation: Opioid bases of energy conservation and lasting affective change in rat and human infants. Current Directions in Psychological Science, 1, 116–120CrossRefGoogle Scholar
  15. Blass, E. M. (1995). The ontogeny of ingestive behavior. In A. Morrison & S. Fluharty (Eds.), Progress in psychobiology and physiological psychology (Vol. 16, pp. 1–51). New York: Academic PressGoogle Scholar
  16. Blass, E. M. (1996). Mothers and their infants: Peptide-mediated physiological, behavioral and affective changes during suckling. Regulatory Peptides, 66, 109–112CrossRefPubMedGoogle Scholar
  17. Blass, E. M. (1999). The ontogeny of human infant face recognition: Orogustatory, visual, and social influences. In P. Rochat (Ed.), Early social cognition: Understanding others in the first months of life (pp. 35–65). Mahwah, NJ: ErlbaumGoogle Scholar
  18. Blass, E. M., & Fitzgerald, E. (1988). Milk-induced analgesia and comforting in 10dayold rats: Opioid mediation. Pharmacology, Biochemistry and Behavior, 29, 9–13CrossRefGoogle Scholar
  19. Blass, E. M., & Shide, D.J. (1993). Endogenous cholecystokinin reduces vocalization in isolated 10-day-old rats. Behavioral Neuroscience, 107, 488–492CrossRefPubMedGoogle Scholar
  20. Blass, E. M., & Watt, L. B. (1999). Suckling-and sucrose-induced analgesia in human newborns. Pain, 83, 611–623CrossRefPubMedGoogle Scholar
  21. Blass, E. M., Beardsley, W., & Hall, W. G. (1979). Age-dependent inhibition of suckling by cholecystokinin. American journal of Physiology, 236, E567–E570PubMedGoogle Scholar
  22. Blass, E. M., Fitzgerald, E., & Kehoe, P. (1987). Interactions between sucrose, pain and isolation distress. Pharmacology, Biochemistry and Behavior, 26, 483–489CrossRefGoogle Scholar
  23. Bowlby, J. (1980). Attachment and loss, Vol. 1, Attachment. New York: Basic BooksGoogle Scholar
  24. Bradwejn, J., & Koszycki, D. (1994). The cholecystokinin hypothesis of anxiety and panic disorder. Annals of the New York Academy of Sciences, 713, 273–282CrossRefPubMedGoogle Scholar
  25. Brown, R. E. (1982). Preferences of pre-and post-weanling Long-Evans rats for nest odors. Physiology and Behavior, 29, 865–874CrossRefPubMedGoogle Scholar
  26. Brown, R. E., & Willner, J. A. (1983). Establishing an “affective scale” for odor preference of infant rats. Behavioral and Neural Biology, 38, 251–260CrossRefPubMedGoogle Scholar
  27. Bruno, J. P. (1981). Development of drinking behavior in preweanling rats. Journal of Comparative and Physiological Psychology, 95, 1016–1027CrossRefGoogle Scholar
  28. Bruno, J. P., Blass, E. M., & Amin, F. (1983). Determinants of suckling versus drinking in weanling albino rats: Influence of hydrational state and maternal contact. Developmental Psychobiology, 16, 177–184CrossRefPubMedGoogle Scholar
  29. Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65, 175–187CrossRefPubMedGoogle Scholar
  30. Cabanac, M. (1971). Physiological role of pleasure. Science, 173, 1103–1107CrossRefPubMedGoogle Scholar
  31. Cabanac, M. (1979). Sensory pleasure. Quarterly Review of Biology, 54, 1–29CrossRefPubMedGoogle Scholar
  32. Cabanac, M. (1990). Taste: The maximization of multidimensional pleasure. In E. D. Capaldi & T. L. Powley (Eds.), Taste, experience and feeding (pp. 28–42). Washington, DC: American Psychological AssociationGoogle Scholar
  33. Camp, L. L. & Rudy, J. W. (1988). Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Developmental Psychobiology, 21, 25–42CrossRefPubMedGoogle Scholar
  34. Cannon, W. B. (1918). The physiological basis of thirst, Proceedings of the Royal Society of London, 90B, 283–301CrossRefGoogle Scholar
  35. Cannon, W. B. (1932). The wisdom of the body New York: NortonGoogle Scholar
  36. Cannon, W. B., & Washburn, A. L. (1912). An explanation of hunger. American journal of Physiology, 29, 441–454Google Scholar
  37. Chang, R. S. L., & Lotti, V. J. (1986). Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proceedings of the National Academy of Sciences of the USA, 83, 4923–4926CrossRefPubMedGoogle Scholar
  38. Coopersmith, R., & Leon, M. (1984). Enhanced neural response following postnatal olfactory experience in Norway rats. Science, 225, 849–851CrossRefPubMedGoogle Scholar
  39. Coopersmith, R., & Leon, M. (1988). The neurobiology of olfactory learning. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 283–308). New York, Plenum PressGoogle Scholar
  40. Coplan, J. D., & Lydiard, R. B. (1998). Brain circuits in panic disorder. Biological Psychiatry, 44,1264–1276CrossRefPubMedGoogle Scholar
  41. Cornwell, C. A., Chang, J. W., Cole, B., Fukada, Y, Gianulli, T, Rathbone, E. A, McFarlane, H., & McGaugh, J. L. (1996). DSP-4 treatment influences olfactory preferences of developing rats. Brain Research, 711, 26–33CrossRefPubMedGoogle Scholar
  42. CornwellJones, C. A. (1979). Olfactory sensitive periods in albino rats and golden hamsters. Journal of Comparative and Physiological Psychology, 93, 668–676CrossRefGoogle Scholar
  43. Cornwell-Jones, C. A. & Sobrian, S. K. (1977). Development of odor-guided behavior in Wistar and Sprague-Dawley rat pups. Physiology and Behavior, 19, 685–688CrossRefPubMedGoogle Scholar
  44. Crawley, J. N. & Corwin, R. L. (1994). Biological actions of cholecystokinin. Peptides, 15, 731–755CrossRefPubMedGoogle Scholar
  45. Cornwell-Jones, C. A., Decker, M. W., Gianulli, T., Wright, E. L., & McGaugh, J. L. (1990). Norepinephrine reduces the effects of social and olfactory experience. Brain Research Bulletin, 25, 643–649CrossRefPubMedGoogle Scholar
  46. DeCasper, A. J. & Fifer, W. P. (1980). Of human bonding; newborns prefer their mothers voices. Science, 208, 1174–1176CrossRefPubMedGoogle Scholar
  47. Dockray, G.J. (1981). Cholecystokinin. In S. R. Bloom, & J. M. Polack (Eds.), Guthormones (pp. 228–239). Edinburgh: Churchill LivingstoneGoogle Scholar
  48. Doty, R. L. (1981). Olfactory communication in humans. Chemical Senses, 6, 351–376CrossRefGoogle Scholar
  49. Fillion, T. J, & Blass, E. M. (1986). Infantile experience with suckling odors determines adult sexual behavior in male rats. Science, 231, 729–731CrossRefPubMedGoogle Scholar
  50. Fraenkel, G. S., & Gunn, D. L. (1961). The orientation of animals New York: DoverGoogle Scholar
  51. Galet, B. G., Jr. (1981). Development of flavor preference in man and animals: The role of social and nonsocial factors. In Development of perception (Vol. 1, pp. 411–431). New York: Academic PressGoogle Scholar
  52. Galef, B. G., Jr. (1992). Weaning from mother’s milk to solid foods. The developmental psychobiology of self-selection of foods by rats. Annals of the New York Academy of Sciences,662, 37–52CrossRefGoogle Scholar
  53. Galet, B. G., Jr., & Kaner, H. C. (1980). Establishment and maintenance of preference for natural and artificial olfactory stimuli in juvenile rats. Journal of Comparative and Physiological Psychology, 94, 588–595CrossRefGoogle Scholar
  54. Galef, B. G., Jr., & Kennett, D. J. (1987). Different mechanisms for social transmission of diet preference in rat pups of different ages. Developmental Psychobiology, 20, 209–215CrossRefPubMedGoogle Scholar
  55. Galef, B. G., Jr., & Sherry, D. F. (1973). Mother’s milk: A medium for transmission of cues reflecting the flavor of mother’s diet. Journal of Comparative and Physiological Psychology, 83, 374–378CrossRefPubMedGoogle Scholar
  56. Ganchrow, J. R., Steiner, J. E., & Munif, D. (1983). Neonatal facial expressions in response to different quality and intensities of gustatory stimuli. Infant Behavior and Development, 6, 473–484CrossRefGoogle Scholar
  57. Ganchrow, J. R, Steiner, J. E., & Canetto, S. (1986). Behavioral display to gustatory stimuli in newborn rat pups. Developmental Psychobiology, 19, 163–174CrossRefPubMedGoogle Scholar
  58. Graillon A, Barr R G, Young S. N., Wright J. H., & Hendricks, L. A. (1997). Differential response to intra-oral sucrose, quinine and corn oil in crying human newborns. Physiology and Behavior, 62, 317–325CrossRefPubMedGoogle Scholar
  59. Grill, H. J. & Berridge, K. C. (1985). Taste reactivity as a measure of the neural control of palatability. Progress in Psychobiology and Physiological Psychology, 11, 2–61Google Scholar
  60. Grill, H. J., & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research,143, 263–279CrossRefPubMedGoogle Scholar
  61. Guenaire, C., Costa, J. C., & Delacour, J. (1979). Thermosensibilitè et conditionnement instrumental chez le rat nouveau-nge. Physiology and Behavior, 22, 837–840CrossRefPubMedGoogle Scholar
  62. Guenaire, C., Costa, J. C., & Delacour, J. (1982a). Discrimination spatiale avec reinforcement thermique chez le jeunerat. Physiology and Behavior, 28, 725–731CrossRefGoogle Scholar
  63. Guenaire, C., Costa, J. C., & Delacour, J. 1982b. Conditionment operant avec reinforcement thermique chez le rat nouveau-n6. Physiology and Behavior, 29, 419–424CrossRefGoogle Scholar
  64. Hall, W. G. (1990). The ontogeny of ingestive behavior: Changing control of components in the feeding sequence. In E. M. Stricker (Ed.), Handbook of behavioral neurobiology, Volume 10: Neurobiology of feed and fluid intake (pp. 77–123). New York: PlenumGoogle Scholar
  65. Hall, W. G., & Bryan, T. E. (1981). The ontogeny of feeding in rats: IV. Taste development as measured by intake and behavioral responses to oral infusions of sucrose and quinine. Journal of Comparative and Physiological Psychology, 95, 240–251CrossRefPubMedGoogle Scholar
  66. Harhammer, R., Schafer, U., Henklein, P., Ott, T., & Repke, H. (1991). CCK-8-related C-terminal tetrapeptides: Affinities for central CCKB and peripheral CCIA receptors. European Journal of Pharmacology, 209, 263–266CrossRefPubMedGoogle Scholar
  67. Harlow, H. F., & Harlow, M. K. (1962). Social deprivation in monkeys. Scientific American, 207, 136–146CrossRefPubMedGoogle Scholar
  68. Hepper, P. G. 1987a. Rat pups prefer their siblings to their mothers: Possible implications for the development of kin recognition. Quarterly Journal of Experimental Psychology, 39B, 265–271Google Scholar
  69. Hepper, R. G. 1987b. The amniotic fluid: An important priming role in kin recognition. Animal Behaviour, 35, 1343–1346CrossRefGoogle Scholar
  70. Hepper, R G. (1990). Fetal olfaction. In D. W. Macdonald &S. Natynzcuk (Eds.), Chemical signals in vertebrates V (pp. 282–288). Oxford: Oxford University PressGoogle Scholar
  71. Hepper, P. G. (1991). Recognizing kin: Ontogeny and classification. In P. G. Hepper (Ed.), Kin recognition (pp. 259–288). Cambridge: Cambridge University PressCrossRefGoogle Scholar
  72. Hofer, M. A. (1996). Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocrinology, 21, 203–217CrossRefPubMedGoogle Scholar
  73. Hofer, M. A. & Shair, H. N. (1980). Sensory processes in the control of isolation-induced ultrasonic vocalization by 2-week-old rats. Journal of Comparative and Physiological Psychology, 94, 271–279CrossRefPubMedGoogle Scholar
  74. Hofer, M. A., Masmela, J. R., Brunelli, S. A., & Shair, H. N. (1998). The ontogeny of maternal potentiation of the infant rat’s isolation call. Developmental Psychobiology, 33, 189–202CrossRefPubMedGoogle Scholar
  75. Hofer, M. A., Masmela, J. R., Brunelli, S. A., & Shair, H. N. (1999). Behavioral mechanisms for active maternal potentiation of isolation calling in rat pups. Behavioral Neuroscience, 113, 51–61CrossRefPubMedGoogle Scholar
  76. Hogan, J. A. (1988). Cause and function in the development of behavior systems. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 63106). New York, Plenum PressGoogle Scholar
  77. Holland, P. C. (1977). Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. Journal of Experimental Psychology: Animal Behavior Processes, 3, 77–104CrossRefPubMedGoogle Scholar
  78. Holland, P. C. (1980). Influence of visual conditioned stimulus characteristics on the form of the Pavlovian appetitive conditioned responding in rats. Journal of Experimental Psychology: Animal Behavior Processes, 6, 81–97CrossRefPubMedGoogle Scholar
  79. Holmes, W. G. (1988). Kinship and the development of social preferences. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 9, Developmental psychobiology and behavioral ecology (pp. 389–413). New York, Plenum PressGoogle Scholar
  80. Johanson, I. B., Polefrone, J. M., & Hall, W. G. (1984). Appetitive conditioning in neonatal rats: Conditioned ingestive responding to stimuli paired with oral infusion of milk. Developmental Psychobiology, 17, 357–381CrossRefPubMedGoogle Scholar
  81. Kehoe, P., & Blass, E. M. 1986a. Conditioned aversions and their memories in 5-day-old rats during suckling. Journal of Experimental Psychology: Animal Behavior Processes, 12, 40–47CrossRefGoogle Scholar
  82. Kehoe, P., & Blass, E. M. 1986b. Behaviorally functional opioid systems in infant rats: II. Evidence for pharmacological, physiological and psychological mediation of pain and stress. Behavioral Neuroscience, 100, 624–630CrossRefGoogle Scholar
  83. Kehoe, P., & Blass, E. M. 1986c. Opioid-mediation of separation distress in 10-clay-old rats: Reversal of stress with maternal stimuli, Developmental Psychobiology, 19, 385–398CrossRefGoogle Scholar
  84. Kehoe, P., & Sakurai, S. (1991). Preferred tastes and opioid-modulated behaviors in neonatal rats. Developmental Psychobiology, 24, 135–148CrossRefPubMedGoogle Scholar
  85. Kenny, J. T., & Blass, E. M. (1977). Suckling as an incentive to instrumental learning in preweanling rats. Science, 196, 898–899CrossRefPubMedGoogle Scholar
  86. Kenny, J. T, Stoloff, M. L., Bruno, J. P., & Blass, E. M. (1979). Ontogeny of preference for nutritive over nonnutritive suckling in albino rats. Journal of Comparative and Physiological Psychology, 93, 752–759CrossRefGoogle Scholar
  87. Kleitman, N., & Satinoff, E. (1982). Thermoregulatory behavior in rat pups from birth to weaning. Physiology and Behavior, 29, 537–541CrossRefPubMedGoogle Scholar
  88. Lee, T M., & Moltz, H. 1984a. The maternal pheromone and brain development in the preweanling rat. Physiology and Behavior, 33, 385–390CrossRefGoogle Scholar
  89. Lee, T. M., & Moltz, H. 1984b. The maternal pheromone and deoxycholic acid in the survival of preweanling rats. Physiology and Behavior, 33, 931–935CrossRefGoogle Scholar
  90. Lemaire, M., Piot, O., Roques, B., Bohme, G. A. & Blanchard, J.-C. (1992). Evidence for an endogenous cholecystokininergic balance in social memory. NeuroReport, 3, 929–932CrossRefPubMedGoogle Scholar
  91. Lemaire, M., Bohme, G. A., Piot, O., Roques, B., & Blanchard, J.-C. (1994). CCK-A and CCK-B selective receptor agonists and antagonists modulate olfactory social recognition in male rats. Psychopharmacology, 115, 435–440CrossRefPubMedGoogle Scholar
  92. Leon, M. (1974). Maternal pheromone. Physiology and Behavior, 13, 441–453CrossRefPubMedGoogle Scholar
  93. Leon, M. (1986). Development of thermoregulation. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 8, Developmental psychobiology and developmental neurobiology (pp. 297–322). New York, Plenum PressGoogle Scholar
  94. Leon, M. 1992a. Neuroethology of olfactory preference development. journal of Neurobiology, 23,1557–1573CrossRefGoogle Scholar
  95. Leon, M. 1992b. The neurobiology of filial learning. Annual Review of Psychology, 43, 377–398CrossRefGoogle Scholar
  96. Leon, M., & Moltz, H. (1971). Maternal pheromone: Discrimination by preweanling albino rats. Physiology and Behavior, 7, 265–267CrossRefPubMedGoogle Scholar
  97. Leon, M., Galef, B. G., Jr., & Behse, J. H. (1977). Establishment of pheromonal bonds and diet choice in young rats by odor pre-exposure. Physiology and Behavior, 18, 387–391CrossRefGoogle Scholar
  98. Liddle, R. A. (1997). Cholecystokinin cells. Annual Review of Physiology, 59, 221–242CrossRefPubMedGoogle Scholar
  99. Lorenz, D. (1994). Effects of CCK-8 on ingestive behaviors of suckling and weanling rats. Developmental Psychobiology, 27, 39–52CrossRefPubMedGoogle Scholar
  100. Lotti, V.J., Pendleton, R. G., Gould, R. J., Hanson, H. M., Chang, R. S. L., & Clineschmidt, B. V. (1987). In vivo pharmacology of L-364,718, a new potent nonpeptide peripheral cholecystokinin antagonist. Journal of Pharmacology and Experimental Therapeutics, 241, 103–109PubMedGoogle Scholar
  101. Manlier, L., Schaal, B., & Soussignan, R. (1988). Bottle-fed neonates prefer an odor experienced in utero to an odor experienced postnatally in the feeding context. Developmental Psychobiology, 33, 133–145Google Scholar
  102. Mennella, J. A., & Beauchamp, G. K. (1993). The effects of repeated exposure to garlic-flavored milk on the nursling’s behavior. Pediatric Research, 34, 805–808CrossRefPubMedGoogle Scholar
  103. Mennella, J. A., & Beauchamp, G. K. (1998). Early flavor experiences: Research update. Nutrition Reviews, 56, 205–211CrossRefPubMedGoogle Scholar
  104. Mennella, J. A., & Beauchamp, G. K. (1999). Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Developmental Psychobiology, 35, 197–203CrossRefPubMedGoogle Scholar
  105. Midkiff, E. E., & Bernstein, I. L. (1983), The influence of age and experience on salt preference in the rat. Developmental Psychobiology, 16, 385–394CrossRefPubMedGoogle Scholar
  106. Mistretta, C. M., & Bradley, R. M, (1986). Development of the sense of taste. In E. M. Blass (Ed.), Handbook of behavioral neurobiology, Volume 8, Developmental psychobiology and developmental neurobiology (pp. 205–236). New York, Plenum PressGoogle Scholar
  107. Moe, K. E. (1986). The ontogeny of salt preference in rats. Developmental Psychobiology, 19, 185–196CrossRefPubMedGoogle Scholar
  108. Moore, C. L. (1982). Maternal behavior of rats is affected by hormonal condition of pups. journal of Comparative and Physiological Psychology, 96, 123–129CrossRefPubMedGoogle Scholar
  109. Moore, C. L., & Power, K. L. (1992). Variation in maternal care and individual differences in play, exploration, and grooming of juvenile Norway rat offspring. Developmental Psychobiology, 25,165–182CrossRefPubMedGoogle Scholar
  110. Moran, T. H, Schwartz, G. J., & Blass, E. M. 1993a. Organized behavioral responses elicited by lateral hypothalamic electrical stimulation in neonatal rats. journal of Neuroscience, 3, 10–19Google Scholar
  111. Moran, T. H, Schwartz, G. J., & Blass, E. M. 1993b. Stimulation induced ingestion in neonatal rats. Developmental Brain Research, 7, 197–204CrossRefGoogle Scholar
  112. Moran, T. H., Robinson, P. H., Goldrich, M. S., & McHugh, P. R. (1986). Two brain cholecystokinin receptors: Implications for behavioral actions. Brain Research, 362, 175–179CrossRefPubMedGoogle Scholar
  113. Moran, T. H., Ameglio, P. J., Schwartz, G.J., & McHugh, P. R. (1991). Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK American journal of Physiology, 262, R46–R50Google Scholar
  114. Naito, H., & Tonoue, T. (1987). Sex difference in ultrasound distress calls by rat pups. Behavioral Brain Research, 25, 13–21CrossRefGoogle Scholar
  115. Nakamura, S., Kimura, F., & Sakaguchi, E. (1987). Postnatal development of electric activity in the locus coerulus. journal of Neuro.physiology, 58, 510–524Google Scholar
  116. Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant—mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience and Biobehavioral Reviews, 22, 437–452CrossRefPubMedGoogle Scholar
  117. Noirot, E. (1973). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5, 371–387CrossRefGoogle Scholar
  118. Nowak, R., Goursaud, A. P., Levy, F., Orgeur, P., Schaal, B., Belzung, C., Picard, M., Meunier-Salaven, M. C., Alster, P., & Urnaes-Moberg, K. (1997). Cholecystokinin receptors mediate the development of a preference for the mother by newly born lambs. Behavioral Neuroscience, 111, 1375–1382CrossRefPubMedGoogle Scholar
  119. Nyakas, C., & Endroczi, E. (1970). Olfaction guided approaching behaviour of infantile rats to the mother in maze box. Acta Physiologica Academiae Scientiarum Hungaricae, 38, 59–65PubMedGoogle Scholar
  120. Oswalt, G. L., & Meier, G. W. (1975). Olfactory, thermal, and tactual influences on infantile ultrasonic vocalization in rats. Developmental Psychobiology, 8, 129–135CrossRefPubMedGoogle Scholar
  121. Passaro, E., Debas, H., Oldenorf, W., & Yamada, T. (1982). Rapid appearance of intraventicularly administered neuropeptides in the peripheral circulation. Brain Research,241, 335–340CrossRefPubMedGoogle Scholar
  122. Pedersen, P. E., & Blass, E. M. (1982). Prenatal and postnatal determinants of the first suckling episode in albino rats. Developmental Psychobiology, 15, 349–355CrossRefPubMedGoogle Scholar
  123. Pineau, A., & Streri, A. (1990). Intermodal transfer of spatial arrangement of the component parts of an object in infants aged 4–5 months. Perception,19, 795–804CrossRefPubMedGoogle Scholar
  124. Polan, H.J., & Hofer, M. A. (1998). Olfactory preference for mother over home nest shavings by newborn rats. Developmental Psychobiology, 33, 5–20CrossRefPubMedGoogle Scholar
  125. Porter, R H., & Winberg, J. (1999). Unique salience of maternal breast odors for newborn infants. Neuroscience and Biobehavioral Reviews, 23, 439–449CrossRefPubMedGoogle Scholar
  126. Rakover-Atar, S., & Weller, A. (1997). The influence of natural preference for tactile stimuli on appetitive learning in rat pups. Developmental Psychobiology, 30, 29–39CrossRefPubMedGoogle Scholar
  127. Rao, M., Blass, E. M., Brignol, M. M., Marino, L., & Glass, L. (1997). Reduced heat loss following sucrose ingestion in premature and normal human newborns. Early Human Development, 48, 109–116CrossRefPubMedGoogle Scholar
  128. Redman, R. S., & Sweeney, L. R (1976). Changes in diet and patterns of feeding activity in developing rats. Journal of Nutrition, 106, 615–626PubMedGoogle Scholar
  129. Ren, K., Blass, E. M., Zhou, Q., & Dubner, R. (1997). Suckling and sucrose ingestion suppress persistent hyperalgesia and spinal Fos expression after forepaw inflammation in infant rats. Proceedings of the National Academy of Sciences of the USA, 94, 1471–1475CrossRefPubMedGoogle Scholar
  130. Rex, A., Barth, T., Voigt, J.-P., Domeney, A. M., & Fink, H. (1994). Effects of cholecystokinin tetrapeptide and sulfated cholecystokinin octapeptide in rat models of anxiety. Neuroscience Letters, 172,139–142 CrossRefGoogle Scholar
  131. Richmond, G., & Sachs, B. D. (1983). Maternal discrimination of pup sex by rats. Developmental Psychobiol-ogy, 17, 347–356Google Scholar
  132. Robinson, H., Moran, T. H., Goldrich, M., & McHugh, P. R. (1987). Development of cholecystokinin binding sites in rat upper gastrointestinal tract. American Journal of Physiology, 252, G529–G534PubMedGoogle Scholar
  133. Rosenblatt, J. S. (1983). Olfaction mediates developmental transition in the altricial newborn of selected species of mammals. Developmental Psychobiology, 16, 347–375CrossRefPubMedGoogle Scholar
  134. Rosenblatt, J. S. (1987). Biological and behavioral factors underlying the onset and maintenance of maternal behavior in the rat. in N. A. Krasnegor, E. M. Blass, M. A. Hofer & W. P. Smotherman (Eds.), Perinatal development (pp. 323–341). Orlando, FL: Academic PressGoogle Scholar
  135. Rosenstein, D., & Oster, H. (1990). Differential facial responses to four basic tastes in newborns. Child Development, 59, 1555–1568CrossRefGoogle Scholar
  136. Rudy, J. W. (1991), Development of learning: From elemental to configural associative networks. In C. Rovee-Collier & L. Lipsitt (Eds.), Advances in infancy research (Vol. 7, pp. 247–289). Norwood, NJ: AblexGoogle Scholar
  137. Salmenpera, L., Perheentupa, J., Slimes, M. A., Adrian, T. E., Bloom, S. R., & Aynsley-Green, A. (1988). Effects of feeding regimen on blood glucose levels and plasma concentrations of pancreatic hormones and gut regulatory peptides at 9 months of age: Comparison between infants fed with milk formula and infants exclusively breast-fed from birth., journal of Pediatric Gastroenterology and Nutrition, 7, 651–656CrossRefPubMedGoogle Scholar
  138. Satinoff, E. (1991). Developmental aspects of behavioral and reflexive thermoregulation. In H. N. Shair, G. A. Barr, &M. A. Hofer (Eds.), Developmental psychobiology: New methods and changing concepts (pp. 169–188). New York: Oxford University PressGoogle Scholar
  139. Schaal, B. (1988). Olfaction in infants and children: Developmental and functional perspectives. Chemical Senses, 13, 145–190CrossRefGoogle Scholar
  140. Schank, J. C., & Alberts, J. R. (1997). Self-organized huddles of rat pups modeled by simple rules of individual behavior. journal of Theoretical Biology, 189, 11–25CrossRefPubMedGoogle Scholar
  141. Schneirla, T. C. (1939). A theoretical consideration of the basis for approach-withdrawal adjustments in behavior. Psychological Bulletin, 37, 501–502Google Scholar
  142. Schneirla, T. C. (1959). An evolutionary developmental theory of biphasic processes underlying approach and withdrawal. Nebraska Symposium on Motivation, 1, 1–42Google Scholar
  143. Schneirla, T. C. (1965). Aspects of stimulation and organization in approach/withdrawal processes underlying vertebrate behavioral development. In D. S. Lehrman, R. A. Hinde, and E. Shaw (Eds.), Advances in the study of behavior (Vol. 1, pp. 1–74). New York: Academic PressGoogle Scholar
  144. Schwartz, G. J., & Grill, H. J. (1985). Comparing taste-elicited behaviors in adult and neonatal rats. Appetite, 6, 373–386CrossRefPubMedGoogle Scholar
  145. Shayit, M., & Weller, A. (1998). Relative preference of neonatal rats towards stimuli representing the nest is increased by a CCK-A receptor antagonist Paper presented at the 31st Annual Meeting of the International Society for Developmental Psychobiology. Orleans, FranceGoogle Scholar
  146. Shayit, M., & Weller, A. (2001). Cholecystokinin receptor antagonists increase the rat pup’s preference towards maternal-odor and rug texture. Developmental Psychobiology, 38, 164–173CrossRefPubMedGoogle Scholar
  147. Shide, D. J., & Blass, E. M. (1989). Opioid-like effects of intraoral infusions of corn oil and polycose on stress reactions in 10-day-old rats. Behavioral Neuroscience, 103, 1168–1175CrossRefPubMedGoogle Scholar
  148. Shide, D. J., & Blass, E. M. (1991). Opioid mediation of odor preferences induced by sugar and fat in 6-dayold rats. Physiology and Behavior, 50, 961–966CrossRefPubMedGoogle Scholar
  149. Smith, G. P., Tyrka, A., & Gibbs, J. (1991). Type-A CCKreceptors mediate the inhibition of food intake and activity by CCK-8 in 9- to 12-day-old rat pups. Pharmacology, Biochemistry and Behavior, 38, 207–210CrossRefGoogle Scholar
  150. Soussignan, R., Schaal, B., Manlier, L., & Jiang, T. (1997). Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiology and Behavior, 62, 745–758CrossRefPubMedGoogle Scholar
  151. Spelke, E. S. (1981). The infant’s acquisition of knowledge of bimodally specified events. Journal of Experimental Child Psychology, 31, 279–299CrossRefPubMedGoogle Scholar
  152. Steiner, J. E. (1974). The human gustofacial response. In“ F. Bosma (Ed.), Oral sensation and perception: Development in the fetus and infant Washington, DC: U.S. Government Printing OfficeGoogle Scholar
  153. Steiner, J. E. (1977). Facial expressions of the neonate infant indicating the hedonics of food-related chemical stimuli. In J. M. Weiffenback (Ed.), Taste and development: The genesis of sweet preference Washington, DC: U.S. Government Printing OfficeGoogle Scholar
  154. Stickrod, G., Kimble, D. P., &Smotherman, W. P. (1982). In utero taste odor aversion conditioning in the rat. Physiology and Behavior, 28, 5–7CrossRefPubMedGoogle Scholar
  155. Stoloff, M. L., & Blass, E. M. (1983). Changes in appetitive behavior in weanling-age rats: Transition from sucking to feeding behavior. Developmental Psychobiology, 16, 439–453CrossRefPubMedGoogle Scholar
  156. Streri, A., & Molina, M. (1993). Visual-tactual transfer between objects and pictures in 2-month-old infants. Perception, 22, 1299–1318CrossRefPubMedGoogle Scholar
  157. Sullivan, R. M., & Wilson, D. A. (1994). The locus coerulus, norepinephrine, and memory in newborns. Brain Research Bulletin, 35, 467–472CrossRefPubMedGoogle Scholar
  158. Teicher, M. H., & Blass, E. M. (1977). First suckling response of the newborn albino rat: The roles of olfaction and amniotic fluid. Science, 198, 635–636CrossRefPubMedGoogle Scholar
  159. Terry, L. M., & Johanson, I. B. (1996). Effects of altered olfactory experiences on the development of infant rats’ responses to odors. Developmental Psychobiology, 29, 353–377CrossRefPubMedGoogle Scholar
  160. Thiels, E., Alberts, J. R., & Cramer, C. P. (1990). Weaning in rats: II. Pup behavior. Developmental Psychobiology, 23, 495–510CrossRefPubMedGoogle Scholar
  161. Toates, F. (1986). Motivational systems Cambridge, UK Cambridge University PressGoogle Scholar
  162. Uvnas-Moberg, K (1989). The gastrointestinal tract in growth and reproduction. Scientific American, 261 (July), 60–65CrossRefGoogle Scholar
  163. Uvnas-Moberg, K, Widstrom, A. M., Marchin, G, & Winberg, J. (1987). Release of GI hormones in mother and infant by sensory stimulation. Acta Paediatrica Scandinavica, 76, 851–860CrossRefPubMedGoogle Scholar
  164. Uvnas-Moberg, K, Marchini, G., & Winberg, J. (1993). Plasma cholecystokinin concentrations after breast feeding in healthy 4 day old infants. Archives of Disease in Childhood, 68, 46–48CrossRefPubMedGoogle Scholar
  165. Varendi, H., Porter, R. H., &Winberg, J. (1997). Natural odour preferences of newborn infants change over time. Acta Paediatrica, 86, 985–990CrossRefPubMedGoogle Scholar
  166. Wang, Z., Yu, G., Cascio, C., Liu, Y., Gingrich, B., & Insel, T. R. (1999). Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus ochrogaster): A mechanism for pair bonding? Behavioral Neuroscience, 113, 602–611CrossRefPubMedGoogle Scholar
  167. Weller, A. & Blass, E. M. 1988a. Behavioral evidence for cholecystokinin-opiate interactions in neonatal rats. American Journal of Physiology, 255, R901–R907Google Scholar
  168. Weller, A., & Blass, E. M. 1988b. Cholecystokinin-induced conditioned odor-preference is blocked by the selective antagonist 1,364,718. Society for Neuroscience Abstracts, 14, 199Google Scholar
  169. Weller, A., & Blass, E. M. (1989). ‘Conditioned olfactory calming’- Further evidence for positive effects of cholecystokinin peptide in infant rats. Eastern Psychological Association Abstracts, 60, 25Google Scholar
  170. Weller, A., & Blass, E. M. (1990). Cholecystokinin conditioning in rats: Ontogenetic determinants. Behavioral Neuroscience, 104, 199–206CrossRefPubMedGoogle Scholar
  171. Weller, A, & Dubson, L. (1998). A CCKA-receptor antagonist administered to the neonate alters mother-infant interactions in the rat. Pharmacology, Biochemistry and Behavior, 59, 843–851CrossRefGoogle Scholar
  172. Weller, A., & Gispan, I. H. (2000). A cholecystokinin receptor antagonist blocks milk-induced but not maternal-contact-induced decrease in ultrasonic vocalization in rat pups. Developmental Psychobiology, 37, 35–43CrossRefPubMedGoogle Scholar
  173. Weller, A., Smith, G. P., &Gibbs, J. (1990). Endogenous cholecystokinin reduces feeding in young rats. Science, 247, 1589–1591CrossRefPubMedGoogle Scholar
  174. Weller, A., Corp, E. C., Tyrka, A., Ritter, R. C., Brenner, L., Gibbs, J., & Smith, G. P. (1992). Trypsin inhibi-tor and maternal reunion increase plasma cholecystokinin in neonatal rats. Peptides, 13, 939–941CrossRefPubMedGoogle Scholar
  175. Weller, A., Blass, E. M., Smith, G. P. & Gibbs,J. (1995). Odor-induced inhibition of intake after pairing of odor and CCK-8 in neonatal rats. Physiology and Behavior, 57, 181–183CrossRefPubMedGoogle Scholar
  176. Weller, A., Gispan, I. H. &Smith, G. R. 1997a Characteristics of glucose and maltose preloads that inhibit feeding in 12-day-old rats. Physiology and Behavior, 61, 819–822CrossRefGoogle Scholar
  177. Weller, A., Gispan, I. H., Armony-Sivan, R, Ritter, R. C., & Smith, G. P. 1997b. Preloads of corn oil inhibit independent ingestion on postnatal day 15 in rats. Physiology and Behavior, 62, 871–874CrossRefGoogle Scholar
  178. Wiertelak, E. P., Maier, S. F, & Watkins, L. R. (1992). Cholecystokinin antianalgesia: Safety cues abolish morphine analgesia. Science, 256, 830–833CrossRefPubMedGoogle Scholar
  179. Wilson, D. A., & Leon, M. (1988). Noradrenergic modulation of olfactory bulb excitability in the postnatal rat. Developmental Brain Research, 42, 69–75CrossRefGoogle Scholar
  180. Winslow, J. T., & Insel, T. R. (1991). The infant rat separation paradigm: A novel test for novel anxiolytics. Trends in Pharmacological Science, 12, 402–404CrossRefGoogle Scholar
  181. Wirth, J. B., & Epstein, A. N. (1976). Ontogeny of thirst in the infant rat. American Journal of Physiology, 320, 188–198Google Scholar
  182. Young, P. T. (1966). Hedonic organization and regulation of behavior. Psychological Review, 73, 59–86CrossRefPubMedGoogle Scholar
  183. Zeifman, D., Delaney, S., & Blass, E. M. (1996). Sweet taste, looking, and calm in 2- and 4-week-old infants: The eyes have it. Developmental Psychology, 32, 1090–1099CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Aron Weller
    • 1
  1. 1.Developmental Psychobiology Laboratory, Department of PsychologyBar Ilan UniversityRamat-GanIsrael

Personalised recommendations