Advertisement

Selective Breeding for an Infantile Phenotype (Isolation Calling)

A Window on Developmental Processes
  • Susan A. Brunelli
  • Myron A. Hofer
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)

Abstract

Since its origin more than 30 years ago, developmental psychobiology has had as its central focus the role of early experience in the development of behavior and physiology. Genetically heterogeneous strains have generally been used in order to assure that any effects of experimentally altered early environments would not be likely to depend upon a unique genetic contribution. There were early interests in genetic effects, however, and in some instances, specific inbred strains were used in order to study environmental effects on a particular vulnerability or predisposition. It did not take researchers long to realize that the early environment of most mammals and birds consists of a complex and changing interaction with its parents and siblings. To better understand the mysteries of the prenatal and preweaning environments, an array of novel methods and approaches have been created that continue to be effectively used by researchers in developmental psychobiology. Yet this focus has come at a cost. There have been few cross-disciplinary efforts with the field of behavior genetics. This emphasis on environmental over genetic contributions to development over the last decades could perhaps have been justified on the grounds that the early genetic contribution could not be as readily described mechanistically or varied experimentally. In the past few years this picture has changed radically and so has the biological orientation toward genetic determinism. Development can now be studied by manipulating identified genes with known cellular effects at specific stages of development.

Keywords

Quantitative Trait Locus Maternal Behavior Selective Breeding Maternal Separation Behavior Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E. (1991). Behavior and corticosteroid response of Maudsley reactive and nonreactive rats in the open field and forced swimming test. Physiology and Behavior, 50, 151–153PubMedCrossRefGoogle Scholar
  2. Adamec, R. E., Burton, P., Shallow, T., Sc Budgell, J. (1999). NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure-implications for anxiety associ­ated with posttraumatic stress disorder. Physiology and Behavior, 65, 723–737PubMedCrossRefGoogle Scholar
  3. Alberts, J. R. (1987). Early learning and ontogenetic adaptation. In N. A. Krasnegor, E. M. Blass, M. A. Hofer, & W. P. Smotherman (Eds.), Perinatal development: A psychobiological perspective (pp. 11–37). Orlando, FL: Academic PressGoogle Scholar
  4. Albinsson, A., Bjork, A., Svartengren, J., Mint, T., & Anderson, G. (1994). Preclinical pharmacology of FG5893: A potential anxiolytic drug with high affinity for both 5-HT,, and 5-HT2A receptors. European Journal of Pharmacology, 261, 285–294PubMedCrossRefGoogle Scholar
  5. Allin, J. T., & Banks, E. M. (1971). Functional aspects of ultrasound production by infant albino rats (Bru­tus norvegicus). Animal Behaviour, 20, 174–185Google Scholar
  6. Arborelius, L., Owens, M. J., Plotsky, P. M., & Nemeroff, G. B, (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. Journal of Endocrinology, 160, 1–12PubMedCrossRefGoogle Scholar
  7. Archer, J. (1973). Tests for emotionality in rats and mice: A review. Animal Behaviour, 21, 205–235PubMedCrossRefGoogle Scholar
  8. Barr, G. A., &Wang, S. (1992). Tolerance and withdrawal to chronic morphine treatment in the week-old rat pup. European Journal of Pharmacology, 215, 35–42PubMedCrossRefGoogle Scholar
  9. Barr, G. A., & Wang, S. (1993). Behavioral effects of chronic cocaine treatment in the week-old rat pup. European Journal of Pharmacology, 233, 143–149PubMedCrossRefGoogle Scholar
  10. Barr, G. A., Wang, S., & Carden, S. E. (1994). Aversive properties of the K opioid agonist U50,488 in the week-old rat pup. Psychopharmacology, 113, 422–428PubMedCrossRefGoogle Scholar
  11. Beart, P. M., Summers, R. J., Stephenson, J. A., Cook, C. J., Sc Christie, M.J. (1990). Excitatory amino acid projections to the periaqueductal gray in the rat: A retrograde transport study utilizing D[3H] aspartate and [3H] GABA. Neuroscience, 34, 163–176PubMedCrossRefGoogle Scholar
  12. Belknap, J. K, Metten, P., Helms, M. L., O’Toole, L. A., Angeli-Dade, S., Crabbe, J. C., & Phillips, T. J. (1993). Quantitative trait loci (QTL) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol in BXD mice. Behavior Genetics, 23, 213–222PubMedCrossRefGoogle Scholar
  13. Bell, R. W., Nitschke, W., Gorry, T. H., & Zachman, T A. (1971). Infantile stimulation and ultrasonic signaling: A possible mediator of early handling phenomena. Developmental Psychobiology, 4,181–191PubMedCrossRefGoogle Scholar
  14. Belzung, C., & Le Pape, G. (1994). Comparison of different behavioral test situations used in psycho-pharmacology for measurement of anxiety. Physiology and Behavior, 56, 623–628PubMedCrossRefGoogle Scholar
  15. Berton, O., Ramos, A., Chaouloff, F., & Mormède, P. (1997). Behavioral reactivity to social and nonsocial stimulations: A multivariate analysis of six inbred rat strains. Behavioral Genetics, 27, 155–166CrossRefGoogle Scholar
  16. Blanchard, D. C., & Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Annual Review of Psychology, 39, 43–68PubMedCrossRefGoogle Scholar
  17. Blanchard, D. C., Blanchard, R. J., Tom, P., & Rodgers, R. J. (1990). Diazepam changes risk assessment on an anxiety/defense test battery. Psychopharmacology, 101, 511–518PubMedCrossRefGoogle Scholar
  18. Blanchard, D. C., Griebel, G., Rodgers, R.J., & Blanchard, R. J. (1998). Benzodiazepine and serotonergic modulation of antipredator and conspecific defense. Neuroscience and Biobehavioral Reviews, 22, 597–612PubMedCrossRefGoogle Scholar
  19. Blanchard, R. J., Shepherd, J. K, Rodgers, R. J., Magee, L., & Blanchard, D. C. (1993). Attenuation of anti-predator defensive behavior in rats following chronic imipramine. Psychopharmacology, 110, 245–253PubMedCrossRefGoogle Scholar
  20. Blanchard, R. J., Griebel, G., Henrie, J. A., & Blanchard, D. C. (1997). Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries. Neuroscience and Biobehavioral Reviews, 21, 783–789PubMedCrossRefGoogle Scholar
  21. Blass, E. M., & Brunson, L. (1990). Interference between opioid and nonopioid mechanisms of calming in 10-day-old rats. Neuroscience Abstracts, 16, 211Google Scholar
  22. Blass, E. M., & Fitzgerald, E. (1988). Milk-induced analgesia and comforting in 10-clay-old rats: Opioid mediation. Pharmacology, Biochemistry and Behavior, 29, 9–13CrossRefGoogle Scholar
  23. Blass, E. M., & Kehoe, P. (1987). Behavioral characteristics of emerging opioid systems in newborn rats. In N. A. Krasnegor, E. M. Blass, M. A. Hofer, & W. P., Smotherman, (Eds.), Perinatal development: A psychobiological perspective (pp. 61–82). New York: Academic PressGoogle Scholar
  24. Blass, E. M., & Shide, D. J. (1993). Endogenous cholecytokinin reduces vocalization in isolated 1O-day-old rats. Behavioral Neuroscience, 107, 488–492PubMedCrossRefGoogle Scholar
  25. Blizard, D. A. (1981). The Maudsley reactive and nonreactive strains: A North American perspective. Behavior Genetics, 11, 469–489PubMedCrossRefGoogle Scholar
  26. Blumberg, M. S., Efimova, I. V., & Alberts, J. R. (1992). Thermogenesis during ultrasonic vocalization by rat pups isolated in a warm environment: A thermographie analysis. Developmental Psychobiology, 24, 497–510CrossRefGoogle Scholar
  27. Bonner, J. T. (1974). On development. Cambridge, MA: Harvard University PressGoogle Scholar
  28. Bonner, J. T. (1993). Life cycles: Reflections of an evolutionary biologist. Princeton, NJ: Princeton University PressGoogle Scholar
  29. Bowlby, J. (1969). Attachment, Vol. 1. New York: Basic BooksGoogle Scholar
  30. Brain, P. F., Kusumorini, N., & Benton, D. (1991). Anxiety in laboratory rodents: A brief review of some recent behavioral developments. Behavioral Processes, 25, 71–80CrossRefGoogle Scholar
  31. Broadhurst, P. L. (1961). Analysis of maternal effects in the inheritance of behaviour. Animal Behaviour, 9, 129–141CrossRefGoogle Scholar
  32. Broadhurst, P. L. (1975). The Maudsley reactive and non-reactive strains of rats: A survey. Behavior Genetics, 5, 299–319PubMedCrossRefGoogle Scholar
  33. Brown, D. M., Matise, T. C., Koike, G., Simon, J. S., Winer, E. S., Zangen, S., McLaughlin, M. G., Shiozawa, M., Atkinson, O. S., Hudson, J. R., Jr., Chakravarti, A., Lander, E. S., & Jacob, H. J. (1998). An integrated genetic linkage map of the laboratory rat. Mammalian Gerome, 9, 521–530CrossRefGoogle Scholar
  34. Brown, R. E. (1986). Social and hormonal factors influencing infanticide and its suppression in adult male Long-Evans rats (Rattus norvegicus). Journal of Comparative Psychology, 100, 155–161PubMedCrossRefGoogle Scholar
  35. Brunelli, S. A., & Hofer, M. A. (1990). Parental behavior in juvenile rats: Environmental and biological determinants. In N. A. Krasnegor, & R. S. Bridges (Eds.), Mammalian parenting: Biochemical, neuro­biological,and behavioral determinants (pp. 372–399). New York: Oxford University PressGoogle Scholar
  36. Brunelli, S. A., & Hofer, M. A. (1996). Development of ultrasonic vocalization responses in genetically heterogeneous National Institute of Health (N:NIH) rats. II. Associations among variables and behaviors. Developmental Psychobiology, 29, 517–528PubMedCrossRefGoogle Scholar
  37. Brunelli, S. A., Keating, C. C., Hamilton, N. A., & Hofer, M. A. (1996). Development of ultrasonic vocalization responses in genetically heterogeneous National Institute of Health (N:NIH) rats. I Influence of age, testing experience and associated factors. Developmental Psychobiology, 29, 507–516PubMedCrossRefGoogle Scholar
  38. Brunelli, S. A., Vinocur, D. D., Soo-Hoo, D., & Hofer, M. A. (1997). Five generations of selective breeding for ultrasonic vocalization (USV) responses in N:NIH strain rats. Developmental Psychobiology, 31, 255–265PubMedCrossRefGoogle Scholar
  39. Brunelli, S. A., Masmela, J. R, Shair, H. N., & Hofer, M. A. (1998). Effects of biparental rearing on ultrasonic vocalization (USV) responses of rat pups (Rattus norvegicus). Journal of Comparative Psychol­ogy, 112, 1–13Google Scholar
  40. Cagiano, R., Sales, G. D, Renna, G., Racagni, G., & Cuomo, V. (1986). Ultrasonic vocalization in rat pups: Effects of early postnatal exposure to haloperidol. Life Sciences, 38, 1417–1423PubMedCrossRefGoogle Scholar
  41. Cairns, R. B. (1993). Belated but bedazzling: Timing and genetic influence in social development. In G. Turkewitz & D. A. Devenny (Eds.), Developmental time and timing (pp. 61–84). Hillsdale, NJ: ErlbaumGoogle Scholar
  42. Cairns, R. B., MacCombie, D. J, & Hood, K. E. (1983). A developmental-genetic analysis of aggressive behavior in mice: I. Behavioral outcomes. Journal of Comparative Psychology, 97, 69–89PubMedCrossRefGoogle Scholar
  43. Cairns, R B., Hood, K. E., & Midlam, J. (1985). On fighting in mice: Is there a sensitive period for isolation effects? Animal Behaviour, 33, 49–65CrossRefGoogle Scholar
  44. Cairns, R. B., Garièpy, J.-L., & Hood, K. E. (1990). Development, microevolution, and social behavior. Psychological Review, 97, 49–65PubMedCrossRefGoogle Scholar
  45. Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M,, & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the USA, 95, 5335–5340PubMedCrossRefGoogle Scholar
  46. Carden, S. E., & Hofer, M. A. (1990a). Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behavioral Neuroscience, 104, 457–463CrossRefGoogle Scholar
  47. Carden, S. E., & Hofer, M. A. (1990b). Socially mediated reduction of isolation distress in rat pups is blocked by naltrexone but not by R015–1788. Behavioral Neuroscience, 106, 421–426CrossRefGoogle Scholar
  48. Carden, S. E., & Hofer, M. A. (1990c). The effects of opioid and benzodiazepine antagonists on daminduced reductions in rat pup isolation distress. Developmental Psychobiology, 23, 797–808CrossRefGoogle Scholar
  49. Carden, S. E., & Hofer, M. A. (1991). Isolation-induced vocalization in Wistar rat pups is not increased by naltrexone. Physiology and Behavior, 49, 1279–1282PubMedCrossRefGoogle Scholar
  50. Carden, S. E., Barr, G. A., & Hofer, M.A. (1991). Differential effects of specific opioid receptor agonists on rat pup isolation calls. Developmental Brain Research, 62, 17–22PubMedCrossRefGoogle Scholar
  51. Carden, S. E., Davachi, L., & Hofer, M. A. (1994). U50,488 increases ultrasonic vocalizations in 3-,10-, and 18-day-old rat pups in isolation and the home cage. Developmental Psychobiology, 27, 65–83PubMedCrossRefGoogle Scholar
  52. Garber, M., Roubertoux, P. L., & Pastoret, C. (1991). The Ychromosome effect on intermale aggression in mice depends on the maternal environment. Genetics, 129, 231–236Google Scholar
  53. Carr, L. G., Foroud, T., Bice, P., Gobbett, T., Ivashina, J., Edenberg, H., Lumeng, L, & Li, T. K (1998). A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcoholism: Clinical and Experimental Research,22, 884–887CrossRefGoogle Scholar
  54. Castanon, N., Perez-Diaz, F., & Mormède, R. (1995). Genetic analysis of the relationships between behavioral and neuroendocrine traits in Roman High and Low avoidance rat lines. Behavior Genetics, 25, 371–384PubMedCrossRefGoogle Scholar
  55. Chua, S. C. Jr. (1997). Monogenetic models of obesity. Behavior Genetics, 27, 277–284PubMedCrossRefGoogle Scholar
  56. Cierpial, M. A., Shasby, D. E., & McCarty, R. (1987). Patterns of maternal behavior in the spontaneously hypertensive rat. Physiology and Behavior, 39, 633–637PubMedCrossRefGoogle Scholar
  57. Coe, C. L., & Erickson, C. M. (1997). Stress decreases lymphocyte cytolytic activity in the young monkey even after blockade of steroid and opiate hormone receptors. Developmental Psychobiology, 30, 1–10PubMedCrossRefGoogle Scholar
  58. Coe, C. L., Rosenberg, L. T., & Levine, S. (1988). Effect of maternal separation on the complement system and antibody response in infant primates. International Journal of Neuroscience, 40, 289–302PubMedCrossRefGoogle Scholar
  59. Colombo, G., Agabio, R., Lobina, C., Reali, R., Zocci, A., Fadda, F., & Gessa, G. L. (1995). Sardinian alcohol-preferring rats: A genetic animal model of anxiety. Physiology and Behavior, 57, 1181–1185PubMedCrossRefGoogle Scholar
  60. Cook, M. N., Ramos, A., Courvoisier, H., & Moisan, M. P. (1998) Linkage mapping of alpha 3, alpha 5, and beta 4 neuronal nicotinic acetylcholine receptors to rat chromosome 8. Mammalian Genome, 9, 177–178PubMedCrossRefGoogle Scholar
  61. Coplan, J. D., Gorman, J. M., & Klein, D. F. (1992). Serotonin related functions in panic-anxiety: A criti­cal overview. Neuropsychopharmacology, 6, 189–200PubMedGoogle Scholar
  62. Crabbe, J C. (1999). Animal models in neurobehavioral genetics: Methods for estimating genetic correlation. In B. C. Jones & P. Mormède (Eds.), Neurobehavioral genetics: Methods and applications (pp. 121–138). Boca Raton, FL: CRC PressGoogle Scholar
  63. Crabbe, J. C., & Belknap, J. K. (1992). Genetic approaches to drug dependence. Trends in Pharmacological Sciences, 13, 212–219PubMedCrossRefGoogle Scholar
  64. Crabbe, J. C., & Phillips, T. J. (1993). Selective breeding for alcohol withdrawal severity. Behavior Genetics, 23, 171–177PubMedCrossRefGoogle Scholar
  65. Crabbe, J. C., Phillips, T. J., Kosobud, A., & Belknap, J. K (1990). Estimation of genetic correlation: Interpretation of experiments using selectively bred and inbred animals. Alcoholism: Clinical and Experimental Research, 14, 141–151CrossRefGoogle Scholar
  66. Crabbe, J. C., Belknap, J. K., & Buck, K. J. (1994). Genetic animal models of alcohol and drug abuse. Science, 264, 1715–1723PubMedCrossRefGoogle Scholar
  67. Crabbe, J. C., Phillips, T. J., Buck, K. J., Cunningham, G. L., & Belknap, J. K. (1999). Identifying genes for alcohol and drug sensitivity: Recent progress and future directions. Trends in Neurosciences, 22, 173-.179PubMedCrossRefGoogle Scholar
  68. Crusio, W. R. (1999). An introduction to quantitative genetics. In B. C. Jones & P. Mormède (Eds.), Neurobehavioral genetics: Methods and applications (pp. 13–42). Boca Raton, FL: CRC PressGoogle Scholar
  69. Cuomo, V., Cagiano, R., Renna, G., De Salvia, A., & Racagni, G. (1987). Ultrasonic vocalization in rat pups: Effects of early postnatal exposure to SCH 23390 (a DA1 receptor antagonist) and sulpiride (a DA2-receptor antagonist). Neuropharmacology, 26, 701–705PubMedCrossRefGoogle Scholar
  70. Darwin, C. (1859/1979). The origin of species New York: Avenel BooksGoogle Scholar
  71. DeCasper, J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mother’s voices. Science, 208, 1174–1176PubMedCrossRefGoogle Scholar
  72. DeFries, J. C. (1969). Pleiotropic effects of albinism on open field behavior in mice. Nature, 221, 65–66PubMedCrossRefGoogle Scholar
  73. DeFries, J. C. (1981). Current perspectives on selective breeding: Example and theory. In G. E. McClearn, R. A. Dietrich, and V. G. Erwin (Eds.), Development of animal models as pharmacogenetic tools (pp. 11–35). Rockville, MD: U.S. Department of Health and Human Services, Public Health Service: Alcohol, Drug Abuse & Mental Health AdministrationGoogle Scholar
  74. De Fries, J. C., Hyde, J. S., Lynch, C., Petersen, D., & Roberts, R C. (1981). The design of selection experiments. In G. E. McClearn, R. A. Dietrich, & V. G. Erwin (Eds.), Development of animal models as pharmacagenetic tools (pp. 269–275). Rockville, MD: U.S. Department of Health and Human Services, Public Health Service: Alcohol, Drug Abuse & Mental Health AdministrationGoogle Scholar
  75. Deitrich, R. A. (1993). Selective breeding for initial sensitivity to ethanol. Behavior Genetics, 23, 153–162PubMedCrossRefGoogle Scholar
  76. Denenberg, V. H. (1969). Open-field behavior in the rat: What does it mean? Annals of the New York Academy of Sciences, 159, 852–859PubMedCrossRefGoogle Scholar
  77. Devinsky, O., Morrell, M.J., & Voigt, B.A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118, 279–306PubMedCrossRefGoogle Scholar
  78. Devor, E. J. (1993). Why there is no gene for alcoholism. Behavior Genetics, 23, 145–151PubMedCrossRefGoogle Scholar
  79. Dunn, R. W., Corbett, R., & Fielding, S. (1989). Effects of 5-HT„„ receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. European journal of Pharmacology, 169, 1–10 PubMedCrossRefGoogle Scholar
  80. File, S. E. (1992). Behavioral detection of anxiolytic action. In J. M. Elliott, D. J. Heal, & C. A. Marsden (Eds.), Experimental approaches to anxiety and depression (pp. 25–44). London: WileyGoogle Scholar
  81. File, S. E. (1995). Animal models of different anxiety states. In G. Biggio, E. Sanna, & E. Costa (Eds.), GABA-A receptors and anxiety: From neurobiology to treatment (pp. 93–113). New York: Raven PressGoogle Scholar
  82. File, S. E., Ouagazzal, A. M., Gonzalez, L. E., & Overstreet, D. H. (1999). Chronic fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A receptor function. Pharmacology, Biochem­istry and Behavior, 62, 695–701CrossRefGoogle Scholar
  83. Flaherty, C. F., Greenwood, A., Martin, J., & Leszczuk, M. (1998). Relationship of negative contrast to animal models of fear and anxiety. Animal Learning and Behavior, 26, 397–407CrossRefGoogle Scholar
  84. Flint, J., Corley, R., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S., & Collins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science, 269, 1432–1435. Frankel, W. N., & Schork, N. J. (1996). Who’s afraid of epistasis? Nature Genetics, 14, 371–373Google Scholar
  85. Gardner, C. R. (1985). Inhibition of ultrasonic distress vocalizations in rat pups by chlordiazepoxide and diazepam. Drug Development Research, 5, 185–193CrossRefGoogle Scholar
  86. Gardner, C. R., Sc Budhram, P. (1987). Effects of agents which interact with central benzodiazepine sites on stress-induced ultrasounds in rat pups. European Journal of Pharmacology, 134, 275–283PubMedCrossRefGoogle Scholar
  87. Garièpy, J.-L. (1994). The mediation of aggressive behavior in mice: A discussion of approach-withdrawal processes in social adaptations. In G. Greenberg, K. E. Hood, & E. Tobach (Eds.), Behavioral develop­ment in comparative perspective: The approach-withdrawal theory of T C. Schneirla (pp. 231–284). New York: Garland PressGoogle Scholar
  88. Garièpy, J.-L., Gendreau, P. L., & Lewis, M. H. (1995). Rearing conditions alter social reactivity and Dl dopamine receptors. Psychopharmacology, Biochemistry and Behavior, 51, 767–773CrossRefGoogle Scholar
  89. Garièpy, J.-L., Lewis, M. H., & Cairns, R. B. (1996). Genes, neurobiology, and aggression: Time frames and functions of social behaviors in adaptation. In D. M. Stoff & R B. Cairns (Eds.), Aggression and violence: Genetic,neurobiological and biasocial perspectives (pp. 41–63). Mahwah, NJ: ErlbaumGoogle Scholar
  90. Garstang, W. (1929). The origin and evolution of larval forms. British Association for the Advancement of Science Reports, 1928, 77–98 [cited in McKinney & McNamamara, 1991, p. 10]Google Scholar
  91. Gershenfeld, H. R, Neumann, P. E., Mathis, C., Crawley, J. N., Li, X., & Paul, S. M. (1997). Mapping quantitative trait loci for open-field behavior in mice. Behavior Genetics, 27, 201–210PubMedCrossRefGoogle Scholar
  92. Gonzalez, L. E., File, S. E., & Overstreet, D. H. (1998). Selectively bred lines of rats differ in social interaction and hippocampal 5-HT1A receptor function: A link between anxiety and depression? Pharmacology, Biochemistry and Behavior, 59, 787–792CrossRefGoogle Scholar
  93. Gottlieb, G. (1987). The developmental basis of evolutionary change. Journal of Comparative Psychology, 101, 262–271CrossRefGoogle Scholar
  94. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University PressGoogle Scholar
  95. Graeff, F. G. (1994). Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in animals. Brazilian Journal of Medical and Biological Research, 27, 811–829PubMedGoogle Scholar
  96. Graham, M., & Letz, R. (1979). Within-species variation in the development of ultrasonic signaling of preweanling rats. Developmental Psychobiology, 12, 129–136PubMedCrossRefGoogle Scholar
  97. Grant, P. R. (1986). Ecology and evolution of Darwin’s finches. Princeton, NJ: Princeton University PressGoogle Scholar
  98. Gunnar, M. R., Larson, M. C., Hertsgaard, L., Harris, M. L., & Brodersen, L. (1992). The stressfulness of separation among nine-month-old infants: Effects of social context variables and infant temperament. Child Development, 63, 290–303PubMedCrossRefGoogle Scholar
  99. Hahn, M. E., Hewitt, J. K., Adams, M., & Tully, T. (1987). Genetic influences on ultrasonic vocalizations in young mice. Behavior Genetics, 17, 155–166PubMedCrossRefGoogle Scholar
  100. Hahn, M. E., Hewitt, J. K., Schanz, N., Weinreb, L., & Henry, A. (1997). Genetic and developmental influences on infant mouse ultrasonic calling. I. A diallel analysis of the calls of 3-day-olds. Behavior Genetics, 27, 133–143PubMedCrossRefGoogle Scholar
  101. Hahn, M. E., Karkowski, L., Weinreb, L., Henry, A., Schanz, N., & Hahn, E. M. (1998). Genetic and developmental influences on infant mouse ultrasonic calling: II. Developmental patterns in the calls of mice 2–12 days of age. Behavior Genetics, 28, 313–325CrossRefGoogle Scholar
  102. Hall, W. G. (1975). Weaning and growth in artificially reared rats. Science, 190, 1313–1315PubMedCrossRefGoogle Scholar
  103. Hansen, C., & Spuhler, K. (1984). Development of the National Institutes of Health genetically hetero­geneous rat stock. Alcoholism: Clinical and Experimental Research,8, 477–479CrossRefGoogle Scholar
  104. Hard, E., & Engel, J. (1988). Effects of 8-OH-DPAT on ultrasonic vocalization and audiogenic immobility reaction in pre-weanling rats. Neuropharmacology, 27, 981–986PubMedCrossRefGoogle Scholar
  105. Hard, E., & Engel, J. (1991). Ontogeny of ultrasonic vocalization in the rat: The influence of neuro­chemical transmission systems. In T. Archer & S. Hansen (Eds.), Behavioral biology: Neuroendocrine axis (pp. 37–52). Hillsdale, NJ: ErlbaumGoogle Scholar
  106. Härd, E., Engel, J., & Musi, B. (1982). The ontogeny of defensive reactions in the rat: Influence of monoamine transmission systems. Scandinavian Journal of Psychology (Supplement 1), 1982, 90–96Google Scholar
  107. Hard, E., Engel, J., & Lindh, A. S. (1988). Effect of clonidine on ultrasonic vocalization in preweaning rats. Journal of Neurotransmission, 73, 217–237Google Scholar
  108. Hart, F. H., & King, J. A. (1966). Distress vocalizations of young in two subspecies of Peromyscus maniculatus. Journal of Mammology, 47, 287–293CrossRefGoogle Scholar
  109. Harvey, A. T., & Hennessy, M. B. (1995). Corticotropin-releasing factor modulation of the ultrasonic rate of isolated pups. Developmental Brain Research, 87, 125–134PubMedCrossRefGoogle Scholar
  110. Harvey, A. T., Moore, H., Lucot, J. B., & Hennessy, M. B. (1994). Monoamine activity in anterior hypothalamus of guinea pig pups separated from their mothers. Behavioral Neuroscience, 108, 171–176 PubMedCrossRefGoogle Scholar
  111. Henderson, N. D. (1989). Interpreting studies that compare high-and low-selected lines on new characters. Behavior Genetics, 19, 473–502PubMedCrossRefGoogle Scholar
  112. Hendley, E. D., & Ohlsson, W. G. (1991). Two new inbred rat strains derived from SHR: WEllA, hyperactive, and WKHT, hypertensive, rats. American Journal of Physiology, 261, H583–H589PubMedGoogle Scholar
  113. Hendley, E. D., Atwater, D. G., Myers, M. M., & Whitehorn, D. (1983). Dissociation of genetic hyperactivity and hypertension in SHR, Hypertension, 5, 211–217PubMedCrossRefGoogle Scholar
  114. Hendley, E. D., Wessel, D. J., & Van Houten, J. (1986). Inbreeding of Wistar-Kyoto strain with hyper­activity but without hypertension. Behavioral and Neural Biology, 45, 1–16PubMedCrossRefGoogle Scholar
  115. Hennessy, M. B. (1986). Multiple, brief maternal separations in the squirrel monkey: Changes in hor­monal and behavioral responsiveness. Physiology and Behavior, 36, 245–250PubMedCrossRefGoogle Scholar
  116. Hennessy, M. B. (1997). Hypothalamic—pituitary—adrenal responses to brief social separation. Neuro­science and Biobehavioral Reviews, 21, 11–29CrossRefGoogle Scholar
  117. Hennessy, M. B., & Moorman, L. (1989). Factors influencing cortisol and behavioral responses to maternal separation in guinea pigs. Physiology and Behavior, 36, 245–250CrossRefGoogle Scholar
  118. Hennessy, M. B., & Weinberg, J. (1990). Adrenocortical activity during conditions of brief maternal separation in preweaning rats. Behavioral and Neural Biology, 54, 42–55PubMedCrossRefGoogle Scholar
  119. Hennessy, M, B., O’Neil, D. R., Becker, L. A., Jenkins, R., Williams, M. T., & Davis, H. N. (1992). Effects of centrally administered corticotropin-releasing factor (CRF) and alpha-helical CRF on the vocaliza­tions of isolated guinea pig pups. Pharmacology,Biochemistry and Behavior, 43, 37–43CrossRefGoogle Scholar
  120. Hinde, R. A. (1970). Animal behaviour. A synthesis of ethology and comparative psychology, 2nd ed. New York: McGraw-HillGoogle Scholar
  121. Hinrichsen, C. F. L., & Ryan, A. T. (1981). Localization of laryngeal motoneurons in the rat: Morpho­logical evidence for dual innervation? Experimental Neurology, 74, 341–355PubMedCrossRefGoogle Scholar
  122. Hofer, M. A. (1970). Cardiac and respiratory function during sudden prolonged immobility in wild rodents. Psychosomatic Medicine, 32, 633–647PubMedGoogle Scholar
  123. Hofer, M. A. (1996). Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocri­nology, 21, 203–217CrossRefGoogle Scholar
  124. Hofer, M. A., & Shair, H. N. (1978). Ultrasonic vocalization during social interaction and isolation in 2-week-old rats. Developmental Psychobiology, 11, 495–504PubMedCrossRefGoogle Scholar
  125. Hofer, M. A., & Shair, H. N. (1991). Independence of ultrasonic vocalization and thermogenic responses in infant rats. Behavioral Neuroscience, 105, 41–48PubMedCrossRefGoogle Scholar
  126. Hofer, M. A., & Shair, H. N. (1992). Ultrasonic vocalization by rat pups during recovery from hypother­mia. Developmental Psychobiology, 25, 511–528PubMedCrossRefGoogle Scholar
  127. Hofer, M. A., Brunelli, S. A., & Shair, H. N. (1993). Ultrasonic vocalization responses of rat pups to acute separation and contact comfort do not depend on maternal thermal cues. Developmental Psychobiology, 26, 81–95PubMedCrossRefGoogle Scholar
  128. Hofer, M. A., Brunelli, S. A., & Shair, H. N. (1994). Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Developmental Psychobiology, 27, 503–517PubMedCrossRefGoogle Scholar
  129. Hofer, M. A., Brunelli, S. A., Masmela, J., & Shair, H. N. (1996). Maternal interactions prior to separation potentiate isolation-induced calling in rat pups. Behavioral Neuroscience, 110, 1158–1167PubMedCrossRefGoogle Scholar
  130. Hood, K. E., & Cairns, R. B. (1988). A developmental-genetic analysis of aggressive behavior in mice: H. Cross-sex inheritance. Behavior Genetics, 18, 605–619PubMedCrossRefGoogle Scholar
  131. Hyde, J. S. (1981). A review of selective breeding programs. In G. E. McClearn, R. A. Deitrich, & V. G. Erwin (Eds.), Development of animal models as pharmacogenetic tools (pp. 59–77). Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Alcohol, Drug Abuse and Mental Health AdministrationGoogle Scholar
  132. Insel, T. R., & Harbaugh, C. R. (1989). Central administration of corticotrophin releasing factor alters rat pup isolation calls. Pharmacology,Biochemistry and Behavior, 32, 197–201CrossRefGoogle Scholar
  133. Insel, T. R., & Hill, J. L. (1987). Infant separation distress in genetically fearful rats. Biological Psychiatry, 22, 783–786CrossRefGoogle Scholar
  134. Insel, T. R., Sc Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences of the USA, 89, 5981­-5985PubMedCrossRefGoogle Scholar
  135. Insel, T. R., & Winslow, J. T. (1991a). Central administration of oxytocin modulates the infant rat’s response to social isolation. European journal of Pharmacology, 203, 149–152CrossRefGoogle Scholar
  136. Insel, T. R. & Winslow, J. T. (1991b). Rat pup ultrasonic vocalizations: An ethologically relevant behavior responsive to anxiolytics. In Animal models in pharmacology: Advances in pharmacological sciences (pp. 15–36), Basel: BirkhauserGoogle Scholar
  137. Insel, T. R., Gelhard, R. E., & Miller, L. P. (1989). Rat pup isolation distress and the brain benzodiazepine receptor. Developmental Psychobiology, 22, 509–525PubMedCrossRefGoogle Scholar
  138. Insel T. R., Hill, J. L., & Mayor, R. B. (1986). Rat pup ultrasonic vocalization isolation calls: Possible mediation by the benzodiazepine receptor complex. Pharmacology, Biochemistry and Behavior, 24, 1263–1267CrossRefGoogle Scholar
  139. Insel, T. R., Miller, R., Gerhard, R., & Hill, J. (1988). Rat pup ultrasonic isolation cells and the benzo­diazepine receptor. In J. D. Newman (Ed.), The physiological control of mammalian vocalization (pp. 331–342). New York: Plenum PressCrossRefGoogle Scholar
  140. Jones, R. B., Mills, A. D., Faure, J.-M., & Williams, J. B. (1994). Restraint, fear, and distress in Japanese Quail genetically selected for long or short tonic immobility reactions. Physiology and Behavior, 56, 529–534PubMedCrossRefGoogle Scholar
  141. Joyce, M. P., & Carden S. E. (1999). The effects of 8-OH-DPAT and (±)-pindole on isolation-induced ultrasonic vocalizations in 3-, 10-, and 14-day-old rats. Developmental Psychobiology, 34, 109–117PubMedCrossRefGoogle Scholar
  142. Jürgens, U. (1994). The role of the periaqueductal grey in vocal behaviour. Behavioral Brain Research, 62, 107–117CrossRefGoogle Scholar
  143. Jurgens, U. (1998). Neuronal control of mammalian vocalization, with special reference to the squirrel monkey. Naturwissenschaften, 85, 376–388PubMedCrossRefGoogle Scholar
  144. Jurgens, U., & Lu, C.-L. (1993). The effects of periaqueductally injected transmitter antagonists on forebrain-elicited vocalization in the squirrel monkey. European Journal of Neuroscience, 5, 735–741PubMedCrossRefGoogle Scholar
  145. Jurgens, U., & Pratt, R. (1979). Role of the periaqueductal grey in vocal expression of emotion. Brain Research, 167, 367–378PubMedCrossRefGoogle Scholar
  146. Kehne, J. H., McCloskey, T. C., Baron, B. M., Chi, E. M., Harrison, B. L., Whitten, J. P., & Palfreyman, M. G. (1991). NMDA receptor complex antagonists have potential anxiolytic effects as measured with separation-induced ultrasonic vocalizations. European journal of Pharmacology, 193, 283–292PubMedCrossRefGoogle Scholar
  147. Kehoe, P., & Blass, E. M. (1986a). Opioid-dependent mediation of separation distress in 10 day old rats: Reversal of stress and maternal stimuli. Developmental Psychobiology, 19, 385–398CrossRefGoogle Scholar
  148. Kehoe, P., & Blass, E. M. (1986b). Behaviorally functional opioid systems in infant rats: II. Evidence for pharmacological, physiological, and psychological mediation of pain and stress. Behavioral Neuro­science, 100, 624–630CrossRefGoogle Scholar
  149. Kehoe, P., & Boylan, C. B. (1992). Cocaine-induced effects on isolation stress in neonatal rats. Behavioral Neuroscience, 106, 374–379PubMedCrossRefGoogle Scholar
  150. Kehoe, P., & Boylan, C. B. (1994). Behavioral effects of kappa-opioid-receptor stimulation on neonatal rats, Behavioral Neuroscience, 108, 418–423PubMedCrossRefGoogle Scholar
  151. Kehoe, P., & Harris, J. C. (1989). Ontogeny of noradrenergic effects on ultrasonic vocalizations in rat pups. Behavioral Neuroscience, 103, 1099–1107PubMedCrossRefGoogle Scholar
  152. Kehoe, P., Clash, K., Skipsey, IL, & Shoemaker, W.J. (1996). Brain dopamine response in isolated 10-day­old rats: Assessment using D2 binding and dopamine turnover. Pharmacology,Biochemistry and Behav­ior, 53, 41–49CrossRefGoogle Scholar
  153. Klein, R. G, (1995). Is panic disorder associated with childhood separation anxiety disorder? Clinical Neuropharmacology, 18, S7–S114CrossRefGoogle Scholar
  154. Kl¨®ting, I., Berg, S., Kovacs, P., Voigt, B., & Schmidt, S. (1997). Diabetes and hypertension in rodent models. Annals of the New York Academy of Sciences,20, 64–84Google Scholar
  155. Knapp, D. J., Overstreet, D. H., & Crews, F. T (1998). Brain 5-HTIA receptor autoradiography and hypothermic responses in rats bred for differences in S-OH-DPAT sensitivity. Brain Research, 782, 1–10PubMedCrossRefGoogle Scholar
  156. Knardahl, S., & Hendley, E. G. (1990). Association between cardiovascular reactivity to stress and hypertension or behavior. American Journal of Physiology, 259, 248–257Google Scholar
  157. Kurtz, M. M., & Campbell, B. A. (1994). Paradoxical autonomic responses to aversive stimuli in the developing rat. Behavioral Neuroscience, 108, 962–971PubMedCrossRefGoogle Scholar
  158. Lagerspetz, K. M. J. (1961). Genetic and social causes of aggressive behavior in mice. Scandinavian journal of Psychology, 2, 167–173CrossRefGoogle Scholar
  159. Lagerspetz, K. M. J., & Wuorinen, K. (1965). A cross-fostering experiment with mice selectively bred for aggressiveness and non-aggressiveness. Reports of the Institute of Psychology of the University of Turku, 17, 1–6Google Scholar
  160. Lander, E. S., & Schork, N. J (1994). Genetic dissection of complex traits. Science, 265, 2037–2048PubMedCrossRefGoogle Scholar
  161. Larson, C. R., & Kistler, M. K. (1986). The relationship of periacqueductal gray neurons to vocalization and laryngeal EMG in the behaving monkey. Experimental Brain Research, 63, 596–606CrossRefGoogle Scholar
  162. Lecanuet, J.-P., Fifer, W. P., Krasnegor, N. A., & Smotherman, W. P. (1995). Fetal development: Apsychobiological perspective Hillsdale: ErlbaumGoogle Scholar
  163. LeDoux, J. (1996). The emotional brain: The mysterious underpinnings of emotional life New York: Simon & SchusterGoogle Scholar
  164. LeDoux, J E., Sakaguchi, A., & Reis, D. J. (1983). Strain differences in fear between spontaneously hypertensive and normotensive rats. Brain Research, 277, 137–143PubMedCrossRefGoogle Scholar
  165. LeRoy, I. (1999). Quantitative trait loci (QTL) mapping. In B. C. Jones & P. Mormède (Eds.), Neuro­behavioral genetics: Methods and applications (pp. 69–76). Boca Raton, FL: CRC PressGoogle Scholar
  166. LeRoy, I., Perez-Diaz, F., Cherfouh, A., & Roubertoux, P. L. (1999). Preweanling sensorial and motor development in laboratory mice: Quantitative trait mapping. Developmental Psychobiology, 34,139–158CrossRefGoogle Scholar
  167. Lewis, M. H., Garièpy, J.-L., Gendreau, P. J., Nichols, D. E., & Mailman, R. B. (1994). Social reactivity and Dl dopamine receptors: Studies in mice selectively bred for high and low levels of aggression. Neuropsychopharmacology, 10,115–122 Google Scholar
  168. Li, T. K, Lumeng, L., & Dolittle, D. P. (1993). Selective breeding for alcohol preference and associated responses. Behavior Genetics, 23, 163–170PubMedCrossRefGoogle Scholar
  169. Lickliter, R. (1995). Embryonic sensory experience and intersensory development in precocial birds. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psycho­biological perspective (pp. 281–294). Hillsdale, NJ: ErlbaumGoogle Scholar
  170. Liebsch, G., Montkowski, A., Holsboer, F., & Landgraf, R. (1998). Behavioral profiles of two Wistar rat lines selectively bred for high or low anxiety-related behavior. Behavioral Brain Research, 94, 301–310CrossRefGoogle Scholar
  171. Lipp, H.-P., & Wolfer, D. P. (1999). Natural genetic variation of hippocampal structures and behavior. In B. C. Jones & P. Mormède (Eds.), Neurobehavioral genetics: Methods and applications (pp. 217–235). Boca Raton, FL: CRC PressGoogle Scholar
  172. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M, & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors and pituitary-adrenal responses to stress. Science, 277, 1659–1662PubMedCrossRefGoogle Scholar
  173. MacLean, P. D. (1985). Brain evolution relating to family, play and the separation call. Archives of General Psychiatry, 42, 405–417PubMedCrossRefGoogle Scholar
  174. MacLean, P. D., & Newman, J. D. (1988). Role of the midline frontolimbic cortex in production of the isolation call of squirrel monkeys. Brain Research, 450, 111–123PubMedCrossRefGoogle Scholar
  175. Maier, S. E., Vandenhoff, P., & Crowne, D. P. (1988). Multivariate analysis of putative measures of activity, exploration, emotionality, and spatial behavior in the hooded rat (Rattus norvegicus). Journal of Comparative Psychology, 102, 378–387PubMedCrossRefGoogle Scholar
  176. Mathis, C., Neumann, P. E., Gershenfeld, H., Paul, S. M., & Crawley, J. N. (1995). Genetic analysis of anxiety-related behaviors and responses to benzodiazepine-related drugs in AXB and BXA recombi­nant inbred mouse strains. Behavior Genetics, 25, 557–568PubMedCrossRefGoogle Scholar
  177. McClearn, G. E. (1993). Genetics, systems, and alcohol. Behavior Genetics, 23, 223–230PubMedCrossRefGoogle Scholar
  178. McClearn, G. E., Deitrich, R. A, & Erwin, V. G. (Eds.). (1981). Development of animal models as pharmacogenetic tools Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Alcohol, Drug Abuse and Mental Health AdministrationGoogle Scholar
  179. McCormick, C. M., Kehoe, P., & Kovacs, S. (1998). Corticosterone release in response to repeated, short episodes of neonatal isolation: Evidence of sensitization. International journal of Developmental Neuro­science, 16, 175–185CrossRefGoogle Scholar
  180. McGregor, I. S., Dastur, F. N., McLellan, R. A., & Brown, R. E. (1996). Cannabinoid modulation of rat pup ultrasonic vocalizations. European Journal of Pharmacology, 313, 43–49PubMedCrossRefGoogle Scholar
  181. McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The evolution of ontogeny New York: Plenum PressGoogle Scholar
  182. Mennella, J. A & Moltz, H. (1988). Infanticide in rats: Male strategy and female counter-strategy. Physiology and Behavior, 42, 19–28PubMedCrossRefGoogle Scholar
  183. Michel, G. F., Sc Moore, C. L. (1995). Developmental psychobiology: An interdisciplinary science Cambridge, MA: MIT PressGoogle Scholar
  184. Miczek, K. A., Tornatzky, W., & Vivian, J. (1991). Ethology and neuropharmacology: Rodent ultrasounds. In Animal models in psychopharmacology: Advances in pharmacological sciences (pp. 410–427). Basel: BirkhäuserGoogle Scholar
  185. Moisan, M. P., Courvoisier, H., Bihoreau, M. T., Gaugier, D., Hendley, E. D., Lathrop, M., James, M. R., & Mormède, P. (1996). A major quantitative trait locus influences hyperactivity in the WKHA rat. Nature Genetics, 14, 471–473Google Scholar
  186. Myers, M. M. (1992). Behavioral and cardiovascular traits: Broken links and new associations. Annals of the New York Academy of Sciences,662, 84–101PubMedCrossRefGoogle Scholar
  187. Myers, M. M., Brunelli, S. A., Squire, J. M., Shindledecker, R. D, & Hofer, M. A. (1989). Maternal behavior of SHR rats and its relationship to offspring blood pressures. Developmental Psychobiology, 22, 29–53PubMedCrossRefGoogle Scholar
  188. Myers, M. M., Brunelli, S. A., Shair, H. N., Squire, J. M., & Hofer, M. A. (1989). Relationships between maternal behavior of SHR and WKY dams and adult blood pressures of cross-fostered Ft pups. Developmental Psychobiology, 22, 55–67PubMedCrossRefGoogle Scholar
  189. Naito, H., & Tonoue, T. (1987). Sex differences in ultrasound distress call by rat pups. Behavioral Brain Research, 25, 13–21CrossRefGoogle Scholar
  190. Naito, H., Nakamura, A., & Inoue, M. (1998). Ontogenie changes in responsiveness to benzodiazepine receptor ligands on ultrasonic vocalizations in rat pups. Experimental Animal,47, 89–96CrossRefGoogle Scholar
  191. Naumenko, E. V., Popova, N. K., Nikulina, E. M., Dygalo, N. N., Shishkina, G. T., Borodin, P. M., & Markel, A. L. (1989). Behavior, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man. Pharmacology, Biochemistry, and Behavior, 18, 85–91Google Scholar
  192. Newman, J. D. (1991). Vocal manifestations of anxiety and their pharmacological control. In S. E. File (Ed.), Psychopharmacology of anxiolytics and antidepressants (pp. 251–260). New York: Pergamon PressGoogle Scholar
  193. Newman, J. D. (1992). The primate isolation call and the evolution and physiological control of human speech. In“ Wind et al. (Eds.), Language origin: A multidisciplinary approach (pp. 301–321). Dordrecht, The Netherlands: KluwerGoogle Scholar
  194. Nitschke, W., Bell, R. W., Bell, N. J., & Zachman, T. (1972). Distress vocalizations of young in three in­bred strains of mice. Developmental Psychobiology, 5, 363–370PubMedCrossRefGoogle Scholar
  195. Nitschke, W., Bell, R. W., Bell, N. J., & Zachman, T. (1975). The ontogeny of ultrasounds in two strains of Rattus norvegicus. Experimental Aging Research, 1, 229–242CrossRefGoogle Scholar
  196. Noirot, E. (1968). Ultrasounds in young rodents: II. Changes with age in albino rats. Animal Behavior, 16, 129–134CrossRefGoogle Scholar
  197. Noirot, E. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5, 371–387PubMedCrossRefGoogle Scholar
  198. Noirot, E., & Pye, D. (1969). Sound analysis of ultrasonic distress calls of mouse pups as a function of their age. Journal of Zoology, 162, 71–83Google Scholar
  199. Nosten, M., & Roubertoux, P. L. (1988). Uterine and cytoplasmic effects on pups’ eyelid opening in two inbred strains of mice. Physiology and Behavior, 43, 161–171CrossRefGoogle Scholar
  200. Nutt, D. J. (1988). Benzodiazepine receptor ligands. Neurotransmissions, 4, 1–5Google Scholar
  201. Okon, E. E. (1970a). The effect of environmental temperature on the production of ultrasounds by isolated nonhandled albino mouse pups. Journal of Zoology, 162, 71–83CrossRefGoogle Scholar
  202. Okon, E. E. (1970b). The ultrasonic responses of albino mouse pups to tactile stimuli. Journal of Zoology, 162, 485–492CrossRefGoogle Scholar
  203. Okon, E. E. (1971). The temperature relations of vocalization in infant golden hamsters and Wistar rats. Journal of Zoology (London), 164, 227–237CrossRefGoogle Scholar
  204. Okamoto, K., & Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Japanese Circulation Journal, 27, 282–293PubMedCrossRefGoogle Scholar
  205. Olivier, B., Molewijk, H. E., van Oorschot, R., van der Heyden, J. A. M., Ronken, E., & Mos, J. (1998). Rat pup ultrasonic vocalization: Effects of benzodiazepine receptor ligands. European Journal of Phar­macology, 358, 117–128CrossRefGoogle Scholar
  206. Olivier, B., Molewijk, H. E., van der Heyden, J. A. M., van Oorschot, R., Ronken, E., Mos, J., & Miczek, K. A. (1998). Ultrasonic vocalizations in rat pups: Effects of serotonergic ligands. Neuroscience and Bio­behavioral Reviews, 23, 215–227CrossRefGoogle Scholar
  207. Oppenheim, R. W. (1980). Metamorphosis and adaptation in the behavior of developing organisms. Developmental Psychobiology, 13, 353–356PubMedCrossRefGoogle Scholar
  208. Oppenheim, R. W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: A neuroembryological perspective. In R. J. Connolly, & H. F. R. Prechtl (Eds.), Maturation and development: Biological and psychobiological perspectives (pp. 73–109). Philadelphia: LippincottGoogle Scholar
  209. Osborne, K. A., Robichon, A., Burgess, E., Butland, S., Shaw, R. A., Coulthard, A., Pereira, H. S., Greenspan, R. J., Sokolowski, M. B. (1997). Natural behavior polymorphism due to a cGMP­dependent protein kinase of Drosophila. Science, 277, 834–836Google Scholar
  210. Oswalt, G. L., & Meier, G. W. (1975). Olfactory, thermal, and tactual influences on infantile ultrasonic vocalization in rats. Developmental Psychobiology, 8, 129–135PubMedCrossRefGoogle Scholar
  211. Overstreet, D. H., Rezvani, A. H., Pucilowski, O., Gause, L., & Janowsky, D. S. (1994). Rapid selection for serotonin-1A sensitivity in rats. Psychiatric Genetics, 4, 57–62PubMedCrossRefGoogle Scholar
  212. Overstreet, D. H., Rezvani, A. H., Knapp, D. J., Crews, F. T., &Janowsky, D. S. (1996). Further selection of rat lines differing in 5-HT-1A receptor sensitivity: Behavioral and functional correlates. Psychiatric Genetics, 6, 107–117PubMedCrossRefGoogle Scholar
  213. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions New York: Oxford PressGoogle Scholar
  214. Panksepp, J., Meeker, R., & Bean, D. H. (1980). The neurochemical control of crying. Pharmacology, Biochemistry and Behavior, 12, 437–443CrossRefGoogle Scholar
  215. Paterson, A. H. (1995). Molecular dissection of quantitative traits: Progress and prospects. Genome Research, 5, 321–333PubMedCrossRefGoogle Scholar
  216. Paul, L., & Kuperschmidt, J (1975). Killing of conspecific and mouse young by male rats. Journal of Comparative and Physiological Psychology, 88, 755–763CrossRefGoogle Scholar
  217. Pedersen, P. E., & Blass, E. M. (1981). Prenatal and postnatal determinants of the 1st suckling episode in albino rats. Developmental Psychobiology, 15, 349–355CrossRefGoogle Scholar
  218. Pine, D. S., & Grun, J. (1999). Childhood anxiety: Integrating developmental psychopathology and affective neuroscience. Journal of Adolescent Psychopharmacology, 9, 1–12CrossRefGoogle Scholar
  219. Plomin, R., DeFries, J. C., & McClearn, G. E. (1991). Behavioral genetics: A primer, Newyork; W. H. FreemanGoogle Scholar
  220. Plotkin, H. C. (Ed.) (1988). The role of behavior in evolution Cambridge: MIT PressGoogle Scholar
  221. Plotsky, P. M., & Meaney, M. J (1993). Early postnatal experience alters hypothalamic corticotropin­releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in rats. Molecular Brain Research, 18, 195–200PubMedCrossRefGoogle Scholar
  222. Ramboz, S., Sandou, F., Amara, D. A., Belzung, C., Segu, L., Misslin, R., Baht, M. C., & Hen, R. (1996). 5-HTIB receptor knockout-Behavioral consequences. Behavioral Brain Research, 73, 305–312CrossRefGoogle Scholar
  223. Ramos, A., & Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience and Biobehavioral Reviews, 22, 33–57PubMedCrossRefGoogle Scholar
  224. Rauch, S. L., Savage, C. R., Alpert, N. M., Fischman, A. J., & Jenike, M. A. (1997). The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biological Psychiatry, 42, 446–452PubMedCrossRefGoogle Scholar
  225. Rex, A., Barth, T., Vagged, J.-P., Daemon, A. M., & Fink, H. (1994). Effects of cholecystokinin tetrapeptide and sulfated cholecystokinin octapeptide in rat models of anxiety. Neuroscience Letters, 172, 139–142PubMedCrossRefGoogle Scholar
  226. Reznick, D. N., Shaw, F. H., Rodd, F. H., & Shaw, R. G. (1997). Evaluations of the rate of evolution in natural populations of guppies (Poecilia reticulate). Science, 275, 1984–1935Google Scholar
  227. Roberts, L. H. (1975). Evidence for the laryngeal source of ultrasonic and audible cries of rodents. Jour­nal of Zoology (London), 175, 243–257CrossRefGoogle Scholar
  228. Robinson, D. J., & Udine, B. (1982). Ultrasonic calls produced by three laboratory strains of Mus musculus. Journal of Zoology (London), 197, 383–389Google Scholar
  229. Robinson, S. R., & Smotherman, W. P. (1995). Habituation and classical conditioning in the rat fetus: Opioid involvements. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 295–314). Hillsdale, NJ: ErlbaumGoogle Scholar
  230. Roubertoux, P. L., & Cartier, M. (1988). Differences between CBA/H and NZB mice on intermale aggression. II. Maternal effects. Behavior Genetics, 18, 175–184PubMedCrossRefGoogle Scholar
  231. Roubertoux, P. L., Nosten-Bertrand, M., & Carlier, M. (1990). Additive and interactive effects of genotype and maternal environment. Advances in the Study of Behavior, 19, 205–247CrossRefGoogle Scholar
  232. Roubertoux, P L., Carlier, M., Degrelle, H., Haas-Dupertuis, M.-C., Phillips, J., & Moutier, R. (1994). Co-segregation of intermale aggression with pseudoautosomal region of the Y chromosome in mice. Genetics, 135, 225–230Google Scholar
  233. Roubertoux, P. L., Martin, B., LeRoy, I, Beau, J., Marchaland, C., Perez-Diaz, F., Cohen-Salmon, C., & Carlier, M. (1996). Vocalizations in newborn mice: Genetic analysis. Behavior Genetics, 26, 427–437PubMedCrossRefGoogle Scholar
  234. Roubertoux, P. L., Mortaud, S., Tordjman, S., LeRoy, I., & Degrelle, H. (1986). Behavior-genetic analysis and aggression: The mouse as a prototype. In M. Sabourin, F. Craik, & M. Robert (Eds.), Advances in psychological science, Volume 2: Biological and cognitive aspects (pp. 3–29). Montreal: Psychology PressGoogle Scholar
  235. Roubertoux, P. L., Nosten-Bertrand, M., Cohen-Salmon M., & Hotellier, L. (1992). Behavioral develop­ment: A tool for genetic analysis in mice. In D. Goldowitz, D. Wahlsten, & R. E. Wimer (Ed.), Techniques for the genetic analysis of brain and behavior (pp. 423–441). New York: ElsevierGoogle Scholar
  236. Rutherford, S. L., Lindquist, S. (1998), Hsp90 as a capacitor for morphological evolution. Nature, 396, 336–342PubMedCrossRefGoogle Scholar
  237. Rutter, M., Silberg, J., O’Connor, T., & Simonoff, E. (1999a). Genetics and child psychiatry: IAdvances in quantitative and molecular genetics. Journal of Child Psychology and Psychiatry, 40, 3–18CrossRefGoogle Scholar
  238. Rutter, M., Silberg, J., O’Connor, T., & Simonoff, E. (1999b). Genetics and child psychiatry: II. Empirical research findings. Journal of Child Psychology and Psychiatry,40, 19–55CrossRefGoogle Scholar
  239. Sales, G. S. (1979). Strain differences in the ultrasonic behavior of rats (Rattus norvegicus). American Zoologist, 19, 513–527Google Scholar
  240. Sales, G. S., & Smith, J. C. (1978). Comparative studies of the ultrasonic calls of infant murid rodents. Developmental Psychobiology, 11, 595–619PubMedCrossRefGoogle Scholar
  241. Sandnabba, N. K. (1993). Female aggression during gestation and lactation in two strains of mice selected for isolation-induced intermale aggression. Behavioral Processes, 30, 157–164CrossRefGoogle Scholar
  242. Sandnabba, N. K. (1996). Selective breeding for isolation-induced intermale aggression in mice: Associ­ated responses and environmental influences. Behavior Genetics, 26, 477–488PubMedCrossRefGoogle Scholar
  243. Saudou, F., Amara, D. A., Dierich, A., LeMeur, M., Ramboz, S., Segu, L., Baht, M. C., & Hen, R (1994). Science, 265, 1875–1878Google Scholar
  244. Scott, P. A., Cierpial, M. A., Kilts, C. D., & Weiss, J. M. (1996). Susceptibility and resistance of rats to stressinduced decreases in swim-test activity: A selective breeding study. Brain Research, 725, 217–230PubMedGoogle Scholar
  245. Scearce-Levie, K., Viswanathan, S. S., & Hen, R (1999). Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor. Psychopharmacology (Berlin), 141, 154–161CrossRefGoogle Scholar
  246. Scherer, K. R (1985). Vocal affect signaling; A comparative approach. Advances in the Study of Behavior, 15, 189–244CrossRefGoogle Scholar
  247. Schouten, W. G. P. (1988). Development of ultrasonic vocalization in the rat (Rattus norvegicus) In J. Unshelm, G. van Putten, K. Zeeb, & I. Ekesbo (Eds.), Proceedings of the International Congress on Applied Ethology in Farm Animals (pp. 1–5). Darmstadt, Germany: Kuratorium für Technik and Bauwesen in der Landwirtschaft (KTBL)Google Scholar
  248. Shair, H. N., Masmela, J. R., Brunelli, S. A., & Hofer, M. A. (1997). Potentiation and inhibition of ultrasonic vocalization of rat pups: Regulation by social cues. Developmental Psychobiology, 30,195–200PubMedCrossRefGoogle Scholar
  249. Shen, E. H., Dorow, J. D., Huson, M., & Phillips, T. I. (1996). Correlated responses to selection in FAST and SLOW mice: Effects of ethanol on ataxia, temperature, sedation and withdrawal. Alcoholism, Clinical and Experimental Research, 20, 688–696CrossRefGoogle Scholar
  250. Shoemaker, W. J., & Kehoe, P. (1995). Effect of isolation conditions on brain regional enkephalin and beta-endorphin levels and vocalizations in 10-day-old rat pups. Behavioral Neuroscience, 109, 117–122PubMedCrossRefGoogle Scholar
  251. Smotherman, W. P., Bell, R. W., Starzec, I., Elias, J., & Zachman, T. A. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice. Behavioral Biology, 12, 55–66PubMedCrossRefGoogle Scholar
  252. Snustad, D. P., Simmons, M. J., & Jenkins, J. B. (1997). Principles of genetics New York: WileyGoogle Scholar
  253. Sokoloff, G., & Blumberg, M. S. (1997). Thermogenic, respiratory, and ultrasonic responses of week-old rats across the transition from moderate to extreme cold exposure. Developmental Psychobiology, 30, 181–194PubMedCrossRefGoogle Scholar
  254. Stanton, M. E., Wallstrom, J., & Levine, S. (1986). Maternal contact inhibits pituitary-adrenal stress responses in preweanling rats. Developmental Psychobiology, 20, 1311–1145Google Scholar
  255. Stanton, M. E., Gutierrez, Y. R, & Levine, S, (1988). Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behavioral Neuroscience, 102, 692–700PubMedCrossRefGoogle Scholar
  256. Stern, J. M., & Johnson, S. K. (1990). Ventral somatosensory determinants of nursing behavior in Nor­way rats. I. Effects of variations in the quality and quantity of pup stimuli. Physiology and Behavior, 47, 933–1011CrossRefGoogle Scholar
  257. Suomi, S. J. (1997). Early determinants of behaviour: Evidence from primate studies. British Medical Bulletin, 53, 170–184PubMedCrossRefGoogle Scholar
  258. Szpirer, C., Szpirer, J., Van Vooren, P., Tissir, E, Simon, J. S., Koike, G., Jacob, H.J., Lander, E. S., Helou, K, Klinga-Levan, K., & Levan, G. (1999). Gene-based anchoring of the rat genetic linkage and cyto­genetic maps. Transplant Proceedings, 31, 1541–1543CrossRefGoogle Scholar
  259. Takahashi, L. K. (1992a). Developmental expression of defensive responses during exposure to conspecific adults in preweanling rats (Rattus norvegicus). Journal of Comparative Psychology, 106, 69–77CrossRefGoogle Scholar
  260. Takahashi, L. K. (1992b). Ontogeny of behavioral inhibition induced by unfamiliar adult male conspecifics in preweanling rats. Physiology and Behavior, 52, 493–498CrossRefGoogle Scholar
  261. Thom, S. (1988). The effects of benzodiazepines and beta-carbolines on rat pup ultrasonic isolation calls Ph.D. dissertation, City University of New York, New YorkGoogle Scholar
  262. Turkewitz, G., & Devenny, D. A. (1993). Timing and the shape of development. In G. Turkewitz & D. A. Devenny (Eds.), Developmental time and timing (pp. 1–11). Hillsdale, NJ: ErlbaumGoogle Scholar
  263. Uni, Z., Gutman, M., Leitner, G., Landesman, E., Heller, D., & Cahaner, A. (1993). Major histocom­patibility complex class IV restriction fragment length polymorphism markers in replicated meat-type chicken lines divergently selected for high or low early immune response. Poultry Science, 72, 1823–1831PubMedCrossRefGoogle Scholar
  264. Vera, P. L., & Nadelhaft, I. (1991). MK-801, a non-competitive NMDA receptor antagonist, produces facilitation of the micturition reflex in awake, freely-moving rats. Neuroscience Letters, 134, 135–138PubMedCrossRefGoogle Scholar
  265. Vivian, J. A., Barros, H. M., Manitiu, A., & Miczek, K. A. (1997). Ultrasonic vocalizations in rat pups: Modulation at the gamma-aminobutyric acid(A) receptor complex and the neurosteroid recognition site. Journal of Pharmacology and Experimental Therapeutics, 282, 318–325PubMedGoogle Scholar
  266. Weinstock, M. (1997). Does prenatal stress impair coping and regulation of the hypothalamic—pituitary­adrenal axis? Neuroscience and Biobehavioral Reviews, 21, 1–10PubMedCrossRefGoogle Scholar
  267. Weller, A., & Blass, E. M. (1988). Behavioral evidence for cholecystokinin-opiate interactions in neonatal rats. American Journal of Physiology, 255,R90I-R907Google Scholar
  268. Weller, A., & Gispan, D. (2000) A cholecystokinin receptor antagonist blocks milk-induced but not maternal-contact-induced decrease of ultrasonic vocalization in rat pups. Developmental Psychobiology, 37, 35–43PubMedCrossRefGoogle Scholar
  269. West, M. J., & King, A. P. (1987). Settling nature and nurture into an ontogenetic niche. Developmental Psychobiology, 20, 549–562PubMedCrossRefGoogle Scholar
  270. Wetzel, D. M., Kelley, D. B., & Campbell, B. A. (1980). Central control of ultrasonic vocalizations in neonatal rats: I. Brain stem motor nuclei. Journal of Comparative and Physiological Psychology, 94, 596–605PubMedCrossRefGoogle Scholar
  271. Whitney, G. D., Nyby, J., Cable, J. R., & Dizinno, G. A. (1978). Genetic influences on 70kHz ultrasound production of mice (Mus museulus). Behavior Genetics, 8, 574–578CrossRefGoogle Scholar
  272. Wiedenmayer, C. P., & Barr, G. A. (1998). Ontogeny of defensive behavior and analgesia in rat pups exposed to an adult male rat. Physiology and Behavior, 63, 261–269PubMedCrossRefGoogle Scholar
  273. Winslow, J. T., & Insel, T. R. (1990). Serotonergic and catecholaminergic reuptake inhibitors have opposite effects on the ultrasonic isolation calls of rat pups. Neuropsychopharmacology, 3, 51–59PubMedGoogle Scholar
  274. Winslow, J. T., & Insel, T. R. (1991a). The infant rat separation paradigm: A novel test for novel anxiolytics. Trends in Pharmacological Sciences, 12, 402–404CrossRefGoogle Scholar
  275. Winslow, J. T., & Insel, T. R. (1991b). Serotonergic modulation of the rat pup ultrasonic isolation call: Studies with 5HTt and 5HT2 subtype-selective agonists and antagonists. Psychopharmacology, 105, 513–520CrossRefGoogle Scholar
  276. Winslow, J. T., Sc Insel, T. R. (1993). Effects of central vasopressin administration to infant rats. European Journal of Pharmacology, 223, 101–107CrossRefGoogle Scholar
  277. Winslow, J. T., Insel, T. R., Trullas, R., Skolnick, P. (1990). Rat pup isolation calls are reduced by functional antagonists of the NMDA receptor complex. European Journal of Pharmacology, 190, 11–21PubMedCrossRefGoogle Scholar
  278. Xu, L., Anwyl, R., De Vry, J., & Rowan, M. J. (1997). Effect of repeated ipsapirone treatment on hippocampal excitatory synaptic transmission in the freely behaving rat: Role of 5-HTIA receptors and relationship to anxiolytic effect. European Journal of Pharmacology, 323, 59–68 PubMedCrossRefGoogle Scholar
  279. Yajima, Y., & Hayashi, Y. (1983). Ambiguous motoneurons discharging synchronously with ultrasonic vocalization in rats. Experimental Brain Research, 50, 359–366CrossRefGoogle Scholar
  280. Yongue, B. G., & Myers, M. M. (1988). Cosegregation analysis of salt appetite and blood pressure in genetically hypertensive and normotensive rats. Clinical and Experimental Hypertension: Theory and Practice A, 10, 323–343CrossRefGoogle Scholar
  281. Yongue, B. G., & Myers, M. M. (1989). Further evidence for genetic independence of blood pressure and salt appetite in spontaneously hypertensive and Wistar-Kyoto rats. Clinical and Experimental Hyperten­sion: Theory and Practice A, 11, 25–33CrossRefGoogle Scholar
  282. Yoshiyama, M., Roppolo, J. R., & de Groat, W. C. (1994). Interactions between glutamergic and mono­aminergic systems controlling the micturition reflex in the urethane-anesthetized rat. Brain Research,639 300–308PubMedCrossRefGoogle Scholar
  283. Zákány, J., Gérard, M., Favier, B., & Duboule, D. (1997). Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO Journal, 16, 4393–4402Google Scholar
  284. Zhang, S. P., Davis, P. J., Sandler, R., & Carrive, P. (1994). Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology, 72, 1337–1356PubMedGoogle Scholar
  285. Zhang, S. P., Sandler, R., & Davis, P. J. (1995). Brain stem integration of vocalization: Role of the nucleus retroambigualis. Journal of Neurophysiology, 74, 2500–2512PubMedGoogle Scholar
  286. Zimmerberg, B., Brunetti, S. A., & Hofer, M. A. (1994). Reduction of rat pup ultrasonic vocalizations by the neuroactive steroid allopregnanalone. Pharmacology, Biochemistry and Behavior, 47, 735–738CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Susan A. Brunelli
    • 1
  • Myron A. Hofer
    • 1
  1. 1.Developmental PsychobiologyNew York State Psychiatric Institute, and College of Physicians and Surgeons, Columbia UniversityNew York

Personalised recommendations