Advertisement

The Development of Action Sequences

  • John C. Fentress
  • Simon Gadbois
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 13)

Abstract

Many years ago, [Lashley (1951)] challenged behavioral neuroscientists to examine movement properties and the serial order of behavior more specifically. This was in many respects a logical follow-up of [Hebb’s (1949)] concerns with the organization of behavior, according to which, individual behavioral and brain properties must be isolated, but also examined within broader contexts of expression ([Fentress, 1999]). For example, Hebb devised concepts of cell assembly and phase sequence to help behavioral neuroscientists evaluate the fact that all behavior is organized in time. Movement is a directly observable manifestation of this dynamic ordering in brain and behavior ([Berridge & Whishaw, 1992]; [Fentress, 1990], [1992]; [Golani, 1992]; [Kelso, 1997]; [Thelen & Smith, 1994]). As such, quantitative analyses of movement can provide fundamental insights into brain—behavior organization, including the developmental profiles that occur dynamically across levels and time frames of operation. As stated by [Churchland and Sejnowski (1992], p. 178), “Our brains are dynamical, not incidentally or in passing, but essentially, inevitably, and to their very core.” As will become clear in this chapter, we agree with this position, and believe that action dynamics can provide fundamental insights into processes at both onto-genetic and integrative time frames of organization

Keywords

Action Sequence Mutant Animal Human Speech Movement Property Infant Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, W. J, Berridge, K C., Herman, M., & Zimmer, L. (1993). Neuronal coding of serial order: Syntax of grooming in the neostriatum. Psychological Science, 4, 391–395CrossRefGoogle Scholar
  2. Arbib, M. A. (Ed.). (1995). The handbook of brain theory and neural networks Cambridge, MA: MIT PressGoogle Scholar
  3. Atchley, W. R., & Hall, B. K. A model for development and evolution of complex morphological structures. Biological Reviews, 66, 101–137Google Scholar
  4. Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to sequential analysis Cambridge: Cambridge University PressGoogle Scholar
  5. Bateson, E, & Martin, P. (1999). Design for a life: How behaviour develops London: Jonathan CapeGoogle Scholar
  6. Bayer, S. A., Wills, K V., Wei, J., Feng, Y., Dlouy, S. R., Hodes, M. E., Verina, T., & Ghetti, B. (1996). Phenotypic effects of the weaver gene are evident in the embryonic cerebellum but not in the ventral midbrain. Developmental Brain Research, 96, 130–137CrossRefPubMedGoogle Scholar
  7. Bekoff, A. (1992). Neuroethological approaches to the study of motor development in chicks: Achievements and challenges. Journal of Neurobiology, 23, 1486–1505CrossRefPubMedGoogle Scholar
  8. Bekoff, A., & Trainer, W. (1979). The development of interlimb co-ordination during swimming in postnatal rats. Journal of Experimental Biology, 83, 1–11 PubMedGoogle Scholar
  9. Berridge, K C. (1994). The development of action patterns. In J. A. Hogan and J. J. Bolhuis (Eds.), Causal mechanisms of behavioraldevelopment. Essays in honor off P, Kruÿt (pp. 147–180). Cambridge: Cambridge University PressGoogle Scholar
  10. Berridge, K C., & Fentress, J. C. 1987a. Disruption of natural grooming chains after striatopallidal lesions. Psychobiology, 15, 336–342Google Scholar
  11. Berridge, K. C., & Fentress, J. C. 1987b. Deafferentation does not disrupt natural rules of action syntax. Behavioural Brain Research, 23, 69–76CrossRefGoogle Scholar
  12. Berridge, K. C., & Whishaw, I. Q. (1992). Cortex, striatum and cerebellum: Control of serial order in a grooming sequence. Experimental Brain Research, 90, 275–290CrossRefGoogle Scholar
  13. Berridge, K. C., Fentress, J. C., & Parr, H. (1987). Natural syntax rules control of action sequence of rats. Behavioral Brain Research, 23, 59–68CrossRefGoogle Scholar
  14. Berns, G. S., & Sejnowski, T. J. (1998). A computational model of how the basal ganglia produce sequences. Journal of Cognitive Neuroscience, 10, 108–121CrossRefPubMedGoogle Scholar
  15. Bernstein, N. (1967). Coordination and regulation of movements New York: Pergamon PressGoogle Scholar
  16. Blass, E. M. (1999). The ontogeny of human infant face recognition: Orogusttory, visual, and social influences. In P. Rochat (Ed.), Early social cognition (pp. 35–65). Mahwah, NJ: ErlbaumGoogle Scholar
  17. Blass, E. M., & Hall, W. G. (1976). Drinking termination: Interactions among hydrational, orgastic, and behavioral controls in rats. Psychological Review, 83, 356–374CrossRefPubMedGoogle Scholar
  18. Bolivar, V. J. (1996). The development of movement patterns during swimming in the CNS myelin deficient jimpy mouse Ph.D. Thesis, Dalhousie University, Halifax, Nova Scotia, CanadaGoogle Scholar
  19. Bolivar, V. J., Danilchuk, W., & Fentress, J. C. (1996). Separation of activation and pattern in grooming development of weaver mice. Behavioral Brain Research, 75, 49–58CrossRefGoogle Scholar
  20. Bolivar, V. J., Manley, K, & Fentress, J. C. (1996). The development of swimming behavior in the neurological mutant weaver mouse. Developmental Psychobiology, 2g 123–137CrossRefGoogle Scholar
  21. Bradley, N. S., & Smith, J. L. (1988). Neuromuscular patterns of stereotypic hindlimb behaviors in the first postnatal months. II. Stepping in spinal kittens. Developmental Brain Research, 38, 53–67CrossRefGoogle Scholar
  22. Bressers, W. M. A., Kruk, M. R, van Erp, M. M., Willekens-Bramer, D. C., Haccou, P., & Meelis, B. (1995). Time structure of self-grooming in the rat: Self-facilitation and effects of hypothalamic stimulation and neuropeptides. Behavioral Neuroscience, 109, 955–964CrossRefPubMedGoogle Scholar
  23. Brown, L. L., Feldman, S. M., Aivac, L, Hand, P. J., & Lidsky, T.J. (1994). A distributed network of context-dependent functional units in the rat neostriatum. In G. Percheron (Ed.), The basal ganglia IV (pp. 215–227). New York: Plenum PressCrossRefGoogle Scholar
  24. Churchland, P. S., & Sejuowski, T. J. (1992). The computational brain Cambridge, MD: MIT PressGoogle Scholar
  25. Colonnese, M. T., Stallman, E. L., & Berridge, K. C. (1996). Ontogeny of action syntax in altricial and precocial rodents: Grooming sequences of rat and guinea pig pups. Behaviour, 133, 1165–1195CrossRefGoogle Scholar
  26. Cordo, P., & Hamad, S. (Eds.) (1994). Movement control Cambridge: Cambridge University PressCrossRefGoogle Scholar
  27. Coscia, E. M., & Fentress, J C. (1993). Neurological dysfunction expressed in the grooming behavior of developing weaver mutant mice. Behavior Genetics, 23, 533–541CrossRefPubMedGoogle Scholar
  28. Crawley, J. N., & Paylor, R. (1997). A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Hormones and Behavior, 31, 197–211CrossRefPubMedGoogle Scholar
  29. Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the USA, 81, 4586–4590CrossRefPubMedGoogle Scholar
  30. Cromwell, H. C., & Berridge, K. C. (1996). Implementation of action sequences by a neostriatal site: A lesion mapping study of grooming syntax. Journal of Neuroscience, 16, 3067–3081Google Scholar
  31. Crystal, D. (Ed.). (1997). The Cambridge encyclopedia of language,2nd ed.. Cambridge: Cambridge University PressGoogle Scholar
  32. Durr, A., & Brice, A. (1996). Genetics of movement disorders. Current Opinion in Neurology, 9, 290–297CrossRefPubMedGoogle Scholar
  33. Edelman, G. M. (1987). Neural Darwinism: The theory of group selection New York: Basic BooksGoogle Scholar
  34. Edelman, G. M., Gall, W. E., &Cowan, W. M. (1990). Signal and sense: Local and global order in perceptual maps New York: WileyGoogle Scholar
  35. Fentress, J. C. (1967). Observations on the behavioral development of a hand-reared male timber wolf. American Zoologist, 7, 339–351Google Scholar
  36. Fentress, J. C. 1968a. Interrupted ongoing behaviour in voles (Microtus agrestis and Clethrionomys britannicus): I. Response as a function of preceding activity and the context of an apparently “irrelevant” motor pattern. Animal Behaviour, 16, 135–153CrossRefGoogle Scholar
  37. Fentress, J. C. 1968b. Interrupted ongoing behaviour in voles (Microtus agrestis and Clethrionomys britannicus): II. Extended analysis of intervening motivational variables underlying fleeing and grooming activities. Animal Behaviour, 16, 154–167CrossRefGoogle Scholar
  38. Fentress, J. C. (1972). Development and patterning of movement sequences in inbred mice. In J. Eiger (Ed.), The biology of behavior (pp. 83–132). Corvallis, OR: Oregon State University PressGoogle Scholar
  39. Fentress, J C. (1976). Dynamic boundaries of patterned behavior: Interaction and self-organization. In P. P. G. Bateson and R. A. Hinde (Eds.), Growing points in ethology (pp. 135–160). Cambridge: Cambridge University PressGoogle Scholar
  40. Fentress, J. C. (1988). Expressive contexts, fine structure, and central mediation of rodent grooming. Annals of the New York Academy of Sciences,525, 18–26CrossRefPubMedGoogle Scholar
  41. Fentress, J. C. (1990). Organizational patterns in action: Local and global issues in action pattern formation. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.), Signal and sense: Local and global order in perceptual maps (pp. 357–382). New York: WileyGoogle Scholar
  42. Fentress, J. C. (1992). Emergence of pattern in the development of mammalian movement sequences. Journal of Neurobiology, 23, 1529–1556CrossRefPubMedGoogle Scholar
  43. Fentress, J. C. (1999). The organization of behavior revisited. Canadian Journal of Experimental Psychology, 53, 8–19CrossRefGoogle Scholar
  44. Fentress, J. C., & Bolivar, V. J. (1996). Developmental aspects of movement sequences in mammals. In K. P. Ossenkopp, M. Kavaliers, & P. R. Sanberg (Eds.), Measuring movement and locomotion: From invertebrates to humans (pp. 95–114). New York: Chapman and HallGoogle Scholar
  45. Fentress, J. C., & McLeod, P. J. (1986). Motor patterns in development. In E. M. Blass (Ed). Handbook of behavioral neurobiology, Volume 8, Developmental psychology and developmental neurobiology (pp. 35–97). New York: Plenum PressGoogle Scholar
  46. Fentress, J. C., & Stilwell, F. P. (1973). Grammar of a movement sequence in inbred mice. Nature, 244, 52–53CrossRefPubMedGoogle Scholar
  47. Foster, E. C., Sveistrup, H., & Woollacott, M. H. (1996). Transitions in visual proprioception: A cross-sectional developmental study of the effect of visual flow on postural control. Journal of Motor Behavior, 28, 101–112CrossRefPubMedGoogle Scholar
  48. Friel, K M., & Nudo, R. J. (1998). Recovery of motor function after focal cortical injury in primates: Compensatory movement patterns used during rehabilitative training. Somatosensory and Motor Research, 15, 173–189CrossRefPubMedGoogle Scholar
  49. Gadbois, S., & Fentress, J. C. 1997a. Prosodic measures of a stereotyped movement sequence in canids: A new framework for developmental analysis Presented at the International Society for Developmental Psychobiology, 30th Annual Meeting, New Orleans, Louisiana [Abstract]Google Scholar
  50. Gadbois, S., & Fentress, J. C. 1997b. Canid caching sequences as a model for mammalian movement Presented at the Society for Neuroscience 27th Annual Meeting, New Orleans, Louisiana [Abstract]Google Scholar
  51. Gadbois, S., Fentress, J. C., & Harrington. (In preparation). Comparative analysis of food-caching sequences in wolves (Canis lupus), coyotes (Canis latrans), and red foxes (Vulpes vulpes) Google Scholar
  52. Georgopoulos, A. P. (1991). Higher order motor control. Annual Review of Neurosciences, 14, 361–377CrossRefGoogle Scholar
  53. Gerlai, R (1999). Targeting genes associated with mammalian behavior: Past mistakes and future solutions. In W. E. Crusio & R. T. Gerlai (Eds.), Techniques in the behavioral and neural sciences, Volume 13, Handbook of molecular-genetic techniques for brain and behavior research (pp. 381–392). Amsterdam: ElsevierGoogle Scholar
  54. Getting, P. A. (1988). Comparative analysis of invertebrate central pattern generators. In A. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 101–127). New York: WileyGoogle Scholar
  55. Gilbert, C. D. (1995). Dynamic properties of adult visual cortex. In M. S. Gazzaniga (Ed.). The cognitive neurosciences (pp. 73–90), Cambridge, MA: MIT PressGoogle Scholar
  56. Golani, I. (1992). A mobility gradient in the organization of vertebrate movement: The perception of movement through symbolic language. Behavioral and Brain Sciences, 15, 249–308CrossRefGoogle Scholar
  57. Golani, I., & Fentress, J. C. (1985). Early ontogeny of face grooming in mice. Developmental Psychobiology, 18, 529–544CrossRefPubMedGoogle Scholar
  58. Goldowitz, D., & Eisenman, L. M. (1992). Genetic mutations affecting marine cerebellar structure and function. In. P. Driscoll (Ed.), Genetically defined animal models of neurobehavioral dysfunctions (pp. 66–68). Boston: BirkhauserGoogle Scholar
  59. Gottlieb, G., Wahlsten, D., & Lickliter, R (1998). The significance of biology for human development: A developmental psychobiological systems view. In R H. Lerner (Ed.), Handbook of child psychology, Volume 1, Theoretical models of human development (pp. 223–273). New York: WileyGoogle Scholar
  60. Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral researchers Cambridge: Cambridge University PressCrossRefGoogle Scholar
  61. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136CrossRefPubMedGoogle Scholar
  62. Graybiel, A. M., & Kimura, D. (1995). Adaptive neural networks in the basal ganglia. In J. C. Houk, J. L. Davis, & D. G. Beiger (Eds.), Models of information processing in the basal ganglia (pp. 103–116). Cambridge, MA: MIT PressGoogle Scholar
  63. Hall, W. G, & Bryan, T. E. (1980). The ontogeny of feeding in rats. II. Independent ingestive behavior. Journal of Comparative and Physiological Psychology, 93, 746–756CrossRefGoogle Scholar
  64. Hayes, A. E., Davidson, M. C, Keele, S. W., & Rafal, R. D. (1997). Toward a functional analysis of the basal ganglia Institute of Cognitive and Decision Sciences: Technical report, 97–01, Eugene, OregonGoogle Scholar
  65. Hebb, D. O. (1949). The organization of behavior New York: WileyGoogle Scholar
  66. Hogan, D. (1988). Cause and function in the development of behavior systems. In E. M. Blass (Ed.), Handbook of behavioral neurology, Volume 8, Developmental psychology and developmental neurobiology (pp. 63–106). New York: Plenum PressGoogle Scholar
  67. Ivry, R B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851–857CrossRefPubMedGoogle Scholar
  68. Jackson, S., & Houghton, G. (1995). Sensorimotor selection and the basal ganglia. In J. C. Houck, J. L. Davis, & J. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 537–368). Cambridge, MA: MIT PressGoogle Scholar
  69. Jacobson, D., & Anagnostopoulos, A. (1996). Internet resources for transgenic or targeted mutation research. Trends in Genetics, 12, 117–118CrossRefGoogle Scholar
  70. Jusczyk, P. W., & Aslin, R. N. (1995). Infants’ detection of sound patterns of words in fluent speech. Cognitive Psychology, 29, 1–23CrossRefPubMedGoogle Scholar
  71. Keele, S. W., Davidson, M., & Hayes, A. (1996). Sequential representation and the neural basis of motor skills Institute of Cognitive and Decision Sciences: Technical Report 96–12, University of Oregon, Eugene, OregonGoogle Scholar
  72. Kelso, J. A. S. (1997). Dynamic patterns: The self-organization of brain and behavior, Cambridge, MA: MIT PressGoogle Scholar
  73. Kleine, J. A, Swain, R. A., Armstrong, K. A, Napper, R. M. A, Jones, T. A., & Greenough, W. T. (1998). Selective synaptic plasticity with the cerebellar cortex following complex motor skill learning. Neurobiology of Learning and Memory, 69, 274–289CrossRefGoogle Scholar
  74. Klintsova, A.Y., Matthews, J. T, Goodlett, C. R., Napper, R. M. A., & Greenough, W. T. (1997). Therapeutic motor training increases parallel fiber synapse number per Purkinje neuron in cerebellar cortex of rats given postnatal binge alcohol exposure: Preliminary report. Alcohol Clinical and Experimental Research, 21, 1257–1263Google Scholar
  75. Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112–136). New York: WileyGoogle Scholar
  76. Lederhendler, I. I. (1997). Using new genetics tools to advance the behavioral neurosciences beyond nature versus nurture. Hormones and Behavior, 31, 186–187CrossRefPubMedGoogle Scholar
  77. Lemon, R. N, (1990). Mapping the output functions of the motor cortex. In G. M. Edelman, W. E. Gall, & W. M Cowan (Eds.), Signal and sense: Local and global order in perceptual maps (pp. 315–355). New York: WileyGoogle Scholar
  78. Lorenz, K. Z. (1982). The foundations of ethology: The principal ideas and discoveries in animal behavior New York: Simon and SchusterGoogle Scholar
  79. Macdonald, D. W. (1976), Food caching by red foxes and some other carnivores. Zeitschrft für Tierpsycholagie, 42, 170–185Google Scholar
  80. Marder, E., & Weimann, J. M. (1992). Modulatory control of multiple task processing in the stomata gastric nervous system. In J. Kien, C. McCrohan, & B. Winlow (Eds.), Neurobiology of motor programme selection: New approaches to mechanisms of behavior choice (pp. 3–19). Manchester: Manchester University Press Google Scholar
  81. Marsden, C. D., & Fahn, S. (Eds.) (1994). Movement disorders 3. London: Butterworth-HeinmannGoogle Scholar
  82. McLeod, P. J. (1996). Developmental changes in associations among timber wolf (Canis lupus) postures. Behavioural Processes, 38, 105–118CrossRefGoogle Scholar
  83. McCrea, A. E., Stehouwer, D. J., & van Hartesveldt, C. (1997). Dopamine Dl and D2 antagonists block L-Dopa-induced air-stepping in decerebrate neonatal rats. Developmental Brain Research, 100, 130–132CrossRefPubMedGoogle Scholar
  84. McLeod, P. J., & Fentress, J. C. (1997). Developmental changes in the sequential behavior of interacting timber wolf pups. Behavioural Processes, 39, 127–136CrossRefGoogle Scholar
  85. Mink, J. W. (1999). Basal ganglia. In M. J. Zigmond, F. E. Bloom, S. C. Lanis, J. L. Roberts, & L. R. Squire (Eds.), Fundamental neuroscience (pp. 951–972). New York: Academic PressGoogle Scholar
  86. Morris, D. (1962). The behaviour of the green acouchi (Myoprocta paratti) with special reference to scatter hoarding. Proceedings of the Zoological Society of London, 139, 710–731Google Scholar
  87. Nelson, R. J. (1997). The use of genetic ‘knockout’ mice in behavioral endocrinology research. Hormones and Behavior, 31, 188–196CrossRefPubMedGoogle Scholar
  88. Neville, H. J. (1996). Developmental specificity in neurocognitive development in humans. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 219–231). Cambridge, MA: MIT Press Google Scholar
  89. Pellis, S. M., Castaneda, E., McKenna, M. M., Tran-Nguyen, L. T. L., & Whishaw, I. Q. (1993). The role of the striatum in organizing sequences of play fighting in neonatally dopamine-depleted rats. Neuroscience Letters, 158, 13–15CrossRefPubMedGoogle Scholar
  90. Pham, T. M., Soderstrom, S., Winblad, B., & Mohammed, A. H. (1999). Effects of environmental enrichment on cognitive function and hippocampal NGF in non-handled rats. Behavioural Brain Research, 103, 63–70CrossRefPubMedGoogle Scholar
  91. Phillips, D. P., Danilchuk, W., Ryon, J., & Fentress, J C. (1990). Food-caching in timber wolves, and the question of rules of action syntax. Behavioural Brain Research, 38, 1–6CrossRefPubMedGoogle Scholar
  92. Phillips, D. P., Ryon, J., Danilchuk, W., & Fentress, J. C. (1991). Food-caching in captive coyotes: Stereotypy of action sequence and spatial distribution of cache sites. Canadian Journal of Psychology, 45, 83–91CrossRefPubMedGoogle Scholar
  93. Poizner, H., Clark, M. A., Merians, A. S., Macauley, B., Rothi, L., & Heilman, K. M. (1995). Joint coordination deficits in limb apraxia. Brain, 118, 227–242CrossRefPubMedGoogle Scholar
  94. Posner, M. I., & Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Transactions of the Philosophical Society of London, 353, 1915–1927CrossRefGoogle Scholar
  95. Prochazka, A. (1989). Sensorimotor gain control: A basic strategy of motor systems? Progress in Neurobiology, 33, 281–307CrossRefPubMedGoogle Scholar
  96. Prochazka, A., Clarac, F., Loeb, G. E., Rothwell, J. C., & Wolpaw, J. R. (2000). What do reflex and voluntary mean? Modern views on an ancient debate. Experimental Brain Research, 130, 417–432CrossRefGoogle Scholar
  97. Ramus, F., & Mehler, J. (1999). Language identification with suprasegmental cues: A study based on speech resynthesis. Journal of the Acoustical Society of America, 105, 512–521CrossRefPubMedGoogle Scholar
  98. Rapoport, J. (1991). Recent advances in obsessive-compulsive disorder. Neuropsychopharmacology, 5, 1–20PubMedGoogle Scholar
  99. Robinson, S. R., & Smotherman, W. P. (1992). Fundamental motor patterns of the mammalian fetus. Journal of Neurobiology, 23, 1574–1600CrossRefPubMedGoogle Scholar
  100. Roffler-Tarlov, S., Martin, B., Grabiel, A. M., & Kauer, J. S. (1996). Cell death in the midbrain of the murine mutation weaver. Journal of Neuroscience, 16, 1819–1826PubMedGoogle Scholar
  101. Rolls, E. T., & Treves, A. (1998). Neural networks and brain function Oxford: Oxford University PressGoogle Scholar
  102. Rosenbaum, D. A. (1991). Human motor control San Diego, CA: Academic PressGoogle Scholar
  103. Sachs, B. D. (1988). The development of grooming and its expression in adult animals. Annuals of the New York Academy of Sciences,525, 1–17CrossRefGoogle Scholar
  104. Sherrington, C. S. (1906). The integrative action of the nervous system New Haven, CT: Yale University PressGoogle Scholar
  105. Smotherman, W. P., & Robinson, S. R. (1996). The development of behavior before birth. Developmental Psychology, 32, 425–434CrossRefGoogle Scholar
  106. Spelke, E. S., Vishton, P., & von Hofsten, C. (1996). Object perception, object-directed action, and physical knowledge in infancy. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 165–179). Cambridge: MIT PressGoogle Scholar
  107. Sporns, O., & Tononi, G. (Eds.). (1994). Selectionism and the brain San Diego, CA: Academic PressGoogle Scholar
  108. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses Cambridge, MA: MIT PressGoogle Scholar
  109. Stein, P. S. G., Grillner, S., Selverston, A. I., & Stuart, D. G. (Eds.). (1997). Neurons, networks, and motor behavior. Cambridge, MA: MIT PressGoogle Scholar
  110. Tepper, J. M., & Trent, E. (1993). In vivo studies of the postnatal development of rat neostriatal neurons. Progress in Brain Research, 99, 35–50CrossRefPubMedGoogle Scholar
  111. Thach, W. T. (1996). On the specific role of the cerebellum in motor learning and cognition: Clues from PER activation and lesion studies in man. Behavioral and Brain Sciences, 19, 411–431CrossRefGoogle Scholar
  112. Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action Cambridge, MA: MIT PressGoogle Scholar
  113. Thelen, E., & Ulrich, B. D. (1991). Hidden skills: A dynamic systems analysis of treadmill stepping during the first year Chicago- University of Chicago PressGoogle Scholar
  114. Tinbergen, N. (1972). The animal in its world, Volume 1, Field studies London: George Allen and UnwinGoogle Scholar
  115. Vander Wall, S. B. (1990). Food hoarding in animals Chicago: University of Chicago PressGoogle Scholar
  116. von der Malsburg, C. (1995). Self-organization and the brain. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 840–843). Cambridge, MA: MIT PressGoogle Scholar
  117. Wayne, R. K. (1993). Molecular evolution of the dog family. Trends in Genetics,9, 218–224Google Scholar
  118. Weinberger, N. M. (1995). Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annual Review of Neuroscience, 18, 129–158CrossRefPubMedGoogle Scholar
  119. Weiner W. J., & Lang, A. E. (1989). Movement disorders: A comprehensive survey New York: FuturaGoogle Scholar
  120. Wolpert, L. (1998). Principles of development Oxford: Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John C. Fentress
    • 1
    • 2
  • Simon Gadbois
    • 3
  1. 1.Department of Psychology and NeuroscienceDalhousie UniversityHalifax, Nova ScotiaCanada
  2. 2.Departments of Psychology and BiologyUniversity of OregonEugene
  3. 3.Department of PsychologyDalhousie UniversityHalifax, Nova ScotiaCanada

Personalised recommendations