Skip to main content

Iron Phase Diagram at High Pressures and Temperatures

  • Chapter
Properties of Complex Inorganic Solids 2

Abstract

Diamond-anvil cell (DAC) high-pressure technique with in situ laser heating of a sample permits the determination of iron phase diagram to pressures reaching planetary cores. The DAC technique in combination with in situ x-ray study of iron has revealed the presence of at least one additional state of iron with possibly a double hexagonal closest packed (DHCP) structure given the name β. A review of the available data, indicates that in addition to the previously known triple points, the BCC( body-centered cubic)-HCP (hexagonal closest packed)-FCC (face centered cubic) and the β-BCC-FCC-melt, the following triple-points may exist in the iron phase diagram: the HCP-FCC-β: pressure (P) = 40 (4) GPa at temperature (T) = 1550 (100) K, the β-FCC-melt: P = 60 (10) GPa at T = 2600 (100) K. We define the stability of β-phase between pressures of 37 to 300 GPa at high temperatures. The HCP-β phase boundary has a small negative dP/dT indicating the similarity of physical properties (molar volume, thermal expansi n and bulk modulus) between the two but a higher entropy and enthalpy for the β-phase. The melting curve of iron has been determined quite reliably with the laser heated sample in the DAC to a pressure of about 80 gigapascal (GPa). The pressure range of melting has been extended to as high as 200 GPa but is not supported by shock-wave data and requires further studies for confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, T. J., Holland, K. G. and Chen, G. Q., 1997, in: Shock temperatures and the melting point of iron. CP429, Shock Compression of Condensed Matter, Schmidt, Dandekar and Forbes, eds. The American Inst. Phys.

    Google Scholar 

  • Andrault, D., Fiquet, G., Kunz, M., Visocekas, F. and Hausermann, D., 1997, The orthorhombic structure of iron: An in-situ high-T/high-P structure solution and refinement. Science 278: 831.

    Article  ADS  Google Scholar 

  • Anderson, O. L. and Duba, A., 1997, Experimental melting of iron revisited. J. Geophys. Res. 102: 22659.

    Article  ADS  Google Scholar 

  • Anderson, O. L. and Isaak, D. G., 2000, Simulated melting curves for phases of iron. American Mineral. (in press).

    Google Scholar 

  • Bass, J. D., Ahrens, T. J., Abelson, J. R. and Hua, T., 1990, Shock temperature measurements: New results for an iron alloy. J. Geophys. Res. 95:21757.

    Article  ADS  Google Scholar 

  • Boehler, R., 1986, The phase diagram of iron to 430 kbar, Geophys. Res. Lett., 13: 1153.

    Article  ADS  Google Scholar 

  • Boehler, R., Nicol, M. and Johnson, M. L., 1987, Internally-heated diamond-anvil cell: Phase diagram and P-V-T of iron in High-Pressure Research in Mineral Physics, Geophys.Monogr. Ser., vol. 39, M. H. Manghnani and Y. Syono eds., TERRAPUB, Tokyo/AGU, Washington DC.

    Google Scholar 

  • Boehler, R., 1993, Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures, Nature, 363:534.

    Article  ADS  Google Scholar 

  • Boehler, R., von Bargen, N. and Chopelas, A., 1990, Melting, thermal expansion, and phase transition of iron at high pressures, J. Geophys. Res., 95: 21731.

    Article  ADS  Google Scholar 

  • Brown, J. M. and McQueen, R. G., 1986, Phase transitions, Grüneisen parameters and elasticity for shocked iron between 77 GPa, J. Geophys. Res., 91: 7485.

    Article  ADS  Google Scholar 

  • Chen, G.Q and Ahrens, T.J. 1995. Equations of state of a, ε and liquid iron and iron’s melting curve -thermodynamic calculations. Geophys. Res. Lett., 22,21–24.

    Article  ADS  Google Scholar 

  • Chen, G.Q. and Ahrens, T. 1996. High-pressure melting of iron: new experiments and calculations. Phil. Trans. R. Soc. Lond. A, 354: 1251.

    Article  ADS  Google Scholar 

  • Coates. P. B. (1981) Multi-valent pyrometry. Metrologia. V 17 103–109.

    Article  ADS  Google Scholar 

  • Dubrovinsky, L. S., Saxena, S. K., Lazor, P., 1997, X-ray study of iron with in-situ heating at ultra high pressures. Geophys.Res. Lett.24:1835.

    Article  ADS  Google Scholar 

  • Dubrovinsky, L.S., Saxena S. K, Tutti F., Rekhi S. and LeBehan T., 2000, In situ X-ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys. Rev. Lett (In press).

    Google Scholar 

  • Dubrovinsky, L. S., Saxena, S. K., Lazor, P., 1998a, High-pressure and high temperature in situ x-ray diffraction study of iron and corundum to 68 GPa using internally heated diamond-anvil cell. Phys. Chem. Mineral. 25:434.

    Article  ADS  Google Scholar 

  • Dubrovinsky, L. S., Saxena, S. K., Lazor, P., 1998b, Stability of -iron: A new synchrotron x-ray study of heated iron at high pressures. European J. Mineralogy, 10: 43.

    Google Scholar 

  • Dubrovinsky, L. S., Lazor, P., Saxena, S. K., Haggkvist, P., Weber, H.P., Le Bihan, T. and Hausermann, D.,1999, Study of laser heated iron using third generation synchrotron x-ray radiation facility with imaging plate at high pressures. Phys. Chem. Mineral., 26:539.

    Article  ADS  Google Scholar 

  • Fernández Guillermot, A. and Gustafson, P., 1985, An assessment of the thermodynamic properties and the (p,T) phase diagram of iron, High Temp.-High Press., 16: 591.

    Google Scholar 

  • Funamori, N., Yagi, T. and Uchida, T., 1997, High-pressure and high-temperature in situ x-ray diffraction study of iron to above 30 GPa using MA8-type apparatus. Geophys. Res. Lett. 23:953.

    Article  ADS  Google Scholar 

  • Gallagher, K.G. and Ahrens, T.J., 1994, First measurements of thermal conductivity of griceite and corundrum at ultra high pressures and the melting point of iron (abstract), EOS Trans. Am. Geophys. Un., 15(Suppl.),653.

    Google Scholar 

  • Jeanloz, R. and Kavner, A., 1996, Melting criteria and imaging spectroradiometry in laser-heated diamond-cell experiments. Phil. Trans. R. Soc. Lond. A, 354:1307

    Google Scholar 

  • Larson, A.C. and Von Dreele, R.B., 1994, Los Alamos National Laboratory, LAUR, 86–748,

    Google Scholar 

  • Lazor, P. and Saxena, S.K., 1996 , Discussion comment on melting criteria and imaging spectroradiometry in laser-heated diamond-cell experiments (by R. Jeanloz & A. Kavner), Phil. Trans. R. Soc. Lond. A, 354:1307.

    Google Scholar 

  • Mao, H.K., Bell, P.M. and Hadidiacos, C., 1987, Experimental phase relations of iron to 360 kbar, 1400°C, determined in an internally heated diamond anvil apparatus, in High-Pressure Research in Mineral Physics, Geophys.Monogr. Ser., vol. 39, M. H. Manghnani and Y. Syono, eds., TERRAPUB, Tokyo/AGU, Washington DC, 1987.

    Google Scholar 

  • Saxena, S.K., Shen, G., Lazor, P., 1993, Experimental evidence for a new iron phase and implications for Earth’s core, Science, 260, 1312–1314.

    Article  ADS  Google Scholar 

  • Saxena, S.K., Shen, G. and Lazor, P., 1994, Temperatures in Earth’s core based on melting and phase transformation experiments on iron, Science, 264,405–407.

    Article  ADS  Google Scholar 

  • Saxena, S.K., Dubrovinsky, L.S., Häggqvist, P., Cerenius, Y., Shen, G. and Mao, H.K., 1995, Synchrotron X-ray study of iron at high pressure and temperature, Science, 269: 1703.

    Article  ADS  Google Scholar 

  • Saxena, S.K., Dubrovinsky, L.S. and Häggkvist, P., 1996, X-ray evidence for the new phase ß-iron at high temperature and high pressure, Geophys. Res. Lett., 23:2441.

    Article  ADS  Google Scholar 

  • Shen, G. Mao, H. K., Hemley, R. J., Duffy, T. S., Rivers, M. L., 1998, Melting and crystal structure of iron at high pressures. Geophys. Res. Lett., 25:373.

    Article  ADS  Google Scholar 

  • Yoo, C. S., Holmes, N.C. and Ross, M., 1993, Shock temperatures and melting of iron at earth core conditions. Phys. Rev. Lett. 70: 3931.

    Article  ADS  Google Scholar 

  • Yoo, C.S., Akella, J., Campbell, A.J., Mao, H.K. and Hemley, R.J., 1995, Phase diagram of iron by in situ X-ray diffraction: Implications for Earth’s core, Science, 270:1473.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saxena, S.K., Dubrovinsky, L.S. (2000). Iron Phase Diagram at High Pressures and Temperatures. In: Meike, A., Gonis, A., Turchi, P.E.A., Rajan, K. (eds) Properties of Complex Inorganic Solids 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1205-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1205-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5440-6

  • Online ISBN: 978-1-4615-1205-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics