Expression and Regulation of Aquaporin-1 and Endothelial Nitric Oxide Synthase in Relationship with Water Permeability Across the Peritoneum

  • Olivier Devuyst
  • Sophie Combet
  • Jean-Luc Balligand
  • Eric Goffin
  • Jean-Marc Verbavatz

Abstract

Over the past 25 years, peritoneal dialysis (PD) has become an established treatment for end-stage renal disease (ESRD), accounting for about 15% of the total number of patients on dialysis worldwide (Gokal and Mallick 1999). To perform PD, a catheter is inserted into the peritoneal cavity and a solution (dialysate) is infused through it. The dialysate remains in the peritoneal cavity for some hours (dwell time), and is then drained out before fresh dialysate is reinfused (the drainage-reinfusion procedure is called an exchange). Four exchanges are performed daily in continuous ambulatory peritoneal dialysis (CAPD); a mechanical device can also be used to infuse and drain the dialysate during the night, in combination with one or two day-time exchanges (automated peritoneal dialysis, APD) (Gokal and Mallick 1999).

Keywords

Permeability Catheter Glycerol Albumin Superoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrami L Tacnet F and Ripoche P 1995 Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channels Pflugers Arch 430: 447458PubMedCrossRefGoogle Scholar
  2. Agre P Bonhivers M and Borgnia MJ 1998 The aquaporins blueprints for cellular plumbing systems J Biol Chem 273: 14659–14662PubMedCrossRefGoogle Scholar
  3. Akiba T Ota T Fushimi K Tamura H Hata T Sasaki S and Marumo F 1997 Water channel AQP1 3 and 4 in the human peritoneum and peritoneum membrane Adv Perit Dial 13: 36PubMedGoogle Scholar
  4. Breborowicz A Wieczorowska-Tobis K Korybalska K Polubinska A Radkowski M and Oreopoulos DG 1998 The effect of a nitric oxide inhibitor (L-NAME) on peritoneal transport during dialysis in rats Peril Dial Int 18: 188–192Google Scholar
  5. Carlsson O Nielsen S Zakaria ER and Rippe B 1996 In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats Am J Physiol 271: H2254-H2262PubMedGoogle Scholar
  6. Combet S Balligand J-L Lameire N Goffin E and Devuyst O 2000 A specific method for measurement of nitric oxide synthase enzymatic activity in peritoneal biopsies Kidney Int 57: 332338PubMedCrossRefGoogle Scholar
  7. Combet S van Landschoot M Moulin P Piech A Verbavatz J-M Goffin E Balligand J-L Lameire N and Devuyst O 1999 Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis J Am Soc Nephrol 10: 21852196Google Scholar
  8. Devuyst O Nielsen S Cosyns J-P Smith BL Agre P Squifflet J-P Pouthier D and Goffin E 1998 Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum Am J Physiol 275: H234-H242PubMedGoogle Scholar
  9. Goffin E Combet S Jamar F Cosyns J-P and Devuyst O 1999 Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport Am J Kidney Dis 33: 383388PubMedCrossRefGoogle Scholar
  10. Gokal R and Mallick NP 1999 Peritoneal dialysis Lancet 353: 823828PubMedCrossRefGoogle Scholar
  11. Kone BC 1997 Nitric oxide in renal health and disease Am J Kidney Dis 30: 311333PubMedCrossRefGoogle Scholar
  12. Leypoldt JK and Mistry CD 1994 Ultrafiltration in peritoneal dialysis In The Textbook of Peritoneal Dialysis (R Gokal and KD Nolph eds) Kluwer Academic Publishers Dordrecht pp 135–160CrossRefGoogle Scholar
  13. Nielsen S Smith BL Christensen EI and Agre P 1993b Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia Proc Natl Acad Sci USA 90: 72757279PubMedCrossRefGoogle Scholar
  14. Nielsen S Smith BL Christensen EI Knepper MA and Agre P 1993a CHIP28 water channels are localized in constitutively water-permeable segments of the nephronJ Cell Biol 120: 371383PubMedCrossRefGoogle Scholar
  15. Nolph KD Ghods A Brown PA Miller F Harris PD Pyle K and Popovich R 1977 Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology ASAIO Trans 23: 210218CrossRefGoogle Scholar
  16. Pannekeet MM Mulders JB Weening JJ Struijk DG Zweers MM and Krediet RT 1996 Demonstration of aquaporin-chip in peritoneal tissue of uremic and CAPD patients Pent Dial Int 16: S54-S57Google Scholar
  17. Rippe B and Krediet RT 1994 Peritoneal physiology - transport of solutes In The Textbook of Peritoneal Dialysis (R Gokal and KD Nolph eds) Kluwer Academic Publishers Dordrecht pp 69–113CrossRefGoogle Scholar
  18. Rippe B Stelin G and Haraldsson B 1991 Computer simulations of peritoneal fluid transport in CAPDKidney Int 40: 315325PubMedCrossRefGoogle Scholar
  19. Roudier N Verbavatz J-M Maurel C Ripoche P and Tacnet F 1998 Evidence for the presence of aquaporin-3 in human red blood cells J Biol Chem 273: 84078412PubMedCrossRefGoogle Scholar
  20. Twardowski ZJ Nolph KD Khanna R Prowant BF Ryan LP Moore HL and Nielsen MP 1987 Peritoneal equilibration test Perit Dial Bull 7: 138147Google Scholar
  21. Walz T Hirai T Murata JB Heymann JB Mitsuoka K Fujiyoshi Y Smith BL Agre P and Engel A 1997 The three-dimensional structure of aquaporin-1 Nature 387: 624627PubMedCrossRefGoogle Scholar
  22. Yang B Folkesson HG Yang J Matthay MA Ma T and Verkman AS 1999 Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice Am J Physiol 216: C76-C81Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Olivier Devuyst
    • 1
  • Sophie Combet
    • 2
  • Jean-Luc Balligand
    • 3
  • Eric Goffin
    • 1
  • Jean-Marc Verbavatz
    • 2
  1. 1.Div. of NephrologyUniversité catholique de Louvain Medical SchoolBrusselsBelgium
  2. 2.Dept of Cell BiologyCEA SaclayGif-sur-YvetteFrance
  3. 3.Div. of Pharmacology and TherapeuticsUniversité catholique de Louvain Medical SchoolBrusselsBelgium

Personalised recommendations