Abstract
The entrainment of circadian systems is essential for their functional significance as well as for our insight into their physiologic organization. Entrainment entails the adjustment of both the frequency and phase of rhythms in the living world to the cycle of the earth’s rotation. It is only by virtue of entrainment that programs in behavior and physiology produced by endogenous circadian systems can be properly timed. This is crucial for the advantages in natural selection that in the past gave rise to the evolution and today maintain the genetic basis of these systems. Entrainment requires the sensitivity of endogenous oscillators toward particular environmental cues as well as insensitivity toward others. The sensitivity toward light has been and continues to be a primary guide in probing and unraveling the physiology of circadian systems.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Albers, H. E. (1986). Response of hamster circadian system to transitions between light and darkness. American Journal of Physiology, 250, R708–R711.
Amir, S., & Stewart, J. (1996). Resetting of the circadian clock by a conditioned stimulus. Nature, 379, 542–545.
Armstrong, S. M. (1989). Melatonin and circadian control in mammals. Experientia, 45, 932.
Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 25, 11–28.
Aschoff, J. (1979a). Circadian rhythms: General features and endocrinological aspects. In D. Krieger (Ed.), Endocrine rhythms (pp. 1–60). New York: Raven Press.
Aschoff, J. (1979b). Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrii t für Tierpsychologie, 49, 225–249.
Aschoff, J. (1981a). Circadian system properties. In F. Obal & G. Benedek (Eds.), Advances in physiological sciences-Environmental physiology (Vol. 18, pp. 1–17). Budapest: Akademiai Kiado.
Aschoff, J. (1981b). Freerunning and entrained circadian rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol 4. Biological rhythms (pp. 81–93). New York: Plenum Press.
Aschoff, J. (1994). On the aging of circadian systems. In T. Hiroshige & K. Honma (Eds.), Evolution of circadian clock (pp. 23–44). Sapporo, Japan: Hokkaido University Press.
Aschoff, J., & Pohl, H. (1978). Phase relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften, 65, 80–84.
Aschoff, J., & Tokura, H. (1986). Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles. Journal of Biological Rhythms, 1, 91–99.
Aschoff, J., & Von Goetz, C. (1988). Masking of circadian activity rhythms in hamsters by darkness. Journal of Comparative Physiology A, 162, 559–562.
Aschoff, J., & Wever, R. (1965). Circadian rhythms of finches in light-dark cycles with interposed twilights. Comparative Biochemistry and Physiology, 16, 507–514.
Aschoff, J., Sc Wever, R. (1966). Circadian period and phase angle difference in chaffinches (Fringilla coelebs L.). Comparative Biochemistry and Physiology, 18, 397–404.
Aschoff, J., Hoffmann, K., Pohl, H., & Wever, R. (1979). Re-entrainment of circadian rhythms after phase-shifts of the zeitgeber. Chronobiologia, 2, 23–78.
Aschoff, J., Daan, S., & Honma, K. (1982a). Zeitgebers, entrainment, and masking: Some unsettled questions. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 13–24). Berlin: Springer-Verlag.
Aschoff, J., Gerecke, U., Von Goetz, C., Groos, G. A., & Turek, F. W. (1982b). Phase responses and characteristics of free-running activity rhythms in the golden hamster: Independence of the pineal gland. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 129–140). Berlin: Springer-Verlag.
Boulos, Z., Macchi, M., Houpt, T. A., & Terman, M. (1996). Photic entrainment in hamsters: Effects of simulated twilights and nest box availability. Journal of Biological Rhythms, 11, 216–233.
Bovet, J., & Oertli, E. (1974). Free-running circadian activity rhythms in free-living beaver Castor cana densis). Journal of Comparative Physiology, 92, 1–10.
Clifton, K. E. (1997). Mass spawning by green algae on coral reefs. Science, 275, 1116–1118.
Daan, S., & Aschoff, J. (1975). Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia, 18, 269–316.
Daan, S., & Pittendrigh, C. S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents II. The variability of phase response curves. Journal of Comparative Physiology, 106, 253–266.
Daan, S., & Pittendrigh, C. S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents III. Heavy water and constant light: Homeostasis of frequency? Journal of Comparative Physiology, 106, 267–290.
Daan, S., Damassa, D., Pittendrigh, C., & Smith, E. (1975). An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proceedings of the National Academy of Sciences of the USA, 72, 3744–3747.
Davis, F., & Gorski, R. (1988). Development of hamster circadian rhythms: Role of the maternal suprachiasmatic nucleus. Journal of Comparative Physiology A, 162, 601–610.
Davis, F., & Mannion, J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. American Journal of Physiology, 255, R439–R448.
Davis, F., Suce, S., & Menaker, M. (1987). Activity and reproductive state in the hamster: Independent control by social stimuli and a circadian pacemaker. Physiology and Behavior, 40, 583–590.
DeCoursey, P. (1960). Daily light sensitivity rhythm in a rodent. Science, 131, 33–35.
DeCoursey, P. (1972). LD ratios and the entrainment of circadian activity in a nocturnal and a diurnal rodent. Journal of Comparative Physiology, 78, 221–235.
DeCoursey, P. J. (1986). Light-sampling behavior in photoentrainment of a rodent circadian rhythm. Journal of Comparative Physiology A, 159, 161–169.
DeCoursey, P. J., & Menon, S. A. (1990). Circadian photo-entrainment in a nocturnal rodent: Quantitative measurement of light-sampling activity. Animal Behaviour, 41, 781–785.
Edgar, D. M., & Dement, W. C. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. American Journal of Physiology, 261, R928–R933.
Engelmann, W., Eger, I., Johnsson, A., Sc Karlsson, H. G. (1974). Effect of temperature pulses on the petal rhythm of Kalanchoe: An experimental and theoretical study. International Journal of Chrono-biology, 2, 347–358.
Eriksson, L., & Van Veen, T. (1980). Circadian rhythms in the brown bullhead, Ictalurus nebulosus (Teleostei). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behaviour. Canadian Journal of Zoology, 58, 1899–1907.
Eskin, A. (1971). Some properties of the system controlling the circadian activity rhythm of sparrows. In M. Menaker (Ed.), Biochronometry (pp. 55–80). Washington DC: National Academy of Sciences.
Gander, P. H. (1979). The circadian locomotor activity rhythm of Hemideina thoracica (Orthoptera): The effects of temperature perturbations. International Journal of Chronobiology, 6, 243–262.
Gerkema, M. P., Daan, S., Wilbrink, M., Hop, M., & Van der Leest, E (1993). Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): The roles of light and the circadian system. Journal of Biological Rhythms, 8, 151–171.
Gwinner, E. (1966). Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae; Carduelis spinus, Serinus serinus). Experientia, 22, 1–3.
Haarhaus, H. (1968). Zum Tagesrhythmus des Staren (Sturnus vulgaris) and der Schneeammer (Plectrophenax nivalis). Oecologia (Berlin), 1, 176–218.
Hardeland, R., Balzer, I., Poeggeler, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T. J., & Reiter, R. J. (1995). On the primary functions of melatonin in evolution: Mediation of photo-periodic signals in a unicell, photooxidation, and scavenging of free radicals. Journal of Pineal Research, 18, 104–111.
Hayden, P., & Lindberg, R. (1969). Circadian rhythm in mammalian body temperature entrained by cyclic pressure changes. Science, 164, 1288–1289.
Heigl, S., & Gwinner, E. (1994). Periodic melatonin in the drinking water synchronizes circadian rhythms in sparrows. Naturwissenschaften, 81, 83–85.
Hoffmann, K. (1969). Zum Einfluss der Zeitgeberstaerke auf die Phasenlage der synchronisierten Periodik. Zeitschrift fiir vergleichende Physiologie, 62, 93–110.
Honma, S., Honma, K, & Hiroshige, T. (1985). Ontogeny of corticosterone and locomotor rhythms in rats: Effects of maternal rhythms and restricted daily feeding. In T. Hiroshige & K. Honma (Eds.), Circadian clocks and zeitgebers (pp. 167–178). Sapporo, Japan: Hokkaido Press.
Hut, R. A., van Oort, B. E. H., & Daan, S. (1999). Natural entrainment without dawn and dusk: The case of the European ground squirrel (Spermophilus citellus). Journal of Biological Rhythms, 14, 290–299.
Johnson, C. H. (1991). An atlas of phase response curves for circadian and circatidal rhythms. Nashville, TN: Vanderbilt University.
Johnson, C. H. (1992). Phase response curves: What can they tell us about circadian clocks? In T. Hiroshige & K. Honma (Eds.), Circadian clocks: From cell to human (pp. 209–249). Sapporo, Japan: Hokkaido University Press.
Johnson, M. S. (1939). Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). Journal of Experimental Zoology, 82, 315–328.
Kleinhoonte, A. (1928). De door het licht geregelde autonome bewegingen der Canavalia-bladeren. Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.
Kleinknecht, S. (1985). Lack of social entrainment of free-running circadian activity rhythms in the Australian sugar glider (Petaurus brevicepx Marsupialia). Behavioral Ecology and Sociobiology, 16, 189–193.
Kramm, K. (1974). Phase control of circadian activity rhythms in ground squirrels. Naturwissenschaften, 61, 34.
Kr ‘till, F. (1976). Zeitgebers for animals in the continuous daylight of high arctic summer. Oecologia (Berlin), 24, 149–157.
Lewy, A. J., Sack, R. L., Bood, M. L., Bauer, V. K., Cutler, N. S., & Thomas, K. H. (1994). Melatonin marks phase position and resets the endogenous circadian pacemaker in humans. In D. J. Chadwick & K. Ackrill (Eds.), Circadian clocks and their adjustment (pp. 303–317). New York: Wiley.
Marimuthu, G., & Chandrashekaran, M. K. (1983). Social cues of a Hipposiderid bat inside a cave fail to entrain the circadian rhythm of an Emballonurid bat. Naturwissenschaften, 70, 620.
Marimuthu, G., Rajan, S., & Chandrashekaran, M. 1981). Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behavioral Ecology and Sociobiology, 8, 147–150.
Meijer, J. H., & DeVries, M. J. (1995). Light-induced phase shifts in onset and offset of running-wheel activity in the Syrian hamster. Journal of Biological Rhythms, 10, 4–16.
Menaker, M., & Eskin, A. (1966). Entrainment of circadian rhythms by sound in Passer domesticus. Science, 154, 1579–1581.
Mrosovsky, N. (1988). Phase response curves for social entrainment. Journal of Comparative Physiology A, 162, 35–46.
Mrosovsky, N. (1993). Tau changes after single nonphotic events. Chronobiology International, 10, 271–276.
Mrosovsky, N., Boshes, M., Hallonquist, J., & Lang, K (1976). Circannual cycle of circadian cycles in a golden-mantled ground squirrel. Naturwissenschaften, 63, 298–299.
Mrosovsky, N., Reebs, S., Honrado, G., & Salmon, P. (1989). Behavioural entrainment of circadian rhythms. Experientia, 45, 696–702.
Oklejewicz, M., Hut, R. A., Daan, S., Loudon, A. S. I., & Stirland, A. J. (1997). Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. Journal of Biological Rhythms, 12, 413–422.
Pittendrigh, C. (1958). Perspectives in the study of biological clocks. In A. A. Buzatti-Traverso (Ed.), Perspectives in marine biology (pp. 239–268). San Francisco: University of California Press.
Pittendrigh, C. (1967). Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences of the USA, 58, 1762–1767.
Pittendrigh, C. S. (1980). Some functional aspects of circadian pacemakers. In M. Suda, O. Hayaishi, & H. Nakagawa (Eds.), Biological rhythms and their central mechanism (pp. 3–12). New York: Elsevier Press.
Pittendrigh, C. (1981a). Circadian organization and the photoperiodic phenomena. In B. Follett & D. Follett (Eds.), Biological clocks in seasonal reproductive cycles (pp. 1–35). Bristol, England: Scientechnica.
Pittendrigh, C. S., (1981b). Circadian systems: Entrainment In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol. 4. Biological rhythms (pp. 95-124). New York: Plenum Press.
Pittendrigh, C. S., & Daan, S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 106, 223–252.
Pittendrigh, C. S., & Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 106, 291–331.
Pittendrigh, C. S., & Daan, S. (1976c). A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 106, 333–355.
Pittendrigh, C., & Minis, D. (1964). The entrainment of circadian oscillations by light and their role as photoperiodic clocks. American Naturalist, 48, 261–294.
Roberts, S. (1962). Circadian activity rhythms in cockroaches II. Entrainment and phase shifting. Journal of Cellular and Comparative Physiology, 59, 175–186.
Roenneberg, T., & Rehman,J. (1996). Nitrate, a nonphotic signal for the circadian system. FASEB Journal, 10, 1443–1447.
Rusak, B., Mistlberger, R. E., Losier, B., & Jones, C. H. (1988). Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. journal of Comparative Physiology, A164, 165–171.
Scheer, G. (1952). Beobachtungen and Untersuchungen über die Abhängigkeit des Frühgesanges der Vögel von inneren and äusseren Faktoren. Biologische Abhandlungen, 3/4, 1–68.
Strubbe, J. H., Spited, N.J., & Prins, A. J. A. (1986). Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiology and Behavior, 36, 647–651.
Subbaraj, R., & Chandrashekaran, M. (1981). Mirror imaging phase response curves obtained for the circadian rhythm of a bat with single steps of light and darkness. Journal of Interdisciplinary Cycle Research, 12, 305–312.
Swade, R. H. (1969). Circadian rhythms in fluctuating light cycles: Toward a new model of entrainment. Journal of Theoretical Biology, 24, 227–239.
Takahashi, K, & Sasaki, Y. (1985). Entraining mechanism of endogenous rhythm of blinded rat pups by the nursing mother. In T. Hiroshige & K Honma (Eds.), Circadian clocks and zeitgebers (pp. 157–166). Sapporo, Japan: Hokkaido University Press.
Takahashi, K, Inoue, K, Kobayashi, K, Hayafuji, C., Nakamura, Y., & Takahashi, Y. (1978). Mutual influence of rats having different circadian rhythm of adrenocortical activity. American Journal of Physiology, 234, E515–E520.
Terman, M., Reme, C., & Wirz-Justice, A. (1991). The visual input stage of the mammalian circadian pacemaking system: II. The effect of light and drugs on retinal function. Journal of Biological Rhythms, 6, 31–48.
Turek, F. W. (1989). Effects of stimulated physical activity on the circadian pacemaker of vertebrates. Journal of Biological Rhythms, 4, 135–148.
Viswanathan, N., & Chandrashekaran, M. (1985). Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature, 317, 530–531.
Von Holst, E. (1939). Die relative Koordination als Phänomen and als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.
Voûte, A. (1972). Bijdrage tot de oecologie van de Meervleermuis (Myotis dasycneme (Boie, 1825)). Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.
Wever, R. (1960). Possibilities of phase-control, demonstrated by an electronic model. Cold Spring Harbor Symposia on Quantitative Biology, 25, 197–206.
Wever, R. (1967). Zum Einfluss der Dämmerung auf die circadiane Periodik. Zeitschrift für vergleichende Physiologie, 55, 255–277.
Wever, R. (1972). Virtual synchronisation towards the limits of the range of entrainment. Journal of Theoretical Biology, 36, 119–132.
Wiedenmann, G. (1977). Two activity peaks in circadian rhythms of cockroach Leucophaea maderae. Journal of Interdisciplinary Cycle Research, 8, 378–383.
Winfree, A. (1970). Integrated view of resetting a circadian clock. Journal of Theoretical Biology, 28, 327–374.
Zimmerman, W. F., Pittendrigh, C. S., & Pavlidis, T (1968). Temperature compensation of the circadianoscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. Journal of Insect Physiology, 14, 669–684.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media New York
About this chapter
Cite this chapter
Daan, S., Aschoff, J. (2001). The Entrainment of Circadian Systems. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_2
Download citation
DOI: https://doi.org/10.1007/978-1-4615-1201-1_2
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-5438-3
Online ISBN: 978-1-4615-1201-1
eBook Packages: Springer Book Archive